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Abs t ract 

The Dirac equation with scalar potential Us(r) and fourth component of vector po

tential Uv(r) is considered in the case of the rectangular shapes of these potentials with 

the same radius R and approximate analytic expressions are derived for the single-particle 

energy of bound states in certain cases. The results obtained with these expressions are 

compared with the corresponding "exact" results obtained by solving the eigenvalue equa

tion numerically.It is found that very good results are obtained for the ground state and 

for quite a wide range of values of R with one of the proposed expressions. Even the 

corresponding non-relativistic version of this expession, has not been derived before, to 

our knowledge. 

The Dirac equation with scalar potential Us(r) and fourth component of vector po

tential Uv(r) [1,2] 

[cap + βμο2 + ßUS(r) + UV(r)]V = E<& (1) 

has attracted much interest in the past years (see refs. 2,3 and references therein). In this 

equation a and β are the usual Dirac matrices, Φ the Dirac spinor and E the total energy 

Ε = ε + με2. 

By expressing the Dirac spinors in terms of the large (G) and small (F) component: 

/ iGNlj(r) \ 

Φ = *Nljm = I FNJ(r)Sf J Vljm (2) 

1 

-(-Presented by C. G. K o u t r o u l o s . 
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where 

Vl]m={Yr®X?l2),m (3) 

a n d X™f2

 a r e ^ e P a u u spinors, one may derive from (1) the following Schrodinger-type 

equation (for central potentials) [4] 

g"(r) -

where 

\ 1(1 + 1) 2μ 
r2

 + +2 [Vcentr + ^ s.o. ~€) g(r) = 0 (4) 

g(r) = D-l'\r)G{r) 

D(r) = ±-(2μο2 + ε + U-(r)) (δ) 
ne 

G is the large component of the Dirac wa.ve function and 

Vcentr = U+(r) + L [ ^ [ £ T + ( r ) - e][tf_(r) + ε ] -

Z r V W r K 1 - [ 2 Ζ ? ( Γ ) ] - ^ " ( Γ ) + f 2 T 2 ( r ) P ' ( r ) ] 2 ] (6) 

τ/ / Λ ft ! 1 <fZ7_(r) -
V3.0(r,e) = _ [ 2 ^ 2 + i + c r _ ( r ) ] - - ^ _ . /, (7) 

The potentials U±(r) are defined as follows 

C±(r) = Us(r) ± l/V(r) (8) 

We consider the case in which £/+(r) and U-{r) are square wells with the same radius R 

[5] and depths D+ and D_ respectivelly i.e. 

U±(r) = - £ ± [ 1 - 0 ( r - Ä)] (9) 

where Θ is the unit step function. 

Square-well potentials, in particular of infinite depth, have been used in applications 

of non-relativistic Quantum Mechanics in spite of their crudeness because of the analytic 

expressions to which they lead. As it was also pointed out recently [6] the eigenvalues of 

the one-dimensional Schrodinger equation with a potential which is a sum of even powers 

of χ may be calculated, by using the eigenfunctions and eigenvalues of the infinite square 

well. 
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The generalized Dirac equation with the square well potentials we are discussing may 

be solved analytically, for every bound state [7]. The expressions for G and F are given in 

terms of spherical Bessel functions ji and spherical Hankel functions of the first kind h{ 

and are the following 

( i ) 

G(r) = Nnr [ 1 - Θ ( Γ - Φ ( » . Γ ) + Θ ( Γ - Α ) - | 
jt(nR) (D 

ne {trior) 
hy\in0R) 

(10) 

F(r) = 

Ν neh [1 - Θ ( Γ - R)] 
ε + 2μό2 - D. 

\nrjt-i{nr) + (k - £)jt(nr)] + 

0 ( r - A ) · 
jt{nR) 

ε + ϊμε2 h^iinoR) 

while the energy eigenvalue equation is [7] 

. ( i ) ( i ) , inorh^^inor) -f (k — £)h\ (in0r) (11) 

1 -
D. 

2μο2 + £ 

' inoRhY^fJncR) (k-l)D- nRji-X{nR) 

,(D hy'(in0R) 2μο2 + ε ji(nR) 

In these expressions the quantities η and no are defined as follows: 

-11/2 
2/1 

h 
2(ϋ++ε)(1-(ϋ.-ε)(2μο2)-1) 

no = i M i + fr2)-1)] 
1/2 

(12) 

(13) 

(14) 

and k = ±(j + 1/2) for j = (Ι ψ 1/2). The quatum numbers in G, F , ε and Ν have been 

suppressed. 

The disantvandage with eigenvalue equation (12 ) is that in general can not be solved 

for ε and thus it is not possible to have an explicit expression of the energy in terms of 

the potential parameters. We show in this letter, however, that in certain cases this can 

be achieved approximately in a rather satisfactory way. Thus, one is led to fairly simple 

approximate analytic expressions for ε. Befolg proceeding we recall that usually in practice 

D_ is quite smaller than 2μο2 and D+ much smaller than D _ . 

