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M.E.GRYPEOS,G.A.LALAZISSIS"),S.E.MASSEN,C.P.PANOS
Department of Theoretical Physics,
University of Thessaloniki, Greece

"rand Institut fiir Theoretische Physik,
Universitit Tubingen, F.R.G

Abstract

The so-called ‘"cosh" or symmetrized Woods-Saxon potential
which has been used in nuclear physics is discussed and certain
comments are made regarding its form-factor, depth and radius. A
rough estimate of its parameters is also attempted by using
various possibilities. This is done by considering either a num-
ber of individual nuclei or by least squares fitting. The poten-
tial depth parameter V, apart from being state dependent varies
also with the mass number of the nucleus. Comments on
relevant limitations and inaccuracies are also made.

1. Introduction
The very-well known Woods-Saxon (WS) potential
"Vo
Vus(r) = =V,fy3(r) 3 —m—— (1)
l+e(r-R)’a
has been extensively used in various calculations in nuclear

*Presented by M.E. Grypeos
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physics and is discussed in standard texts ([1]. Such a potential

does not satisfy the physical requirement which 1is wusually im-
posed ([2] that the force experienced by a particle at the centre
of a spherically symmetric potential be zero, though the value of
dVys

dr |r=0
nuclei.

An alternative potential has been considered, however, by Buck
and Pilt[3], the so-called "cosh" potential, which is a sym-
metrized form of the WS one, namely

is very small for R/a >>1, that is apart from the light

Ve (r) Vofe(r) & l+cosh(R/a) 2)
r) = =Volc = -
¢ i ° cash(r/a)+cosh(R/a)

and has the desirable feature: S;ir’°=o. Note that we have mostly
dropped the corresponding subscripts in the potential parameters
in order to simplify the notation. The form factor of this poten-
tial is very similar to that which had been used [4] to describe
very successfully the densities of nuclei for a wide range of
mass number. Buck and Pilt have used potential (2) as the central
part of a cluster-core potential and have realized that by
suitably choosing R and a, potential shapes can be obtained which
are remarkably similar to the folding potentials used in ref §
and hence they also exhibit rotational spectra.

More recently, Carbonell et al [6] have used potential (2) in
connection with a semiclassical method of quantization for a par-
ticle in a nuclear potential and for the comparison of their
results with those obtained with the Schrodinger equation. In
their case the WS potential is inadequate (according to ref 6b)
to calculats <the classical <trajectories ‘'since the numerical
methods used for the integration of the equations of motion are
inapplicable in the vicinity of r=0 for this potential.

In this paper we would like to discuss the "cosh" potential and
comment on the possibility of using instead of expression (2) an
alternative one, which 1is closely related to it. The relevant
remarks are made in the next section where the dependence of the
radius R and of the various moments of the potential on the mass
number 1is also discussed. In section 3 a rough estimate of fhe
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parameters of the potential is attempted by considering for this
purpose various possibilities. The last section is devoted to the
presentation of numerical results and comments.

-

2. The potential form factor, depth and radius

Instead of wusing potential (2) an alternative possibility is
to use a symmetrized Woods-Saxon potential in the form which has
been used in the case of nuclear densities (and very recently in
the analysis of hypernuclei (7]), namely to use instead of (2):

" e v sinh(R/a)
s (] shaniz] °cosh(r/a)+cosh(n/a)
r-R -1 -r-R -1
= -Vo{[1+exv(-;-)] +[1+GXP(T)] -1} (3)

Both potentials (2) and (3) are of symmetrized Fermi form and
have zero slope at the origin, but their form factors differ,
their ratio being:

fsr _ sinh(R/a)
%.  l+cosh(R/a)
if the values of R and a in the two potentials do not differ ap-
preciably.
This ratio is almost wunity for R/a>>l, <that 1is for the
heavier elements for which both potentials are very close to the

(4)

Woods-Saxon one.

The choice of the numerator in potential (2) seems to
originate from the requirement the form factor to become unity at
the origin, where the potential is minimum. Thus,V, is the actual
depth of the "cosh" potential:D. = V,. This is not the case for
the other two potentials (see table 1). Therefore, for each of
these potentials V, is a "depth-parameter", which determines its
depth to a large extent, but not entirely, since D depends also
upon R and a.

