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Abstract

An investigation is carried out in order to study effects, originating
from fluctuations of the nuclear surface, to the elastic charge form
factor of light nuclei in which the two-body part of the short range
correlation factor is also included through a Jastrow-type correlation
function. It is found that if these effects are taken into account in the
uncorrelated (harmonic oscillator) part of such a form-factor for the
4He, %0 and “°Ca nuclei, the quality of the fitting is improved. In
addition, they lead to a drastic change in the asymptotic behaviour of
the point-proton form factor which now drops off for large values of
the momentum transfer q quite slowly that is as const. - ¢~

1 Introduction

In a series of papers [1, 2, 3] an expression of the elastic charge form factor,
F.i(q), truncated at the two body term, was derived using the factor cluster
expansion of Ristig et al [4, 5]. This expression, which is a sum of one-body
and two-body terms, depends on the harmonic oscillator (HO) parameter
and the correlation parameter A through a Jastrow type correlation function
which introduces the short range correlations (SRC). The fitting of F.x(q)
to the experimental data was very good both for low and high values of
momentum transfer except for the values around the last maximum for ¢0
and *°Ca. Better fitting can be obtained if the parameter ) is taken to be
state dependent but in this case there is a big number of parameters, six for
160 [1] and ten for *Ca [6].

Another possible way to make the agreement between theory and exper-
iment better might be to introduce, in addition, other types of ground state
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("long range”) correlations which have been the subject of previous inves-
tigations by a number of authors (see, for example, [7, 8, 9, 10, 11, 12]).
We focus our attention, as in ref.[10], on fluctuations of nuclear surface due
to the zero point motion of collective surface vibrations [13, 14] which can
affect the ground state charge density. The presence of surface fluctuation
correlations (SFC), introduce another fitting parameter in addition to the
HO and the SRC parameters. Thus, it appears to be of interest to develope
the relevant formalistm and to investigate what would be the effect of this
additional parameter to the best fit values of the other parameters and to
the quality of the fitting. The aim of this workr is to report on results of
certain investigations in this direction. This paper is a revised and extended
version of the contribution to the Symposium.

In section 2, the above SFC are introduced to the HO densities and an-
alytic expressions of the nuclear density, elastic form factor and of the n-th
moment of the density distribution are given for the nuclei * He, 0 and
10Cq. In section 3 the introduction of the SFC in addition to the SRC is
studied. Numerical results are repoted and discussed in section 4.

3 The effect of the collective surface vibra-
tions on the harmonic oscillator density
and form factor

Our starting point is the expression for the proton (or charge) density of
a nucleus which has been deformed through the zero-point motions of the
collective surface vibrations. This expression, according to ref. [10] (see also
ref. (7, 8] for a rather similar expression) is the following:

plr) = —= /“pl(r—oexp[—(iifi]df (1)

270 J-x 202

where p;(r) is the uncorrelated density, sg is a correction needed to conserve
the number of particles in the correlated ground state and o is a measure of
the effect of the zero point fluctuations. The value of o is related to 3., the
deformation parameters for the states of multipolarity A , with the relation
0% ~ ‘%ﬁl Y2 B3i(r = 0) while the 3, parameters can be determined from the
values of B(E)) [10, 12].

In (1) we consider for p;(r) the HO proton density in which the centre of
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mass correction has been taken into account for nuclei *He to *°Ca which is:
1 1 w2 P
p(r) = === exp[==] > Naw(z) (2)
Z7T3/2 b:i; b% k=0 bl
where

b b | .ob
No = 27713+6 1—-6—2 7]1p+ 10—207‘—}-10.—- 771!1-’-

I i bi

b2 bt
(2 444 5;) Mas

b b
i b? 862 200 4062 4083
Ny = 4771;,@—{» (56—3——3"?} Na2s + -E)’_Z?_?E Md
) 8 4 b?
1\4 = <§T]1d + 57']2.*;') Z% (3)

and b? = b2 (1 - %), A is the mass number and b; = \/%_ the harmonic
oscillator parameter. 1, is the occupation probability (0 or 1 in the present
treatment) of the nl state. It is easily checked that when b; = by, that is
when the centre of mass correction is not taken into account, the coefficients
in polynomial 2 are reduced to the well known expressions:

8 4
No = 21 + 3020, Np = dmp — 41120, Na = 374 + 3720

General expressions of similar structure for the density and the form factor
in the HO model have been given in ref [15].
From (1) and (2) an analytic expression of p;,(r) can be derived. This is:

p (T‘) 1 1 [ (T' - 30)2 } 24: C k (4)
lo = = = eXp |——=——— kT
Zm®/ bf\/bf + 202 (6} +20%)] i

where the coeflicients Cy depend on Ny, Ny, Ny, o, so and l~71 and are given
by the following formulae:

