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DEBYE-WALLER TYPE EXPRESSIONS FOR THE NUCLEAR ELASTIC
FORM FACTORS AT SMALL MOMENTUM TRANSFERS ¢

M. E. GRYPEOS, G. A. LALAZISSIS, S. E. MASSEN and C. P. PANOS
Department of Theoretical Physics, University of Thessaloniki
GR-54006 Thessaloniki, Greece

Abstract
The problem of the estimate of the nuclear elastic form factors in Born approximation
is discussed in the region of small momentum transfers q. It is shown that approximate
expressions of the Debye-Waller type are suitable for estimates of these form-factors in the
oscillator shell model, for sufficiently small q.

1. Introduction

It is well-known (1] that the elastic form factor in Born approximation and for a spherically

symmetric density distribution p(r) :
4r [ )
F(q) =% / rp(r)sin(gr)dr (1.1)
29 Jo

may be estimated for small values of the momentum transfer q by using the first few terms

in the power series of F around q=0 :

1 1 = (=1)" <r?" > g2n
F =]== 2 2 — 4 ‘-___: .
(9) s<ri>g+m<rt>g ngo Gt D)l (1.2)

In this “moment expansion” < 2" > is the 2n-th moment, given by :

t Presented by M.E. Grypeos
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_];" p(r)r?™+2dr

_[om p(r)ridr @5

<rit 5=
DifBculties, however, may arise with this type of expansion. Thus, it may be necessary,
depending on the value of g, to take into account a large number of terms in order to have
a fairly accurate estimate of F(q). To face this sort of difficulties it was proposed (2] to
use a continued fraction expansion of series (1.2) which is truncated subsequently. In this
way, considerable “acceleration of the convergence” is achieved.
The above mentioned approach was applied to the deuteron form factor in ref. 3 and in
addition to it to the form factor of §O in the harmonic oscillator shell model, as well as
to the form factor for a Fermi distribution, in ref. 2. In the case of {0, for example,
where the values obtained with the exact expression are compared with those obtained
with expansion (1.2) truncated at the n=1 and n=>5 terms and also with the truncated
continued fraction expansion (with the same number of terms), it was easily realized (see
fig. 1 of ref. 2) that the latter approach gives much better results. Not only the agreement
with the exact expression is better at low q values but also at higher q the truncated
continued fraction results are better behaved than those obtained with the corresponding
truncated expaasion (1.2).
In the present work we shall restrict ourselves to the region of low momentum transfers.
Qur aim is to investigate in the framework of the harmonic oscillator shell model, an
alternative possibility of approximating the form factor (1.1) in this region, by using an
expression, which is of the Debye-Waller type and has some attractive features. Namely:1)
It is quite simple, 2) it is applicable to spherical distributions of nuclei in a rather wide
region of mass numbers and 3) its accuracy compares favorably, at least with that of the
standard expression used widely in this region of low q values, that is the one obtained by
truncating the moment expansion of F(q) at the second term (n=1):

)
F(g) = Fri(q) =1-§<r‘>q2 (1.4)

The relevant formulae are given in the next section. The final section is devoted to the
presentation of the numerical results obtained with the Debye-Waller type expressions for
the point-proton and for the charge form factor for a number of nuclei. Comparison with
other approximate expressions and with the corresponding complete harmonic oscillator

one is also made.
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We would like to point out that the approximate treatment for the form factor is anal-
ogous to the one for the relative probability P for the recoilless A production in nuclei,
described recently (4]. Such a process has a similarity with the Mossbauer effect for which
a Debye-Waller factor expression for P and for the corresponding quantities of other similar
processes, including scattering, has been given or discussed in the past [5].

Finally we should recall that knowledge of the form factor for small values of momentum
transfer -though not always sufficiently small- is needed in physical problems and thus it
appears desirable to have, if possible, simple expressions in making easily estimates.
Simple expressions for F(q) may also arise by using phenomenological densities for which
the form factor can be obtained analytically and their parameters have been suitably de-
termined. These parameters may then be related to the harmonic oscillator size parameter
b, e.g. by equating the expression of the m.s. radius of the assumed density of the nucleus
with the expression of the m.s. radius in the oscillator shell model.

As an example in which nuclear form factors at rather small values of q are used, we
mention the exotic (#~,e~) conversion in nuclei, in which the bound muon of a muonic

atom is converted into an electron :
p-+(4,2) =" +(4,2) (1.5)

Such a process aroused special experimental and theoretical interest in recent years (see
ref. 6 and references therein). In the coherent process of (1.5), that is when the nucleus
(A,Z) remains in its ground state, the dependence of the rate on the nuclear parameters
was obtained (6} by using oscillator shell model nuclear form factors.