Analogous remarks can be made regarding the meaning of R as it
is clear from table 1. For all three potentials, R is a parameter
which characterizes the range of the potential, but it is somehow
smaller than the "half-depth radius".
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The above remarks, as well as, the following one are pertinent
to the cases in which the condition R/a>>1 1is not quite satisfied
that is to the lighter nuclei.

‘The choice of the numerator in the "cosh" potential discussed
earlier seems, however, to have, another implication. The volume
integral of the potential becomes a <transcendental function of
the radius R:

o 4nV, (na)2 1+cosh(R/a)

T = af1+ 8
[Ve| = |4m Iovc(r)rldrl 3 o R? 1 sinh(R/a) ! )

and it is not easy to use it in order to express R as a function
of the mass number of the nucleus. Transcendental terms appear
also 1in the volume integral of the Woods-Saxon potential(8]. On
the contrary for the Vgg(r) these terms are absent as the
results given in ref 4 for the symmetrized Fermi density show and
our detailed calculations have verified. One can therefore write
on the basis of a folding model and the well-known properties of
the convolution (in analogy, for example,' with the approximate
treatment of ref 9 for the WS hypernuclear potential):

4m

ma)?
= VOR3[1+ (ra)

R?

1 = Ac|Vun| (6)

where, in the case of a bound nucleon, A.=A-1, A being the mass

number of the nucleus. [G"'l is the volume integral of the spin-
average, (central), nucleon-nucleon potential |9un| =| 9Nn(£3d;‘
The above equation is a third-order equation with respect to R
and can be solved exactly. In fact it has the same structure with
the equation arising from the normalization integral of a
trapezoidal distribution (10]. The corresponding equation for the
Fermi distribution ([11] is approximate.

Thus, in the case of the V;y potential, one may obtain the
following "exact" expression of the radius R in terms of the mass
number

1/3 22 ma 2.1 212 ra z
rohe [ (L5 (——) "1 Y - e S—— "1 ]
33 1713 33 1713 -
raAc roA‘

1
R=
2173
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1/3 1 ma 2 1 na (-} 1 wa 8
=2 A [1- =(—=) + — (—=) + —(———=) +...] (7
3 1/3 81 1/3 243 1/3
TolAc TolAe roAc

where r, = (3|0u,;/4uv°)1/=. The leading term of this expansion
(see section 4 for the expression of V,): R3ro(A-1)1/3 is of the
form which is often used for the radius of the Woods-Saxon poten-
tial. In ref 12, however, the r, in such an expression was de-
pendent on A. ’

It should be noted that the higher moments of potential Vse(r)
may also be given analytically and contain no exponential terms.
The same holds for the "cosh" potential but not for the WS one.
The expression of the n-th moment is (see also ref. 8):

. n+2
Ve(r)r dr
0

(n) ’(n)a =
T Jse T J¢ <

vc(r)rzdr
)

n 2 k -k
3R (ra) _~1 ne2 (1-(-1) )(1-2 ) a ke1
2 (1l ! —
Pl T [1402s3) oo (n+:i-x)! e () ]
n=1,2,3,... (8)

where { is Riemman's {-function.

The expressions of the first moments are quite simple:We give
the expression for the second and fourth moment which we shall
use in the next section

<r2> - 3 R2[1+ 7 (na)z] (9)
sg 5v 3 R
. 3, ma 2. - ma ; 49 wma 4 31 ma
{r > = =R (1+(— 1+7(—) + —(==) + ——(— 10
e 7 R e 1T e s meo ' 260" o

Use of expressions (7) for R in the above formulae leads to the

dependence of the various moments on the mass number. It is ob-
vious that the leading term of <rn> is proportional to A:f’
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3. The estimate of the potential parameters

In this section we discuss the problem of the estimate of +the
potential parameters V,, R and a. We have paid attention to three
possible ways in determining these parameters. In the two of
them the R and a will be determined from the known corresponding
quantities of the charge density distribution.

