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DEBYE-WALLER TYPE EXPRESSIONS FOR THE NUCLEAR ELASTIC 

FORM FACTORS AT SMALL MOMENTUM TRANSFERS f 

M. E. GRYPEOS, G. A. LALAZISSIS, S. E. MASSEN and C. P. PANOS 

Department of Theoretical Physics, University of Thessaloniki 

GR-54006 Thessaloniki, Greece 

Abstract 

The problem of the estimate of the nuclear elastic form factors in Born approximation 

is discussed in the region of small momentum transfers q. It is shown that approximate 

expressions of the Debye-Waller type are suitable for estimates of these form-factors in the 

oscillator shell model, for sufficiently small q. 

1. Introduction 

It is well-known [1] that the elastic form factor in Born approximation and for a spherically 

symmetric density distribution /?(r) : 

F(q) = jjJ~rp(r)sin(qr)dr (1.1) 

may be estimated for small values of the momentum transfer q by using the first few terms 

in the power series of F around q=0 : 

η»0 x ' 

In this "moment expansion" < r2n > is the 2n-th moment, given by : 

t Presented by M.E. Grypeos 
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„2η 
< Γ*" > = = J y * ö (,3, 

JTMOr2* 

Difficulties, however, may arise with this type of expansiou. Thus, it may be necessary, 

depending on the value of q, to take into account a large number of terms in order to have 

a fairly accurate estimate of F(q). To face this sort of difficulties it was proposed [2] to 

use a continued fraction expansion of series (1.2) which is truncated subsequently. In this 

way, considerable "acceleration of the convergence" is achieved. 

The above mentioned approach was applied to the deuteron form factor in ref. 3 and in 

addition to it to the form factor of xf 0 in the harmonic oscillator shell model, as well as 

to the form factor for a Fermi distribution, in ref. 2. In the case of l\0, for example, 

where the values obtained with the exact expression axe compared with those obtained 

with expansion (1.2) truncated at the n=l and n=5 terms and also with the truncated 

continued fraction expansion (with the same number of terms), it was easily realized (see 

fig. 1 of ref. 2) that the latter approach gives much better results. Not only the agreement 

with the exact expression is better at low q values but also at higher q the truncated 

continued fraction results are better behaved than those obtained with the corresponding 

truncated expansion (1.2). 

In the present work we shall restrict ourselves to the region of low momentum transfers. 

Our aim is to investigate in the framework of the harmonic oscillator shell model, an 

alternative possibility of approximating the form factor (1.1) in this region, by using an 

expression, which is of the Debye-Waller type and has some attractive features. Namely: 1) 

It is quite simple, 2) it is applicable to spherical distributions of nuclei in a rather wide 

region of mass numbers and 3) its accuracy compares favorably, at least with that of the 

standard expression used widely in this region of low q values, that is the one obtained by 

truncating the moment expansion of F(q) at the second term (n=l): 

F{q) s FTl(q) = 1 - Ì < r2 > q2 (1.4) 

The relevant formulae are given in the next section. The final section is devoted to the 

presentation of the numerical results obtained with the Debye-Waller type expressions for 

the point-proton and for the charge form factor for a number of nuclei. Comparison with 

other approximate expressions and with the corresponding complete harmonic oscillator 

one is also made. 
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We would like to point out that the approximate treatment for the form factor is anal

ogous to the one for the relative probability Ρ for the recoilless Λ production in nuclei, 

described recently [4]. Such a process has a similarity with the Môssbauer effect for which 

a Debye- Waller factor expression for Ρ and for the corresponding quantities of other similar 

processes, including scattering, has been given or discussed in the past [5]. 

Finally we should recall that knowledge of the form factor for small values of momentum 

transfer -though not always sufficiently small- is needed in physical problems and thus it 

appears desirable to have, if possible, simple expressions in making easily estimates. 

Simple expressions for F(q) may also arise by using phenomenological densities for which 

the form factor can be obtained analytically and their parameters have been suitably de

termined. These parameters may then be related to the harmonic oscillator size parameter 

b, e.g. by equating the expression of the m.s. radius of the assumed density of the nucleus 

with the expression of the m.s. radius in the oscillator shell model. 

As an example in which nuclear form factors at rather small values of q are used, we 

mention the exotic (/x~,e~) conversion in nuclei, in which the bound muon of a muonic 

atom is converted into an electron : 

j | - + ( A , Z ) - e - + ( A , Z ) (1.5) 

Such a process aroused special experimental and theoretical interest in recent years (see 

ref. 6 and references therein). In the coherent process of (1.5), that is when the nucleus 

(A,Z) remains in its ground state, the dependence of the rate on the nuclear parameters 

was obtained [6} by using oscillator shell model nuclear form factors. 