2. The approximate expression for F(q)

An alternative possibility to that mentioned in the introduction in obtaining an appprox-
imate expression for F(q) at low q values is, instead of keeping only the two first terms of
the expansion and omitting completely the higher ones, to take into account exactly these
two terms and also approximately the higher ones. This may be done, for example, by

expressing F(q), in the form:
Flq) = ezp(—% <r?> ¢ +AF(g) (2.1).

and write approximately [3]:

™
o
Nt

Flo) = Fowlq) = ezp(~2 < * > ¢7) (
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This amounts to omitting the series of the correction terms:

sl r2n 2\ n
AR(Q) = 3 -1 [ - St | (2.3)

n=

It should be noted that this series starts from n=2. Thus, there are no omitted correc-
tion terms with n=0 and n=1 by using approximate expression (2.2) The omission of the
correction terms in expression (2.1) is equivalent to the replacement in expansion (1.2) of
<r?* > /(2n+ 1)l by < r? > /6™n! (n=2,3,..). In order to have an idea of the conse-
quence of this replacement we may estimate both terms by using the equivalent uniform
density distribution :

pA(r) = po[l - &(r - R)] (24)

where © is the unit step function and the radius R is given by R= (/% < r? >. In this
way we find

= 3 1 "
o = ,,Z;;('I)"(R")h [(2n FDi2n+3) mv-nz] (2:5a)
From the above result it is suggested that if we wish expression (2.2) to be a fairly good
approximation to the form factor (1.2), the quaatity (Rq) should be sufficiently small, so
that the omitted terms (AF) to be negligible. Thus, not only the value of the momentum
transfer should be quite small but also the nucleus should not be heavy. For the heavier
nuclei one should restrict the values of q to a smaller region from the origin in order to
obtain reasonable results.

In addition, it is seen from expression (2.5a) that the first term (n=2) is (¢R)*(5t5 — 755)-
Thus, the third term in the approximate expression (2.2) is larger than the corresponding
one in expression (1.2) and therefore, in view also of the form of the higher terms, Fpw
should give somehow larger values than those of the exact expression in the region we are
interested.

We also mention that similar conclusions could be drawn if the harmonic oscillator model
is used. In this case, the expression of < r? >" is given analytically in a simple way
(see below), but a general expression of < r?® > is not easily obtained, although for
specific light nuclei the 2n-th moment is easily calculated too. In the case of the harmonic

oscillator model. the main difference in the expression of AF, apart from the change in
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the coefficients in (2.5a), is the replacement of R by the harmonic oscillator parameter b
which determines the size of the nucleus. If we consider, for example, nuclei with atomic

numbers in the region 2 £ Z < 8, the expression of AF becomes

= 1 2n+3)Z-4n ,5Z-4,,
aF = 3 (110 e (B2 - 5D )] e
By considering, more specifically, the case of !$O and the first terms of (2.5b) we may
easily check that the coefficients of (—1)®(bg)?™ are negative and therefore the previously
made conclusion about the values of Fpw is verified in this case too. In addition it may
be seen, by expressing 5? in terms of R?, that the resulting coefficient of the n=2 term of
AF in (2.5b) and the corresponding one in (2.5a) are of the same order of magnitude.
We consider the point-proton form factor obtained with a nuclear model. The correspond-
ing density distribution p(r) and from this the mean square radius < r? > in expression
(2.2) will be calculated on the basis of the assumed nuclear model. We assume, as pre-
viously, for simplicity the harmonic oscillator shell model (without spin-orbit part). The
mean square radius may then be given analytically by quite a simple expression [7]. For
closed shell nuclei the result is :

<r?> -iNm e o ey 2.6
N--ZZ("'+§) "‘_Zmu( m +2) (2.6)

n,=0

In these expressions Z is the atomic number of the nucleus, n, the harmonic oscillator
quantum number for each shell (n,=0,1,2,...) and Ny, its value for the highest filled shell.
Z,, is the number of protons in each shell. '

The above expression can be extended to the case of open shell nuclei in which the highest
shell is partly filled, under the assumption that the protons in the open shell contribute
on the average, the same amount as if this shell were completely filled. The corresponding

expression for the m.s. radius of the protons is

A (Nm+2)(3Z+v) + 2

\ -
Y aZ (27}

<r? ONm =

where Np, is the oscillator quantum number of the highest completely filled shell and v the
number of protons in the valence shell. It is seen immediately that for v=0 this expression

goes over to (2.6).
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We may therefore write the approximate expression of the form-factor (2.2 ) in the case of
the simple harmonic oscillator shell model we are discussing in the following form

_ B2 [(Nm +2)(3Z +v) + 2v] ¢
Fowle) = esp (-3 | 82 |Z) (28)

This expression is of the Debye-Waller type and can be easily used in practice to estimate
the point-proton form factor for a variety of nuclei at sufficiently small values of q. The
corresponding expression for neutrons is quite analogous.