The first one is related to a rather recent proposal by Sal-
cedo et al. [13] who estimated, in their study of inclusive pion
nuclear reactions the radius R and difuseness parameter a for a
point-proton density distribution

plr) = — > (1)
1+°(r-R)/a
from the corresponding quantities of the same type charge density
distribution
Poe
pe(r) = :::?;:5777;: (12)
Here we shall use the relations

2

* Poe(le =) 13)
Bk B PR 6Ra (
<r?> +r?1 = (r?) (14)
P L]
r -y =» -y => i
Jp(r)d.r = |pe(r)dr (15)

which result from the properties of the convolution [14] and also
the formulae for the m.s. radius and for the volume integral of
the symmetrized Fermi density distribution. The use of (13) in-
stead of poa T po 0f Salcedo et al (13) should be more ap-
propriate and 1is derived from expressions (11) and (12) of ref.
15b (see also 13a) , which in the present case take the form

n
T =F'|)pe(|ET AT = [14-5 SALA } arlp(r)  (16)

et n=1 (2n+1)!

where Arp(r) = ((d/dr)2a+(2n/r)(d/dr)2n-t]p(r) and <r2nd>p, is the
2n-th moment of the charge density distribution of the proton
((rig = r; ). The above expansion is expected to be valid for va-

palr) = Ip(i
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lues of r sufficiently larger than the proton size and was used

here for r=R.
A linearization procedure leads after some algebra to the fol-

lowing expressions for R and a:

R = Ret¢

=[1+ (nrd/6)*RE(1+(ma,/Re) 2} 2= (1a,) *B+2(ma,) 'B?-B° ]n.
- $(ma,)*Ri+2(na.) 2 ((ma.) P- 2REIB+2(~3(mas) P+E2R{1B7 4480
17

+ 2_g,p2_1/2
5 = [-GR.: 7;:?.) 5rs (18)

where B=(na.)z- E r: and the expressiaon of £ in (18) follows from
an. ’

Having determined the parameters of the point proton density
which is taken to be the same with the point nucleon one, we
may now proceed in obtaining the parameters of the (symmetrized)
Woods-Saxon potential which is assumed to be given in the folding
model by the expression

v(r) = Acfp(,é’— TH)) Ven(rhydrt =

|:n
- [Acfv”d?} [14-""2;':x :TT;%"A“];:(:-) (19)

Again the above expansion is valid for large r compared to the
range of the nucleon-nucleon potential Vyy and for sufficiently
short range Vyy only the first term in the sum may be taken into
account.

The relation between the depth parameter V, of the (symmetri-
zed) Woods-Saxon potential and the parameters of the (symmetri-
Zed) Fermi distribution for point nucleons is found in a way
analogous to that of p.. and p,. The result is
{r2d>yn
~eza | )

The potential radius R, and difuseness parameter a, are re-
lated with the corresponding parameters of the point-nucleon dis-
tribution by the relation (which is obtained now without
linearization):

-V s (Acpafvun(r)dé’) [1-
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a f 22 aj f 27 a;
2 3
Ry = (- _’.)1/3{[14- 14 — ;1"”-[-14- 1+ — _JX/ ) (21)
2 33 a;

331 a2
3

3R -RY)+7(ma) +5¢<royn 1/2

ay = ( 1 (22)
T2
where
2Rie 1B g - L [Ris(ra)ilR/[1- M) (23
a; = — - - - - —
LY 4 % 6Ra
5
and B'= (ma)? = — (r2)>yy (24)

Another possible way of determining the parameters R, and a,
is the one which is outlined in Ref. 17 (see alsoc ref. 16) in the
case of the A-nucleus potential. According to this approach one
uses relation (14) between the second moments of the
(symmetrized) Fermi distribution and the corresponding one be-
tween the fourth moments (The factor 7/3 in expression A3 of ref
17 should be written 10/3 (18]):

10
{r4>, = (ré)> +r¢ + —(rd>r? (23)
P 3 P

Analogous relations are used between the moments of the poten-
tial and point-nucleon distribution. The analytic expressions (9)
and (10) for the corresponding moments in the case of the
(symmetrized) Fermi form factors are also used.

Again in this approach the parameters R and a,R, and a, are
given analytically ([23].

