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r , 
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Theoretical Physics Department 

Aristotle University of Thessaloniki 
GR-54006 Thessaloniki, Greece 

Abstract 

The well known potential —Dcosh~2(^) is studied with the aim of obtain­
ing approximate analytic expressions mainly for the energies of the excited 
states with / ^O.Use is made of the Hypervirial Theorems (HVT) in con­
junction with the Hellmann-Feynman Theorem (HFT) which provide a very 
powerful scheme especially for the treatment of 'Oscillator-like' potentials,as 
previous studies have shown.The energy eigenvalues are calculated in the 
form of an expansion ,the first terms of which, in many cases, yield very 
satisfactory results. 

1.Introduction 

Various approaches can be employed in an effort to obtain the energy 
eigenvalues of the Schroedinger eigenvalue problem for a certain potential. 
Unfortunately the majority entails cumbersome calculations of matrix ele­
ments or the ingenious deduction of a trial function.The previous obstacles 
can be overcome by using the Hypervirial Theorems,ref[l,2],in conjunction 
with the Hellmann-Feynman Theorem,ref[3).This (HVT-HFT) method could 
have been labeled as classical,had it not been for the peculiarities of the 
potential we select each time.Consequently,this method constitutes a very 
handsome alternative to a pure perturbational or variational treatment. A 
multitude of authors has applied variations of this very method to a good 
number of potentials Ref[3-10] and references therein.The results vary each 
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time,according to the susceptibility of the potential in question. The scheme 

makes use of a small parameter Λ ,which enables one to expand the potential 

as well as the energy and the moments in an appropriate Α-series. We tra­

ditionally adopt the first non trivial term of our expanded potential as the 

unperturbed term of our problem.The energy of the unperturbed Scroedinger 

equation serves as a quantity by means of which the other energy terms are 

calculated. 

The content of this contribution is a preliminary part of a work related to 

the application of the Hypervirial Theorems.In the next section the relevant 

formalism is reviewed,see ref[9,10],while in section 3,that formalism is applied 

to the potential —ξγρττ.Ιη the final section numerical results are given and 

discussed. 

2.Description of the (HVT-HFT) scheme. 

We consider a potential V(r) which can be written in the form 

oo 

V(r) = -D + £ VkX
kr2k+2 (1) 

k=o 

where Vo — ω2 > 0 . The radial Schroedinger equation,for uni = rRni(r) 

then reads: 

oo 

Unl -Eni Unl (2) 

Note that 

Enl= Eni + D (3) 

Setting 
h2 1(14- 1Ì .22. . -. .-

(4) 
zr ' k=0 

the Hamiltonian operator becomes 
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As a result, the radial Schroedinger equation can now be written as: 

Unl = Enl Uni (6) 
η2 d2 ~ ; 

\- V (r) 

The Hamiltonian Η is now identical to the one used by Swenson and Danford 
ref[3],which means that use can be made of the Hypervirial relation that they 
obtained.Namely: 

En,< rN > = W l ) " 1 < r^d-f > + <rNV> ~N(N-1) < r " " 2 > 
I ar ομ 

(7) 
If we expand the energy Eni and the moments < rN > in λ-series we have 

respectively: 
oo 

£„,= Σ, E(k)\k (8) 
k=0 

oo 

<rN>=^C^Xk (9) 
k=0 

According to the above definitions the unperturbed term of our potential is 

Ä 2 ' ( ' + l ) , 2 2 

and the corresponding energy eigenvalue is 

+ ω r (10) 

EW = 2ωα. 
Ν 2// ( H ) 

which is,in fact,the energy of the Harmonic Oscillator.In the interest of ele­
gance we have adopted the following notation: 

j = 2n + / + 1 

. 1 

where 

η = 0,1,2,3, ...(principal quantum number) 

(12) 

(13) 
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/ = 0,1, 2,3, ...(orbital angular momentum quantum number) 
Applying the Hellmann-Feynman theorem(HFT) to our Hamiltonian 
we get: 

dEni dH ίΛλ. 
l>r=<-dx> ( 1 4 ) 

After some algebra one obtains: 