The oscillator spacing may be found from the “experimental” value of the oscillator param-
eter b=(%/Mw)*/?, determined either from the experimental m. s. charge radius or from
the fitting of the charge form factor to the experimental data of the elastic electron scat-
tering experiments. Alternatively semi-empirical formulae for fiw may be used for rough

estimates, as for example (8]
hw = 37.484~1/3 - 7.7147! (2.9)

Other possibilities in determining %w may be also considered.
Given the point-proton form factor F(q), the charge form factor F.i may be obtained
by means of the proton charge form factor f, and the Tassie-Barker correction (1] fra=

exp(b?q?/4A) for the centre of mass-motion :

F2%(q) = f,(9)fraFow(q) (2.10)

Other corrections should have a small effect to our results and are omitted here. For the

proton charge form factor a double-Gausssian parametrization was used (9]

f5(9) = Ay ezp(=a}, % /4)) = (45, = 1)ezp(—a},q* /4) (211)

where a,, = 0.72199 fm, a,,= 0.35246 fm and A, = 0.63387. This form factor gives a good
fit to the experimental e-p scattering data in a wide range of values of q (0 < ¢ < 62fm=2).
The value of the m. s. radius of the proton charge distribution, corresponding to this form
factor is 0.364 fm3.

The approximate expressions Fpw and F. :ﬁw given above will be used in the next section

for our numerical estimates of the form factors.
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3. Numerical results and discussion

In this se'ction we shall obtain the numerical values of the Debye-Waller type form factor for
a number of nuclei and we shall compare them with those, obtained with other approximate
expressions, as well as with the complete harmonic oscillator expressions.

We consider mainly the nuclei }$0,235%, $2Ca,30 Zr and calculate the values of point-proton
form factor with the expressions (1.4) and (2.8) and also with the approximate expression

1

—_— 3.1
1+ <ri>¢? (3.1)

Free =

which is the one-term truncated continuous fraction expansion [2,3]. For the complete
harmonic oscillator expression, we use the following one for nuclei with 8 < Z < 20

8(Z - 5)

4Z -8 _
F(g)=|1- 37 y+ (32 )y2 e (3.2)
where $202
=27
- — (3.3)

For heavier nuclei the expression for F(q) becomes more complicated.

It should be noted that expression (3.2), for the open shell nuclei, has been derived with
the same simplifying assumption used in the derivation of expression (2.7) for the m.s.
radius. The expression resulting by flling first the 1d states (1] differs in the third term in
the parenthesis. The difference in the coefficient of ¢* is,however rather small and it does
not have any significant effect in the region of small q values, in which we are interested.
The results obtained with expression (2.9) for fiw are given in tables 1-5 for values of
q between 0 and 1 fm~). Similar are the results if the “experimental” values for the
oscillator parameter are used (see table 6 for !§ O where we used the value b= 1.687 fm for
the harmonic oscillator parameter [10]). :

It is seen from these tables that as long as q is sufficiently small the approximate expressions
give reasonable results. It is also seen that among the three expressions that of Fpiw gives
the best results. This is encouraging. The less satisfactory results are obtained with the
truncated expression (1.4). The values obtained with this expression begin to deteriorate
at smaller values of q, in comparison with the corresponding values pertaining to the other
approximate expressions. For sufficiently small values of q, expression (1.4) underestimates
the form factor, while (2.S) and (3.1) overestimate. The overestimate of (2.8) is, however,

smaller than that of (3.1).
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Table 1. Values of the l: (0] point-proton form factor obtained with the complete and

approximate expressions (see text) for various val ofq g expr
q fm~! F(q) Fny Frery | Fow
0.0 1.0000 1.0000 1.0000 1.0000
0.1 0.9892 0.9892 0.9893 | 0.9893
0.2 0.9576 0.9568 0.9586 | 0.9577
0.3 0.9068 0.9028 0.9114 | 0.9073
0.4 0.8398 0.8271 0.8526 | 0.8412
0.5 0.7600 0.7299 0.7873 | 0.7633
0.6 0.6715 | 0.6110 0.7200 | 0.6778
0.7 0.5786 | 0.4706 0.6358 | 0.5889
0.8 0.4353 | 0.3085 0.5912 | 0.5008
0.9 0.3952 | 0.1248 0.5333 | 0.4168
1.0 0.3113 | -0.0805 | 0.4807 | 0.33%4