2. The approximate expression for F(q) 

An alternative possibility to that mentioned in the introduction in obtaining an appprox-

imate expression for F(q) at low q values is, instead of keeping only the two first terms of 

the expansion and omitting completely the higher ones, to take into account exactly these 

two terms and also approximately the higher ones. This may be done, for example, by 

expressing F(q), in the form: 

F{q) « « p ( - i < r 2 > q2) + &F(q) (2.1). 

and write approximately [5]: 

F(q) * Fowiq) = e x p ( - ì < r2 > q2) (2.2) 
ο 
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This amounts to omitting the series of the correction terms: 

A F ( f l ) . £ ( - ! ) " * 2» < r 2 n > < r 2 > ' 

(2n +1) ! 6nn\ 
(2.3) 

It should be noted that this series starts from n=2. Thus, there are no omitted correc

tion terms with n=0 and n=l by using approximate expression (2.2) The omission of the 

correction terms in expression (2.1) is equivalent to the replacement in expansion (1.2) of 

<r2n > /(2n + 1 ) ! by < r 2 > n /6nn! (n=2,3,..). In order to have an idea of the conse

quence of this replacement we may estimate both terms by using the equivalent uniform 

density distribution : 

p ( r ) » p o [ l - Θ ( Γ - Λ ) 1 (2.4) 

where θ is the unit step function and the radius R is given by R= w | < r 2 >. In this 

way we find 

Γ 3 1 
Δ Γ Ä ~ 2 ( " " 1 ) n ^ n l(2n + l)!(2n + 3) " 10nn! 

(2.5a) 

From the above result it is suggested that if we wish expression (2.2) to be a fairly good 

approximation to the form factor (1.2), the quantity (Rq) should be sufficiently small, so 

that the omitted terms (ΔΡ) to be negligible. Thus, not only the value of the momentum 

transfer should be quite small but also the nucleus should not be heavy. For the heavier 

nuclei one should restrict the values of q to a smaller region from the origin in order to 

obtain reasonable results. 

In addition, it is seen from expression (2.5a) that the first term (n=2) is ( ο Α ) 4 ( ^ - job"). 

Thus, the third term in the approximate expression (2.2) is larger than the corresponding 

one in expression (1.2) and therefore, in view also of the form of the higher terms, Fpw 

should give somehow larger values than those of the exact expression in the region we are 

interested. 

We also mention that similar conclusions could be drawn if the harmonic oscillator model 

is used. In this case, the expression of < r 2 > n is given analytically in a simple way 

(see below), but a general expression of < r 2 n > is not easily obtained, although for 

specific light nuclei the 2n-th moment is easily calculated too. In the case of the harmonic 

oscillator model, the main difference in the expression of Δ ί \ apart from the change in 
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the coefficients in (2.5a), is the replacement of R by the harmonic oscillator parameter b 

which détermines the size of the nucleus. If we consider, for example, nuclei with atomic 

numbers in the region 2 < Ζ < 8, the expression of LF becomes 

" - »-WW [ n ( ^ ± f ^ - <^)»)] (2·«) 
By considering, more specifically, the case of x\0 and the first terms of (2.5b) we may 

easily check that the coefficients of (—l)n(bq)2n are negative and therefore the previously 

made conclusion about the values of FDW is verified in this case too. In addition it may 

be seen, by expressing b2 in terms of R2, that the resulting coefficient of the n=2 term of 

AF in (2.5b) and the corresponding one in (2.5a) are of the same order of magnitude. 

We consider the point-proton form factor obtained with a nuclear model. The correspond

ing density distribution p(r) and from this the mean square radius < r 2 > in expression 

(2.2) will be calculated on the basis of the assumed nuclear model. We assume, as pre

viously, for simplicity the harmonic oscillator shell model (without spin-orbit part). The 

mean square radius may then be given analytically by quite a simple expression [7]. For 

closed shell nuclei the result is : 

< rJ >«.- \ Σ (η, + f )Z„. = l±(N„ + 2) (2.6) 
n,sO 

In these expressions Ζ is the atomic number of the nucleus, n, the harmonic oscillator 

quantum number for each shell (n,=0,1,2,...) and Nm its value for the highest filled shell. 

Zn, is the number of protons in each shell. 