E m = J £ ™VkCt$ (15) 
K m=0 

Substituting (8) and (9) into (7) we get the familiar recurrence relation: 

q=0 

Nl(l + l) Ν{Ν-\)λ^_ 

2μ 
Mk) 

N + l 4 
f N-2' 

N + S^^V N±i rrMk-2) N±k±2 ( 0 ) 

N + 3VICN+4 ~1VTÎV2CN+6 " " • " N+ì VkCN+k+2J (16) 

where CQ = 60Â: 
The recurrence relation (16) is used to evaluate the coefficients E^ used 

by (8).In fact what we need to do is evaluate the coefficients CN used by 
(15) and (16).We perform this calculation in a hierarchical manner (ref. [8]) 
i.e.: 

To obtain E^ in (8) we resort to (15) which readily yields 

E{1) = VxCf] (17) 

We still need to calculate the C\ coefficient which will be extracted from 
(16).Indeed,(16) gives 

C<0) = £<°)C<0) (18) 

To calculate C2 we need to resort to (16) once more so that we get 

Cf-f£ (19) 
Eventually E^ can be obtained by virtue of (17),(18) and (19). 

The same pattern of calculations is adhered to,for each coefficient 
(either E^ or CJ}]) 
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3. Application of the ( H V T - H F T ) scheme 

to the potential: c o s ^ r Λ 

A well known member of the family (1) is the potential given by the 

formula: 
v(r)=^m m 

where D is the potential depth,and R its radius .R is the distance from the 

origin at which the value of the potential becomes :V(R) = — 0.4199D. 

This potential has been used,in ref[ll],as a convenient simple approxi­

mation of the self-consistent Λ—nucleus potential (for the ground or the low 

lying excited states in relatively light hypernuclei). In that case ,the radius 

R may be simply expressed in terms of the mass number of the core nucleus 

Ac-A — l,by means of the relation 

R = r0Ai. (21) 

In the present case ,we choose as parameter λ the following: 

λ = γ2 < 1 (22) 

By expanding our potential in the form (1) , we obtain the following coeffi­

cients: 

V0 = ω2 (23α) 

Vi = - ψ 2 (236) 

V2 = ^ u , 2 (23c) 

%-Hw» (234 
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K = 
21844 

-υ (23/) 
467775 

where ω2 = \D 
According to the previous analysis we have the following terms for the 

energy series(setting b = j-) 2μ-

E{0) = 2way/b 

£ ( 1 ) = - ~ [l2a2-4/(/+l) + 3]ò 

E^ = -

^ ( 2 ) = ^ [ 1 5 - 4 / ( / + i p f 

/ ( / + l ) [ l 2 a 2 - 4 / ( / + l) + 3 
945ω-

E^ = - {33280a2/(/ + 1) - 12816 [/(/ + l)] 2 + 
907200a;3 

+25[440/(/ + l) + 567]}02 

(24α) 

(246) 

(24c) 

(24(f) 

(24e) 

E^ = 
1 

•/(/ + 1) {32720a4 + Sa2 [1445 - 828/(/ + 1)] + 
1247400a;4 

+ [3 - 4/(/ + 1)J [1084/(/ + 1) - 2445]} Ò3 (24/) 

A rather interesting feature of this potential is that in the case of the s-
states , the energy series may be summed up leading to the following closed 
form: 

EnO = — 
h< 

2μΒ? 

1 βμΌΚ2

 Λ /n . 1 

η = 0,1,2... 

(25) 

This expression coincides,as expected,with the well known expression.refs[l 1,12],of 
the s-state energy eigenvalues for this potential,which is obtained by direct 
Solutionen the usual way,of the corresponding Schroedinger eigenvalue prob­
lem.The exact analytic expression for the s-states appears to be quite useful 
because it offers in this case a way of checking safely both,the accuracy of 
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the numerical solution and also the adequacy of the first terms in the series 

of the energy eigenvalues obtained through the technique of the Hypervinal 

Theorems 

4.Numerical results and c o m m e n t s 

In this section we give numerical results for a number of energy eigen­

v a l u e s ^ using for the potential parameters the values ((r 0 = 0.986, D = 

38.9),which correspond to the Λ-nucleus potential,and were determined by 

a least squares fitting procedure to experimental ls-state eigenvalues in re­

fill].The results are displayed in the table that follows by using the notation: 

Ac\the mass number of the host nucleus 

Ehvt:the energy value obtained through the (HVT-HFT) scheme using 

the terms given in the table. 