Let us consider the case in which nR and noi? are sufficiently larger than | ( / + 1) [see 

also refs. 8,9] so that we may use the following asymptotic form for ji(nR) and h) (inoR) 

- 1 
) . Ιί',ΊιηηΚ) ~ • 3i(nR) 

1 · / π ί*\ —sin{nR - - ) , hy\in0R) -noR-ilZ 

nQR 
(15) 
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Thus, eq. (12) may be written in the form: 

Ir D-
nQR + nRcot(nR - — ) = — - r [n0R - (k - /)] (16) 

2 2μο -f- ε 

It is seen immediately that for the ground state : 1st., (/ = 0, k — —1) this equation 

coincides with the exact eigenvalue equation for this state (see appendix of ref. [5]).For 

the excited states, however, it is approximate. 

Eq. (16) may be written in the following form which is suitable for our treatment: 

n2R2 = ^D+R2(l + CR)sin2[{2N + /)£ - nR) (17) 
h 2 

where N~ 1,2,3,..., / = 0,1,2,... and 

pb^H^f + K*(l - φ^) +

 {^f\\ (18) 

We are interested in the case of a well of sufficiently large depth D+ and radius i?.Thus 

if we write eq. (17) in terms of the arcsin of the small quantity 

χ = nR[^/h2)D+R2(l + CR)]-1'2 

we may keep only the leading term in the expansion of arcsinx and obtain the eigenvalue 

equation in the approximate form 

{nRf = (2* + ')V ( 1 9 ) 
4(1 + A S ) 2 

where 

XR=XO[1 + CR}-1/2 (a), Xo = &D+R2) '(b) (20) 

η 

It is interesting to note that if we neglect completely the terms of order (2/.ic2)- 1 the 

eigenvalue equation (12) goes over to the corresponding non relativistic one.In this case 

equ. (19) may be written in the form 

h2 (2JV + /) V 

Sß(l + XQ)2R2 eNRi=-D++'i-)_ ;V 2 1 (21) 

This is an approximate expression of the non-relativistic energy for a particle of mass μ 

in a square-well potential of depth D+ and radius iü.In the case of the 5-states the above 
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expression reduces to a known approximate- expression [10] derived from the corresponding 

Schrodinger eigenvalue equation. 

An approximate relativistic expression for the energy may be derived from expression 

(19) if the unknown energy which appears in terms which are expected to be small is 

estimated by means of (21).In this way we obtain the following approximate expression for 

the relativistic energy which we shall denote by ε RI 

h2 (2JV + Q27r2 

where μ* is a sort of "effective mass" given by 
- 1 , 

μ*9ι=μ[1 + (εΝΙη-Ό-)(2μα') } (23) 

and XRI is given by (20a) in which the energy in the expression of CR has been substituted 

by ENRI (expression (21)). The above procedure may be iterated. Thus we may use as 

expressions for the energy in μ* and \RX which appear in (22) and (23) the ones obtained 

in the previously described way and so on. 

An improved expression for ε may be obtained if instead of retaining only the leading 

term χ in the expansion of arcsinx : 

x3 1 · 3 5 arcsinx = χ + -—- + ~x + ··• 
2-3 2-4-0 

= x(l + F(x)) (24) 

that is , instead of setting F(x) = 0 we write, as in a similar expansion, F(x) ~ F(xap) 

where xap is the expression resulting from the eigenvalue equation solved approximately 

with arcsinx « x.This procedure leads in the nonrelativistic case to the following expres

sion for the energy which we shall denote by ENR2 i.e. 

€NR2 =-D+ + —)~ ^ ; 2 _ (25) 
h2(2N + l)27T2 

Sß(l + F0)
2R2 

where 
arcsin{Xo{2N + l)*/(2(l + \0))) 

0 (2/ν + /)ττ/(2(1+λ0)) l " ' 

In the relativistic case the corresponding expression is 

_g+ + iL(^+oy (27) 
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where 
F orc3m(Afla(2,V + /)7r/(2(l + Afla))) 

' Ä 2 (2N + 0- / (2(1 +AÄ a)) l " ö ; 

μ;, = μ[1 + (ε/νΑ2 - £ - ) ( 2 ^ Γ Ί (29) 

and Α#2 is given by (20α) in which the energy in the expression of CR has now been 

estimated with ό,νβ2 (expression (25)). 

We discuss also the case of states for which in addition \ε\ <C D+.This condition is 

satisfied for loosely bound states in a sufficiently deep well.In this case it may be seen 

from equ. (16), in analogy with the corresponding non-relativistic treatment [10], that the 

cotangent should be close to zero.Thus, we arrive at the following approximate expression 

εκ, = 2 0 + [ - 1 + Ao(2iV + / - 1 ) | ] (30) 

where 

Ao = Ao(- f ) 1 / 2 (31) 

and μ* is calculated from the expression of 

μ; = / / [ ! + (ε -XLX2/XC2)-1] (32) 

by using for the energy the corresponding non-relativistic expression [10] 

eNR3 = 2D+[-l + A0(2iV + / - 1 ) | ] (33) 

Expressions (30) and (33) gave usually poor results in the cases we studied.However an 

alternative expression which gives considerably improved results in a variety of cases 