The above expression can be extended to the case of open shell nuclei in which the highest 

shell is partly filled, under the assumption that the protons in the open shell contribute 

on the average, the same amount as if this shell were completely filled. The corresponding 

expression for the m.s. radius of the protons is 

2 J J M . + 2)(8Z+ ,) + ! , 
Nm Μω 4Z K ' 

where Nm is the oscillator quantum number of the highest completely filled shell and ν the 

number of protons in the valence shell. It is seen immediately that for v=0 this expression 

goes over to (2.6). 
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We may therefore write the approximate expression of the form-factor (2.2 ) in the case of 

the simple harmonic oscillator shell model we are discussing in the following form 

FDW(q) - exp (-<_) ^ — j - J (2.8) 

This expression is of the Debye-Waller type and can be easily used in practice to estimate 

the point-proton form factor for a variety of nuclei at sufficiently small values of q. The 

corresponding expression for neutrons is quite analogous. 

The oscillator spacing may be found from the "experimental" value of the oscillator param

eter b^h/Mui)1/2, determined either from the experimental m. s. charge radius or from 

the fitting of the charge form factor to the experimental data of the elastic electron scat

tering experiments. Alternatively semi-empirical formulae for hu may be used for rough 

estimates, as for example [8] 

liu » 37.48A"1/3 - 7.7U"1 (2.9) 

Other possibilities in determining hu may be also considered. 

Given the point-proton form factor F(q), the charge form factor Feh may be obtained 

by means of the proton charge form factor fp and the Tassie-Barker correction [1] fxB— 

exp(b2q2/AA) for the centre of mass-motion : 

FcDkW(q) = fMfTBFDw(q) (2.10) 

Other corrections should have a small effect to our results and are omitted here. For the 

proton charge form factor a double-Gausssian parametrization was used [9] 

/,(?) = Apxtxp(-a2
pxq

2/4)) - (APx - \)txv(-a2
?J/4) (2.11) 

where aPl= 0.72199 fin, ap,= 0.35246 fm and APl= 0.63387. This form factor gives a good 

fit to the experimental e-p scattering data in a wide range of values of q (0 < q2 < 62/m~2). 

The value of the m. s. radius of the proton charge distribution, corresponding to this form 

factor is 0.564 fm2. 

The approximate expressions FQW and Fj?k
w given above will be used in the next section 

for our numerical estimates of the form factors. 
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3. Numerical results and discussion 

In this section we shall obtain the numerical values of the Debye-Waller type form factor for 

a number of nuclei and we shall compare them with those, obtained with other approximate 

expressions, as well as with the complete harmonic oscillator expressions. 

We consider mainly the nuclei ̂ O^Si, ^Ca^Zr and calculate the values of point-proton 

form factor with the expressions (1.4) and (2.8) and also with the approximate expression 

FTCFI - Τ-ΓΓΖ 2 ^ 2 i 3 , 1 ) 
1 + f < r2 > q2 

which is the one-term truncated continuous fraction expansion [2,3]. For the complete 

harmonic oscillator expression, we use the following one for nuclei with 8 < Ζ < 20 

^ . [ , . ^ ^ ] ^ (3.2) 

where 

, - ¥ (3.3) 
For heavier nuclei the expression for F(q) becomes more complicated. 

It should be noted that expression (3.2), for the open shell nuclei, has been derived with 

the same simplifying assumption used in the derivation of expression (2.7) for the m.s. 

radius. The expression resulting by filling first the Id states [1] differs in the third term in 

the parenthesis. The difference in the coefficient of q* is .however, rather small and it does 

not have any significant effect in the region of small q values, in which we are interested. 

The results obtained with expression (2.9) for hu are given in tables 1-5 for values of 

q between 0 and 1 / m " 1 . Similar are the results if the "experimental" values for the 

oscillator parameter are used (see table 6 for *f Ο where we used the value b= 1.687 fm for 

the harmonic oscillator parameter [10]). 

It is seen from these tables that as long as q is sufficiently small the approximate expressions 

give reasonable results. It is also seen that among the three expressions that of FDW gives 

the best results. This is encouraging. The less satisfactory results are obtained with the 

truncated expression (1.4). The values obtained with this expression begin to deteriorate 

at smaller values of q, in comparison with the corresponding values pertaining to the other 

approximate expressions. For sufficiently small values of q, expression (1.4) underestimates 

the form factor, while (2.S) and (3.1) overestimate. The overestimate of (2.8) is, however, 

smaller than that of (3.1). 
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T a b l e 1. Values of the l\0 point-proton form factor obtained with t h · complot« and 

approximate expressions (MO text) for various valu·· of q using expression (2.9) for ht*J 

q / m - 1 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

F(q) 