£ a n : t h e energy value from the analytic solution (s-states only) 

Ep:the energy value from a perturbation method ref[llc] 

i ^ i t h e energy value obtained through numerical integration. 

1 . N U M E R I C A L R E S U L T S F O R T H E E N E R G Y E I G E N V A L U E S ( s e e t e x t ) 

Ac 

6 

9 

11 

15 

15 

31 

31 

80 

80 

80 

80 

80 

120 

120 

120 

120 

120 

120 

η 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

/ 
0 

0 

0 

0 

1 

0 

1 

0 

1 

2 

0 

1 

0 

1 

2 

3 

0 

1 

£ ( 0 ) _ D 

8.84 

1.64 

1.64 

-5.50 

16.75 

-13.18 

3.95 

-20.36 

-8.01 

4.34 

4.34 

16.69 

-22.74 

-11.98 

-1.21 

9.55 

-1.21 

9.55 

EW\ 

-16.27 

-11.73 

-10.05 

-7.96 

-18.57 

-4.72 

-11.01 

-2.45 

-5.72 

-10.30 

-12.26 

-19.45 

-1.86 

-4.34 

-7.82 

-12.29 

-9.31 

-14.77 

£ ( * > λ 2 

0.99 

0.61 

0.48 

0.34 

0.26 

0.15 

0.14 

0.05 

0.04 

-0.08 j 

0.13 

0.08 

0.038 

0.03 

-0.054 

-0.255 

0.090 

0.05 

Ε< 3 >λ 3 

0 

0 

0 

0 

-0.15 

0 

-0.05 

0 

-0.01 

-0.07 

0 

-0.049 

0 

-0.008 

-0.045 

-0.143 

0 

-0.028 

E(V\* 

-0.01 

-0.004 

-0.003 

-0.001 

-0.081 

0.0001 

-0.02 

0.00005 

-0.004 

-0.03 

0.0004 

-0.025 

-0.0004 

-0.002 

-0.015 

-0.062 

-0.0001 

-0.013 

£ ( 5 > A 5 

0 

0 

0 

0 

-0.043 

0 

-0.009 

0 

-0.001 

-0.013 

0 

-0.013 

0 

-0.0005 

-0.005 

-0.03 

0 

-0.005 

Ehvt 
-6.44 

-9.48 

-10.95 

-13.13 

-1.84 

-17.75 

-7.02 

-22.76 

-13.70 

-6.16 

-7.78 

-2.76 

-24.57 

-16.30 

-9.159 

-3.22 

-10.43 

-5.218 

E an 

-6.44 

-9.48 

-10.95 

-13.13 

-17.75 

-22.76 

-7.78 

-24.57 

-10.43 

EP 

-6.44 

-9.48 

-10.95 

-13.13 

-1.81 

-17.75 

-7.01 

-22.76 

-13.70 

-6.14 

-24.57 

-16.30 

-9.14 

-3.19 

Eint 
-6.44 

-9.48 

-10.95 

-13.13 

-1.91 

-17.75 

-7.03 

-22.76 

-13.71 

-6.17 

-7.78 

-2.78 

-24.57 

-16.31 

-9.16 

-3.27 

-10.44 

-5.22 
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The energy series obtained through the present scheme is provided on 

a term-by-tern basis,so that the accuracy ,for various hypernuclei, can be 

observed.Apparently,the first few terms of the HVT-series for the s-state 

energies,in the whole range of Ac values studied,practically coincide with 

the ones given by the analytic exact expression.Moreover,for relatively heavy 

hypernuclei ,the energy of the lower excited states is also very satisfactory as 

one can readily observe by comparing the HVT-energy with the one obtained 

through numerical integration.From the same table it is also observed that 

the agreement between E ^ and Et-ni is somehow less satisfactory for the 

excited states when the absolute value of the energy is rather small. 
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