(2.9) for Fw

Table 2. Values of the %351 point-proton form factor obtained with the complete and

approximate expressions (see text) for various values of q using expression (2.9) for fw

qfm= | Fq) Fry Frcr | Fpw
0.0 1.0000 1.0000 1.0000 1.0000
0.1 0.9842 0.9840 0.9843 0.9842
0.2 0.9379 0.9362 0.9400 0.9382
0.3 0.8630 0.8564 0.8744 | 0.8662
0.4 0.7712 0.7447 0.7966 0.7747
0.3 0.6635 0.6011 0.7149 0.6711
0.6 0.5494 0.4257 0.6352 0.5631
0.7 0.4362 0.2182 0.5612 0.457
0.8 0.3300 | -0.0211 0.4948 | 0.3602
0.9 0.2357 | -0.2923 0.4362 0.2746
1.0 0.1563 | -0.5954 | 0.3853 0.2028
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Table 3. Values of the ;g Ca point-proton form factor obtained with the completa and

approximate expressions (see text) for various values of q using expresasioa (2.9) for Aw

qfm=" | F(q) Fry Frcry | Fpw

0.0 1.0000 | 1.0000 | 1.0000 | 1.0000
0.1 0.9809 | 0.9807 | 0.9811 | 0.9809
0.2 0.9254 | 0.9230 | 0.9285 | 0.9259
0.3 0.8389 | 0.8267 | 0.8523 | 0.8409
0.4 0.7292 | 0.6919 | 0.7645 | 0.7348
0.5 0.6060 | 0.5186 | 0.6750 | 0.6179
0.6 0.4790 | 0.3067 | 0.5906 | 0.4999
0.7 0.357 0.0564 | 0.5145 | 0.3892
0.8 0.2482 | -0.2325 | 0.4479 | 0.2916
0.9 0.1567 | -0.5599 | 0.3906 | 0.2102
1.0 0.0850 | -0.9257 | 0.3418 | 0.1438

Table 4. Values of the 282 I' point-proton form factor cbtained with the complete and

approximate expressions (see text) for various values of q using expression (2.9) for Aw

q fm=! F(q) Fr Freev | Fow

0.0 1.0000 1.0000 1.0000 | 1.0000
0.1 0.9691 0.9687 | 0.9696 | 0.9692
0.2 0.8811 0.8748 | 0.8887 | 0.8823
0.3 0.7491 0.7182 | 0.7802 | 0.7544
0.4 0.5917 0.4991 | 0.6662 | 0.6060
0.5 0.4293 0.2173 | 0.5609 | 0.4572
0.6 0.2800 | -0.1271 [ 0.4701 | 0.3240
0.7 0.1570 | -0.5341 | 0.3946 | 0.2136
0.8 0.0668 | -1.0038 | 0.3329 | 0.1348
0.9 0.0095 | -1.5360 { 0.2828 | 0.0792
1.0 -0.0196 | -2.1309 | 0.2421 | 0.0437




378

Table 5. Values of the 232’ Pb point-proton form factor obtained with the approximate

expresgions (see taxt) for various values of q using expression (2.9) for fiw

q fm~* Fr Freer | Fow

0.0 1.0000 | 1.0000 } 1.0000
0.1 0.9473 | 0.9500 | 0.9487
0.2 0.7893 | 0.8260 | 0.8100
0.3 0.5260 | 0.6784¢ | 0.6225
0.4 0.1573 | 0.5427 | 0.4305
0.5 -0.3168 | 0.4316 | 0.2680
0.6 -0.8962 | 0.3453 | 0.1501
0.7 -1.5809 | 0.2793 | 0.0757
0.8 -2.3709 | 0.2288 | 0.0344
0.9 -3.2663 | 0.1899 | 0.0140
1.0 -4.2671 | 0.1596 | 0.0052