CO = .[V()-i-.B2 (5§02+2U4+53502) N2+
(3B%0* + 6 Bb} 02 s” + B* b s0*) Ny

Cl = —2325350N2—4B4B§$0 (38?0’24'60'4-}"5?502) ]\74
Ca = B0 N, +6B*5 (bjo® +20* + b} so?) N
Cs = —4B*btso N,

ot

Ca = B'bIN, | (3)
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and B = 1/(b? + 20?)
By using expression (4) one can find an analytic expression for the nth
moment of the density. This is the following:

2 by Lo 20°
Lot 513 0t (147 ) temenv

<rt >l = (
Z\/_ k=0 bl

k+n+3 k+n+3_1_

I( 5 ) 1F1( 5 3 ssB) +
k+n+4 k+n+4 3
230\/_§F( : ) 1F1( ; 3 §§ 5(2)3):| (6)

An approximate expression for < r® >;, may be derived by truncation
of the series at the second power for ¢ and the first power for sq :

267

4
<Pt >, o~ Y Cibf x
7 Z\m =

2
k
[(1 +(k+n +2)‘g—2) pitnts

1

By taking into account that
o P ey Y s 1
the approximate expression for the parameter sq is:

Sg =~ —ﬁ o? 2No+ Ny + %N4

4 B, No+ N;+2N,

(8)

That expression was used as a first approximation in our calculations.
More accurate values were obtained by varying so until normalization of
p1o(r) was achieved to a good approximation. From expressions (7) and (3)
and from the known expression of the moments of the HO density one can
find the approximate expression of the contribution of the SFC, A < r? >4,
to the mean square radius for nuclei *He to **Ca. This is given by the
following expression:

A< 7’2 Sy %0’2 [3(N0 + -Z-N2 + ?‘]\ﬂ;)-
(QIVD + lVg + %IV4) (NO + 2[\/2 + 61V4)
No + Ny + 2N,

(9)
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Finally, for the elastic point proton form factor the well known expression
in Born approximation

- sin(gr
Fi.(q) = 47r/ pla(r)—(q—)rzdr (10)
0 qr
is used. Substitution of p;,(r) from (4) leads to the following analytic ex-
pression of Fi,(q) in terms of the confluent hypergeometric function

1
11
Fi.(q) = 7V b2 p }CZ%CI:II: (11)
where
1
]k = Wexp[—&)? B] X
k+2 k+ 1 k+3 k+3 3

Im 2F( )1F1( P ,;,22)+4F( 5 )x.lFl( 5 ,;,32)]
(12)

The complex quantity z is given by: z = v/ Bso + iq/(2vB) .
Expression (12) may be reduced to a somehow more convenient form:

1 ¢, =[A %, sin(gso) 4 \on
Flv(?) = 7 eXp[—4B] Z Can cos(gso) + Can (2\/-3‘) +
2 2 o1
~ —s: Bl - Iml[I 13
=g Pl Bl Il (13
where
2. Con 1 n 3
I=3, B2 F(n—{-l)lF](n-l-l ) +2z ZCZ ok y +2)1F1(n+2;;)—;:2)
=0 <
(14)

The coefficients C~'2n and égn depend also on Ny, Ny, Ny, o, so and b, and
are given by the following expressions:

= 3 15 e . 3

Co = Ny + 'Q‘NZ + ZN4 + g(?Ng + N, + §N4)
C; = —N; — (5 — 40B)N,

Ci = BBN,

So . 3
CO — E(QNO + N, + §N4)

Cz = —SoB(2N2+6N4)
04 = 2308%B2N4 (15)
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It may be easily checked from expression (13) that when the SFC are
switched off, that is when the limiting case ¢ — 0 is considered. expression
(13) for Fy,(q) goes over to the well known harmonic oscillator one, as should
be the case, on the basis of expressions (10) and (1). Furthermore, by using
the asymptotic expansion of the confluent hypergeometric function. we find
that the behaviour for Fj,(¢) at large values of the momentum transfer is
the following:

1 exp[—s?,B] ( q 4 q 6 q -3)
Fi,(q) ~ = — + A + A
(16)
where
1

A4 = —SoCO—s—B'Cl
As = (=3s0+2Bso*)C +(332——3—)C 300, 3 ¢

6 = So T & D S 0 9 3o 5B ‘1 B 2 2323

i 45 4550 315 .
As = (- 5:0 +15Bso° — 597B%s0°)Co + (~55 Ojo + _0_03504)& n
435 sg 45 45802 455y _
(QB ~15So3)02+(@— 5B )03-2—B?C4 (17)

Thus, it is seen that for sufficiently large values of ¢, the form factor tends
to zero rather slowly, namely as the inverse fourth power of the momentum
transfer. On the contrary, the HO form factor goes rapidly to zero for large ¢,
namely as a Gaussian or as a Gaussian times an even power of ¢ (depending
on the nucleus).