1.0000 
0.9892 
0.9576 
0.9068 
0.8398 
0.7600 
0.6715 
0.5786 
0.4853 
0.3952 
0.3113 

Fn 

1.0000 
0.9892 
0.9568 
0.9028 
0.8271 
0.7299 
0.6110 
0.4706 
0.3085 
0.1248 
-0.0805 

FTCFI 

1.0000 
0.9893 
0.9586 
0.9114 
0.8526 
0.7873 
0.7200 
0.6353 
0.5912 
0.5333 
0.4807 

FDW 

1.0000 
0.9893 
0.9577 
0.9073 
0.8412 
0.7633 
0.6778 
0.5889 
0.5008 
0.4163 
0.3394 

T a b l e 2· Values of th · i±Si point-proton form factor obtained with t h · complot· and 

approximate expressions (see text) for various values of q using expression (2.9) for nUJ 

q /m~ l 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

F(q) 

1.0000 
0.9842 
0.9379 
0.8650 
0.7712 
0.6635 
0.5494 
0.4362 
0.3300 
0.2357 
0.1563 

Fri 

1.0000 
0.9840 
0.9362 
0.8564 
0.7447 
0.6011 
0.4257 
0.2182 
-0.0211 
-0.2923 
-0.5954 

FTCFI 

1.0000 
0.9843 
0.9400 
0.8744 
0.7966 
0.7149 
0.6352 
0.5612 
0.4948 
0.4362 
0.3853 

FQW 

1.0000 
0.9842 
0.9382 
0.8662 
0.7747 
0.6711 
0.5631 
0.4576 
0.3602 
0.2746 
0.2028 
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T a b l e 3 . Value* of th« jo Ca point-proton form factor obtained with t h · complot« and 

approximata expressions (s«e text) for various valu·· of q using «xproaaion (2.9) for TUJJ 

q / m " 1 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

F(q) 

1.0000 
0.9809 
0.9254 
0.8389 
0.7292 
0.6060 
0.4790 
0.3573 
0.2482 
0.1567 
0.0850 

f r i 

1.0000 
0.9807 
0.9230 
0.8267 
0.6919 
0.5186 
0.3067 
0.0564 
-0.2325 
-0.5599 
-0.9257 

FTCFI 

1.0000 
0.9811 
0.9285 
0.8523 
0.7645 
0.6750 
0.5906 
0.5145 
0.4479 
0.3906 
0.3418 

FDW 

1.0000 
0.9809 
0.9259 
0.8409 
0.7348 
0.6179 
0.4999 
0.3892 
0.2916 
0.2102 
0.1458 

T a b l e 4 · Values of th« ^Zr point-proton form factor obtained with th« completa and 

approximata expressions (se* text) for various valu*· of q using expression (2.9) for nU 

q / m " 1 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

F(q) 

1.0000 
0.9691 
0.8811 
0.7491 
0.5917 
0.4293 
0.2800 
0.1570 
0.0668 
0.0095 
-0.0196 

FTL 

1.0000 
0.9687 
0.8748 
0.7182 
0.4991 
0.2173 
-0.1271 
-0.5341 
-1.0038 
-1.5360 
-2.1309 

FTCFI 

1.0000 
0.9696 
0.8887 
0.7802 
0.6662 
0.5609 
0.4701 
0.3946 
0.3329 
0.2828 
0.2421 

FDW 

1.0000 
0.9692 
0.8823 
0.7544 
0.6060 
0.4572 
0.3240 
0.2156 
0.1348 
0.0792 
0.0437 
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T a b l e 5 . Valu«· of th · 32* & point-proton form factor obtained with the approximato 

expressions ( M · text) for various values of q using expression (2.9) for nUI 

q/m" A 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

FTI 

1.0000 
0.9473 
0.7893 
0.5260 
0.1573 
-0.3168 
-0.8962 
-1.5809 
-2.3709 
-3.2663 
-4.2671 

FTCFI 

1.0000 
0.9500 
0.8260 
0.6784 
0.5427 
0.4316 
0.3453 
0.2793 
0.2288 
0.1899 
0.1596 

FDW 

1.0000 
0.9487 
0.8100 
0.6225 
0.4305 
0.2680 
0.1501 
0.0757 
0.0344 
0.0140 
0.0052 

T a b l e β Valu«· of th« 3 0 point-proton form factor obtained with th« complet« and 

approximate expressions (see text) for various values of q using the "experimental" value for nUJ 

q/m- A 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

F(q) 