It should be clear that in both approaches, described above,
the approximation is made, as in ref.17 that the convolution of a
(symmetrized) Fermi distribution is a (symmetrized) Fermi
distribution. This should be reasonable as long as the "folding"
distribution (either proton charge density or nucleon-nucleon
potential) are of sufficiently short range, compared to the
folded distribution. Having determined R, and a. in one way or
the other the potential depth parameter V; is adjusted so that
the values of the experimental single particle energies, are
reproduced by solving the Schrodinger equation.
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Finally, all parameters could be determined by a suitable
least-squares fitting to +the experimental single particle
energies. It appears, however, thét in most cases such a proce-
dure would not be satisfactory, mainly because of the large ex-
perimental uncertainties. For this reason one of the parameters,
namely a», (on which the single particle energies, at least for

the ground state (10], are not expected to depend strongly, un-
less A. is small) is fixed from our previocus experience and the
remaining _parameters ‘are determined by least-squares fitting

(see also next section).

4. Numerical results and discussion

In this section we determine the parameters for the sym-
metrized Woods-Saxon potential (3) for a number of nuclei for
which the parameters of the corresponding charge density dis-
tribution have been determined (4] (together with those of some
other nuclei) from the analysis of the elastic electron scatter-
ing experiments. The corresponding values given in ref. 4 are
displayed also in table 1. In this table the wvalues of the pcint
proton density parameters R and a and potential parameters R, and
avy are also given by using the improved and extended version of
the approach of Salcedo et al.[13] for the densities, described
in the previous section, namely our expressions (17),(18),(21)
and (22).

In table 2 the same values are given using the method of
second and fourth moments (ref.l17) that is expressions (36) and
(37) of ref. 23 and the corresponding ones for +the potential
parameters. The second and fourth moments of the nucleon-nucleon
potential were estimated by using the interaction 4 of Volkov
(see table 1 of ref 19). The reason for such a choice is that
this interaction is of rather short range, which is essential for
the validity of the approaches we are using.

It is seen from the results of tables 1 and 2 that the values
of R. and a, obtained with these two approaches do not differ
very appreciably. It is observed, however, that the first ap-
proach leads %o larger values of R, and to smaller values of a.



363

9°59 ¥ 66 T°y9 6°LL 188 1] TV9°0 | STS'b | €SS 0| SSO°¥ | 995°0 | ESU ¥ [INss
(s-Lg) (€°99) (¥ €L) (.°18) | z89 0 | tov'v | cas 0| o6'c | 0090 | vso°v [eass

£°¥9 8°€9 v v'ze 6590 | 65676 | 9550 | vev'e | aes o | 9ss € feoes

L oL (c-1L) (L-oL) (8- LL) L89°0 | 099°€ | 9LS°0 | ¥BT'E 109°0 | SST°E n"“

9°0L Lo L AR 73 S°SL 190 | €95°c | Les 0| 900°c | €9s-0 | se0'c|ise:

€°v9 (v'we) | ovoro | czvoe | tvs-o | 6secz | 6950 | veerz|bus:

1°€S €°'99 ezs 0 | eve-c | Lov:o | oov-r | Levio | zos 2] o«

S 6% 0°LS eov'0 | oz e |vsv-o |zziz | oav-o | izl ofs

M»Muwm»— «wuu“mnn ﬂ»uu"uw ﬂ»"u“m»_ u»"w“uu- (wy)*e |(w3)*y | (w3y)e | (w3)d |(w3)®e |(w3)°y tonn|

‘qzZ 3Jox jo Li1°‘613 ut seaano bHug
~puodsarioo 8y} wolj peujejzqo esoyy sotpbisue e[orjaed e{buys

1e3

-uswirzedxs ey} 103 buisn Aq paujwiezep eirem sessyjueaed ujy seniea
U} Ppaqlidsep poyjzew 3ISATF OY3} YIIM paujwisilep
T elqel

ayL

‘3xey eyl
(€) terjuejod uoxeg-spooM peziajzeswwis eyy jJo saejewered




364

compared to those of the second approach. The differences are
larger for the lighter elements though they are smaller for the
medium ones (30(A¢70). It is indicated that the values with the

Table 3 Parameters of the symmetrized Woods-Saxon potential (3)
determined with the second method described in the text. The
values in parentheses were determined by using for the experimen-
tal single particle energies those obtained from the correspond-
ing curves in £ig.117 of ref 22b.