(see below) may be derived by using expression (17) and the following expansion for the 

arcsin(l — z) (see expression 4.4.42 of ref.fll]): 

arcsin{\ - z) = - - (2z)1/2 [l + Y ! ' 3 · 5 · · · (2A - 1) t ] ( 3 4 ) 
v ; 2 _ 22k{2k + l)k\ J { J 

l-3-o---(2k-l)_kl 

k=l 

We write on the basis of eqs.(17) and (33): 

(2iV + 1)1 -nR = arcsin(\RnR) ~ J - (2*)*(1 + ~) (35) 
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where XRUR — \ — Ζ. This equation may be easily solved to a good approximation with 

respect to 1 — ζ for ζ sufficiently small. Such a procedure has not been followed, to our 

knowledge, even in the non relativistic case. The final result for the energy eigenvalue is 

SR = - n +^—?M (36) 

where 

with am = (2iV + / - l ) f . 

The energies entering in'μ* and XR may be evaluated by using for ε the B^R4 which 

is of the same structure as (36) but with μ instead of μ* and with λο instead of XR in the 

expression of Bm-

In order to test the accuracy of the approximate expressions ZRX and ZR2, numerical 

calculations have been performed and the results were compared with those obtained by 

solving numerically the eigenvalue equation (12). The following values of the parameters 

were used (see ref.[5]) D+ = 30.55MeV, D_ = ZOOMeV and R = r0A\ile (r 0 = 1.01/m) 

Acore being the mass number of the core nucleus. These are rather reasonable values for the 

potential parameters of a Λ particle in its ground state in hypernuclei.lt should be noted 

that there is no much difference if the values D+ = ZO.HMeV, D- = 443MeV and ro = 

1.022/m are used instead. 

The results obtained for the lsi/2 4i>3/2 a-nd 1<4/2 states and for various values of R 

(and therefore of λο) are displayed in table 1. The results for the states lj>i/2 and lcZ3/2 are 

usually rather similar. The smallest value of Acort used corresponds to ]^C while the largest 

to j^8Pb. In each case the values of the "exact" relativistic energy eex for the rectangular 

potentials that is the one obtained by solving numerically the eigenvalue equation (12) 

and the approximate ones SRX and 5R2 are shown. In addition the quantities nR and n0R 

calculated with eex are also displayed. It is seen from the results of this table that for 

the Is and lp states and mainly for the larger values of R which correspond also to larger 

values of nR and nç,R the approximate expressions SRX and 5R2 are good approximations 

to £ex. From the same table it is also seen that the results with ZR2 are better compared 

to those obtained with ERX . In some cases the improvement is considerable. 

In table 2 the results obtained with ΐ β 4 are displayed for various states and values 

of R and are compared with those obtained with the numerical solution of the eigenvalue 

equation. It is seen that for the ground state the accuracy of £R4 is very good both for the 
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smaller and for the larger values of R. We further observe from both tables that for the 

higher states the accuracy of the various approximate expressions is deteriorating quite 

rapidly.lt should be noted, however, that the accuracy dépendes on the values of D+ and 

ij!.lf in a physical problem the values of these quantities were larger, the accuracy for each 

state should have been improved. 

We may conclude that the analytic eApi^ssions SR1 and 6R2 give, in a number of cases, 

single particle enegry values which are fairly close to those obtained from the numerical 

solution of the eigenvalue equation ,derived by means of the Dirac equation with potentials 

Us and Uv of rectangular shape and of the same radius. Expression ERA gives in some of 

these cases better results than those obtained with the above mentioned expressions and 

in particular with €R1 . 
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Table 2 

Energy eigenvalues of various states obtained with D+ — 3Q.55MeV, D- = 
ZOOMeV and various values of R (R = 1.01.A^e/m).The values obtained 
with the numerical solution of the eigenvalue equation (12) are denoted by 
e«: while those obtained with the approximate expression by ej^ (see text). 

•A-core 

12 
15 
19 
27 
31 
39 
50 
88 
137 
207 

Sl/2 

-fit* 
11.3 
13.2 
15.1 
17.6 
18.5 
19.8 
21.1 
23.6 
25.2 
26.3 

•Sl/2 

Sex 
11.2 
13.1 
15.0 
17.5 
18.4 
19.8 
21.1 
23.6 
25.1 
26.3 

P3/2 

- ÌA4 

1.4 
4.4 
5.8 
8.1 
10.6 
15.5 
18.7 
21.1 

PZ/2 

- • ? « 

1.8 
5.6 
7.12 
9.5 
11.9 
16.7 
19.7 
21.9 

Pl/2 

SR. 

0.3 
3.2 
4.7 
7.3 
9.9 
15.2 
18.5 
21.0 

Pl/2 

-Ptx 

0.5 
4.5 
6.1 
8.7 
11.3 
16.3 
19.4 
21.8 

^5/2 

-fiu 

5.5 
10.3 
14.2 

^5/2 

Sex 

8.4 
13.0 
16.5 

^3/2 

~&U 

4.5 
9.6 
13.8 

^3/2 

- £ « 

7.5 
12.4 
16.2 
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