Table 6 Values of the Igo point-proton form factor obtained with the complete and

approximate expressions (see text) for various values of q using the “experimental™ value for Aw

qfm= | F(q) Fry Freey | Fpw

a2

0.0 1.0000 |} 1.0000 1.0000 | 1.0000
0.1 0.9881 | 0.9880 | 0.9882 | 0.9831
0.2 0.9532 | 0.9522 | 0.9543 | 0.9533
0.3 0.8973 | 0.8923 | 0.9028 | 0.8979
0.4 0.3241 | 0.8086 | 0.8394 | 0.8238
0.5 0.7376 | 0.7010 | 0.7698 | 0.7413
0.6 0.6427 | 0.5694 | 0.6990 | 0.6501
0.7 0.5444 | 0.4139 | 0.6305 | 0.5363
0.8 0.4471 | 0.2344 | 0.3664 | 0.4631
0.9 0.3549 | 0.0311 | 0.3079 | 0.3795
1.0 0.2709 | -0.1962 | 0.4533 | 0.3023




379

Table 7. Values of the 1: 0 charge form factor obtained with the complete and

approximate expressions (see text) for various values of q using expression (2.9) for Aw

q fm~! F(q) r Frery | Fpw

0.0 1.0000 | 1.0000 | 1.0000 ; 1.0000
0.1 0.9888 | 0.9887 | 0.9888 | 0.9888
0.2 0.9557 | 0.9549 | 0.9567 | 0.9538
0.3 0.9029 | 0.8988 | 0.9074 | 0.9034
0.4 0.8333 | 0.8207 | 0.8460 | 0.8347
0.5 0.7508 | 0.7211 | 0.7778 | 0.7541
0.6 0.6599 | 0.6004 | 0.7075 | 0.6660
0.7 0.5651 | 0.4595 | 0.6385 | 0.5731
0.8 0.4705 | 0.2991 | 0.5732 | 0.4856
0.9 0.3801 | 0.1201 | 0.5129 | 0.4009
1.0 0.2968 | -0.0767 | 0.4582 | 0.3236

Table 8. Values of the ;gC’ G charge form factor obtained with the complete and

approximate expressions (see text) for various values of q using expression (2.9) for Rw

q fm~} F(q) Fry Frery | Fow

0.0 1.0000 | 1.0000 | 1.0000 | 1.0000
0.1 0.9802 | 0.9801 | 0.9804 | 0.9802
0.2 0.9229 | 0.9204 | 0.9259 | 0.9233
0.3 0.8336 | 0.8215 | 0.8469 | 0.8336
0.4 0.7211 | 0.6842 | 0.7560 | 0.7267
0.5 0.5955 | 0.5096 | 0.6634 { 0.6072
0.6 0.4671 | 0.2992 | 0.5760 | 0.4876
0.7 0.3454 | 0.0545 | 0.4973 | 0.3762
0.8 0.2375 | -0.2224 | 0.4285 | 0.27S9
0.9 0.1482 | -0.5294 | 0.3694 | 0.1987
1.0 0.0793 | -0.8642 | 0.3191 | 0.1361
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It is further seen from the numerical results that when the nucleus becomes heavier the
region of validity of the approximate expressions has to be restricted to smaller values of
q. This, as well as the above mentioned overestimate regarding Fpw, are expected on the

basis Qf the remarks made in section 2.

Table 9. Values of the 1:0 charge form factor obtained with the complete and

approximate expressions (see text) for various values of q using the “experimental™ value for fiw

q fm~" F(q) Fry Frery | Fow

0.0 1.0000 | 1.0000 { 1.0000 | 1.0000
0.1 0.9877 | 0.9876 | 0.9877 | 0.9877
0.2 0.9515 | 0.9505 | 0.9527 | 0.9516
0.3 0.8938 | 0.8888 | 0.8992 | 0.8944
0.4 0.8183 | 0.8029 | 0.8335 | 0.8200
0.5 0.7295 | 0.6933 | 0.7614 | 0.7334
0.6 0.6327 | 0.5605 | 0.6881 | 0.6400
0.7 0.53329 | 0.4051 | 0.6172 | 0.5447
0.8 0.4348 | 0.2280 | 0.5309 | 0.4523
0.9 0.3427 | 0.0300 | 0.4904 | 0.3665
1.0 0.2595 | -0.1879 | 0.4362 | 0.2896

The behaviour of the charge form factors is similar. We give only the results for }$O and
#9Ca using expression (2.9) for Aw (see tables 7,8) and for $O using b=1.687 fm (table
9). Expression (2.11) for the proton form factor was used. The Gaussian form factor or
the Chandra and Sauer one (11} gave similar results.

We may conclude that Debye-Waller type expressions for the point proton or charge form
factors (based on expression (1.1)) are suitable in estimating these form factors in the
harmonic oscillator shell model for a variety of nuclei, as long as the momentum transfer

is sufficiently small. Their main advantage is their remarkable simplicity.
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