Nucl (R(fm) (a(fm) | Re(fm){av(fm)| Vo(MeV) Vo(MeV)| Vo(MeV)| Vo(MeV)| Vo(MeV)
ls-stats| lp-stats|ld-state|2s-stats|if-state

‘:C 2.092|0.459| 2.802 |0.3853 63.7 62.2
1:0 2.475]0.465| 3.037 [ 0.803 n.? 60.3
::Hg 2.858/0.541] 3.341 |0.667 (75.3) 66.3
::Si 3.020|0.533 | 3.454 |0.6686 77.2 73.8 73.2 73.5
:iﬁ 3.192/0.574 | 3.504 {0.699 (78.7) (71.9){ (73.3) 72.1
::Cl 3.51210.546 | 3.837 [0.690 84.1 73.8 66.9 66.9

;:FO 4.023(0.566 | 4.268 |0.717 (83.2) (73.6) (71.2)] (59.8)

SN 4.131/0.528 | 4.340 |0.695 86.1 81.0 68.0 63.6 70.6

first apprcach are less reliable in particular for the lighter
nuclei. In fact this approach does not work at all if it is ap-
plied to ¢He while for ¢Li gives unrealistic results. The situa-
tion becomes worse, as it is expected, if a nucleon-nucleon force
of a longer range like the Volkov 1 force is used. In this case,
even for 12C this approach is not applicable.

In tables 2 and 3 the values of the potential depth parameter
Vo determined by using the values found for R. and a, and the
nuclear contribution to the proton energies for various states
are also displayed. These energies were estimated from the ex-
perimental proton energies given in ref.22 (or by the cor-
responding curves, of fig.117 of ref.22b), subtracting ap-"
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proximate values for the Coulomb energies E.. The same expression
for E. as in ref. 7 has been used for the present rough estimates
using the values of table 2, for R and a,. The values of E. ob-
tained in this way are quite close to those of ref 7 in which the
Re and a, of the corresponding (or neighbouring) nuclei had been
taken from ref. 20 and 21. The values of V, obtained for each set
of values of Ry and a, given in tables 2 and 3 do not differ very
much for A>24. There is, however, a marked state dependence of
Vo. Vo 1is smaller for the lp-states and (usually) even smaller
for the 1d or 2s states. In addition V, varies rather smoothly
with A for the 1s and 1p states, though for the 1d and 2s states
it behaves rather irregqularly. This should be mainly attributed
to the existing uncertainties (see below). We may also note that
the values of V, we have found are in some cases rather similar
to the corresponding ones for the Woods-Saxon potential (with
spin-orbit term) obtained by Elton and Swift (12], though they
are usually different.

We have also made a least squares fitting to the single par-
ticle energies by assuming for a, the value 0.65 fm. In view of
the variation of Vo with the mass number which is also indicated
from the results of tables 2 and 3, we have attempted a least-
squares fitting by considering symmetric nuclei with 12¢A<40 and
assuming the following variation of V, with A :

Va2 ’

Vo = V; + x— (26)
taking as adjustable parameters the V;, V: and |V,,|. The best
fit values by fitting to the single-particle energies of the ls
states are V,; = 80.4MeV, V;= -166MeV and |Vxni=845uev.fm3,

while for the 1p-states, we find V= 66.2MeV, V= -190MeV and
|Vyn|=852MeV. £m2.

It should be pointed out that the folding model approach used
in section 3 with an average spin and 1isospin independent
nucleon-nucleon potential is essentially limited to the case of
light symmetric nuclei. Although the described approach could
perhaps be alsc attempted for some assymetric nuclei, its
validity in these cases should be in general quite doubtful.
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We note finally that in ref. [23] where some more details of
this investigation are given the state dependence of Vo is dis-
cussed in relation with the concept of an effective nucleon mass

(as=~it was done for the Woods-Saxon potential [241)as well as the
addition of a spin-orbit term in the potential.

In conclusion we would like to make clear that we have at-
tempted in this paper only a rough estimate of the potential
parameters. This is mainly due to the approximations involved, to
the rough estimate of the Coulomb energies and to the rough ex-
perimental values used for the single particle energies. In order
to become free of the second ambiguity and diminish the third one
we have also used the more recent neutron separation energies
reported in ref. 25. Unfortunately only the 12C and 180 nuclei
(and some lighter ones) were studied in this reference. The
values of the potential depth parameters obtained by using the
experimental values for the neutron energies in the 1s and 1p
state are now smaller than those of tables 1 and 2. The dif-
ferences are however of the order of =10% or less.
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