1.0000 
0.9881 
0.9532 
0.8973 
0.8241 
0.7376 
0.6427 
0.5444 
0.4471 
0.3549 
0.2709 

FTI 

1.0000 
0.9880 
0.9522 
0.S923 
0.8086 
0.7010 
0.5694 
0.4139 
0.2344 
0.0311 
-0.1962 

FTCFI 

1.0000 
0.9882 
0.9543 
0.9028 
0.8394 
0.7698 
0.6990 
0.6305 
0.5664 
0.5079 
0.4553 

FDW 

1.0000 
0.9881 
0.9533 
0.8979 
0.8258 
0.7415 
0.6501 
0.5565 
0.4651 
0.3795 
0.3023 
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T a b l e 7. Valu«· of th· l$0 charge form factor obtained with th« complot« and 

approximate expressions (see text) for various value« of q using expression (2.0) for TlU 

lfm-' 

0.0 

0.1 
0.2 
0.3 

0.4 

0.5 

0.6 
0.7 
0.8 
0.9 
1.0 

F(q) 

1.0000 

0.9888 
0.9557 
0.9029 
0.8333 

0.7508 

0.6599 
0.5651 
0.4705 

0.3801 
0.2968 

Fri 

1.0000 
0.9887 

0.9549 
0.8988 
0.8207 

0.7211 

0.6004 

0.4595 
0.2991 
0.1201 
-0.0767 

FTCFI 

l.OOOO 

0.9888 

0.9567 
0.9074 

0.8460 

0.7778 

0.7075 
0.6385 
0.5732 
0.5129 

0.4582 

FDW 

1.0000 

0.9888 

0.9558 
0.9034 

0.8347 

0.7541 

0.6660 

0.5751 
0.4856 
0.4009 
0.3236 

T a b l e 8 . Values of the 20 Ca charge form factor obtained with the complete and 

approximate expressions (see text) for various values of q using expression (2.9) for Άίϋ 

q/m"* 

0.0 
0.1 
0.2 

0.3 
0.4 

0.5 

0.6 
0.7 
0.8 
0.9 
1.0 

F(q) 

1.0000 
0.9802 
0.9229 

0.8336 
0.7211 

0.5955 
0.4671 
0.3454 
0.2375 
0.1482 

0.0793 

Fri 

1.0000 
0.9801 
0.9204 
0.8215 

0.6842 

0.5096 
0.2992 
0.0545 
-0.2224 
-0.5294 
-0.8642 

FTCFI 

1.0000 
0.9804 
0.9259 
0.8469 

0.7560 

0.6634 

0.5760 
0.4973 
0.4285 
0.3694 
0.3191 

FDW 

1.0000 

0.9802 
0.9233 

0.8356 

0.7267 

0.6072 
0.4876 
0.3762 
0.27S9 
0.1987 

0.1361 
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It is further seen from the numerical results that when the nucleus becomes heavier the 

region of validity of the approximate expressions has to be restricted to smaller values of 

q. This, as well as the above mentioned overestimate regarding FDW, are expected on the 

basis of the remarks made in section 2. 

T a b l e 9 . Value· of tha $0 chars« form factor obtain·«! with tha complete and 

approximate expressions (sea text) for various values of q using tha "expérimentai" valu· for hul 

q / m " 1 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

F(q) 

1.0000 
0.9877 
0.9515 
0.8938 
0.8183 
0.7295 
0.6327 
0.5329 
0.4348 
0.3427 
0.2595 

Fn 

1.0000 
0.9876 
0.9505 
0.8888 
0.8029 
0.6933 
0.5605 
0.4051 
0.2280 
0.0300 
-0.1879 

FTCFI 

1.0000 
0.9877 
0.9527 
0.8992 
0.8335 
0.7614 
0.6881 
0.6172 
0.5509 
0.4904 
0.4362 

FDW 

1.0000 
0.9877 
0.9516 
0.8944 
0.8200 
0.7334 
0.6400 
0.5447 
0.4523 
0.3665 
0.2896 

The behaviour of the charge form factors is similar. We give only the results for xf 0 and 

2oCa using expression (2.9) for hu (see tables 7,8) and for l\0 using b=1.687 fm (table 

9). Expression (2.11) for the proton form factor was used. The Gaussian form factor or 

the Chandra and Sauer one [11] gave similar results. 

We may conclude that Debye-Waller type expressions for the point proton or charge form 

factors (based on expression (1.1)) are suitable in estimating these form factors in the 

harmonic oscillator shell model for a variety of nuclei, as long as the momentum transfer 

is sufficiently small. Their main advantage is their remarkable simplicity. 
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