The value of ¢ at which the Fj,(q) approaches the value given by the
asymptotic expression (16) does not seem to depend very strongly on the
nucleus, at least when the values of the parameters b, and o are determined in
the way described in the following two sections. In Fig. 1 the Fi,(¢) has been
plotted for the %0 nucleus, using the values b = 1.647fm and ¢ = 0.224 fm
(see section 4), together with its asymptotic behaviour const. - ¢™* and the
improved asymptotic expression (16), respectively. It is seen that Fi,/q)
becomes close to the asymptotic behaviour const. - ¢=* at quite large values
of the momentum transfer ( larger than 10fm™! ) while the corresponding
values of ¢ pertaining expression (16) are quite smaller.

There are two parameters in expression (13), the HO parameter b; and the
SFC parameter o which can be determined from the deformation parameters
B, associated with the low lying collective states of the nucleus or it can
be treated for example as a free parameter. In the latter case, the fitting
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of the form factor (13) ( after correcting it for the finite proton size [1]) to
the experimental data (refs. [16, 17] for *He, [18] for %0 and [19] for *°Ca )
leads to zero value for the parameter o except for *He. For *He, o is different
from zero (¢ = 0.706 fm and b; = 1.252fm) and the value of x? is smaller
compared to the one obtained with the HO model. However the diffraction
minimum is not reproduced. Because of these reasons the introduction of
short range correlations is advisable. This is done in the next section.

3 The effect of the surface fluctuation and
short range correlations on the charge form
factor and density

A general expression for the charge form factor F,,(gq) of light closed shell
nuclei was derived [1, 3] using the factor cluster expansion of Ristig, Ter
Low and Clark [4, 5]. This formula was subsequently simplified [1] by us-
ing normalized correlated wave functions of the relative motion which were
parametrized through a Jastrow type wave function of the form:

Yuis(r) = Nus(l — exp(=Ar?/b%)]gni(r) (18)

where Ny;s are the normalisation factors, @,;(r) the harmonic oscillator wave
functions and b = /2b, is the HO parameter for the relative motion. The
expression for F'(q) is of the form

F(q) = Fi(q) + F(q) (19)

Fi(q) is the contribution of the one-body term to F(q):

where
No = 2(ms + 25 + 301p + 571a) N, = —§(2U2s + 371 + 10714)
N (21)
Ny = 1(4n2 + 8n14)
while F3(q) is the contribution of the two-body term to F(q) and is a function
of ¢* through the matrix elements

n'l'S'y - .
ns. (Je) =< Cusl|ie(qr/2)|Ynws >
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It consists of simple polynomials and exponential functions of ¢?.
The point proton density can be obtained from (19) by Fourier trans-
forming F'(q). The density is separated out again into two parts:

p(r) = pi(r) + pa(r) (22)

p1(r) and po(r) are the Fourier transforms of Fi(q) and F3(q), respectivelly.
p1(r) is given by expression (2) (with b, = b;) while py(r) is calculated
numerically because of the complexity of F,(g) mainly for °Ca.

The correlation parameter A and the HO parameter b, were determined
by fitting Fox(q) = f,(q) fom(q)F(q) to the experimental charge form factor.
folq), fom(q) are the corrections due to the finite proton size and the centre
of mass motion [1], respectively.

As it was pointed out in the introduction, a possible way of improving the
quality of the fitting in the approach outlined previously, should be to take
into account the correlations originating from the fluctuation of the nuclear
surface. For the sake of simplicity these SFC are introduced only in the one
body density, pi(r), of equation (22) assuming that the effect of SFC to the
two-body term of the density is small. This is also nessecary in order to avoid
successive numerical integrations by Fourier transforming. These successive
integrations apart from introducing inaccuracies for large values of q, because
of the factor ii;‘—rﬂ, need much computing time.

According to the above assumption, expression (22) becomes:

piot(r) = P1o(r) + pa(r) (23)

where py, is qiven analytically (expression 4) while p,(r) is the Fourier trans-
form of the two-body term F3(q) corrected for the centre of mass motion:
Fy(q) = fom - Falq), where (fcar is the Tassie and Barker factor [20]) and
can be found either analytically or numerically.

The form factor is of the form

Fir(q) = Fio(g) + F(g) (24)

where Fi,(q) is given by (13) and F3(g) is qiven in refs [1, 2, 3].

This expression of the form factor depends now on the three parameters,
by, A and o which can be determined by fitting Fia(q) = fo(q)Fiot(q) to the
experimental F,(q).
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4 Numerical results and discussion

The best fit values of the three parameters in the form factor, as well as the
values of x2, for the nuclei *He, 0 and *°Ca are displayed in table 1 where
three cases are considered. In case 1 there are no correlations of any kind
while in case 2 the SRC are included. These two cases have been studied
in previous works [1, 2, 3]. Finally, in case 3, both the SFC and SRC are
included.

Table 1: The values of the HO parameter b;, the SRC parameters A, and
(b2/X)Y/% |, the parameter o, the x? and the RMS radius and the effects to
it from the HO density and the various correlations for nuclei *He, *O and
40Cq (distances in fm ). For the various cases see text.

a: [21], b: [18], c: [19]

2 1./2
<rd  >Y
2
Case  Nucleus b, A %‘- c x?
total HO SRC SFC  Exper.
1 ‘He 1.465 878 1.726  1.726
2 ‘He 1.216 5.982  0.487 155 1.579 1.492 0.516
3 ‘4. 1.089 8.093 0.383 0.358 100 1.622 1.377 0.383 0.766 1.630°
1 180 1.786 9013  2.728  2.728
2 180 1.679 12.768 0.470 6226 2.659 2.5T7 0.654
3 150 1.647 11.440 0.487 0.224 6005 2.652 2.532 0.695 0.372 2.728°
1 e 1.950 26847 3.439 3.439
2 0C, 1.860 13.915 0.499 19930 3.420 3.289 0.936
3 400, 1.814 11.786 0.529 0.364 19634 3.422 3.212 1.036 0.565 3.482°¢

The value ¢ = 0.364fm for *°*Ca may be compared with the value o =
0.638fm which is given in [11]. It is seen that the above analysis underesti-
mates the value of 0. We observe also that for 0 and “°Ca (see table 1),
the introduction of the SFC and the SRC decreases the values of parameters
b; and A while the value of (b2/A)!/2 (which is the real correlation parameter,
since small values of (62/A)!/? imply values of the correlation factors closer to
unity) is increased. » .

For the three nuclei we have considered the introduction of the SFC has
the effect of improving the fitting of F.;(q) to the experimental data. This
can be seen also in figures 2, 3 and 4 where the F,;(g) and the corresponding
densities for *He, 1°0 and *°Ca have been plotted with the best fit values of
the parameters and compared with the experimental F,,(g) and pen(r).
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Finally in figures 2, 3 and 4 the contribution in the charge density coming
from SRC and SFC are shown. From these figures it can be seen that the
contribution to the density of Ap1,(r) = p1,(r) — p1(r) is quite small and is
characterized by oscillations. Furthermore, it is seen that the charge densities
with SFC (case 3) are closer to the "experimental” ones.

In summary, the present analysis suggests that the inclusion of the corre-
lations originating from the fluctuations of the nuclear surface in the uncorre-
lated (harmonic oscillator) part of the usual cluster expansion (truncated at
the second term) of the charge form factor of light nuclei leads to improve-
ment in the quality of the fitting to the experimental data. Furthermore,
the inclusion of these correlations has a drastic effect on the asymptotic be-
haviour of the point proton form factor, which now drops off for large ¢ quite

slowly, that is as const. - ¢7*.

—
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Fig. 1. The elastic point form factor in the HO model with SFC: Fis(q)
for '°0 with b1 = 1.647fm and o = 0.224fm (solid line) and its asymptotic
behaviour const.q™* (dashed line) together with the values of the asymptotic
expression (16) (dashed dot line). )
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—-0.06

-0.10 -

Fig. 2. The charge form factor (2a) and density distribution (2b) of *He
(for various cases see text). The experimental points of the form factor are
from refs. [16, 17].
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Fig. 3. The charge form factor (3a) and density distribution (3b) of 0
(for various cases see text). The experimental points of the form factor are
from ref. [18], while for the density from refs. [22, 23].
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Fig. 4. The charge form factor (4a) and density distribution (4b) of
“Ca (for various cases see text). The experimental points of the form factor
are from ref. [19], while for the density from refs. [22, 23].
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