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University of Thessaloniki, Greece 

*>and Institut fur Theoretische Physik, 

Universität Tubingen, F.R.G 

Abstract 

The so-called "cosh" or symmetrized Woods-Saxon potential 

which has been used in nuclear physics is discussed and certain 

comments are made regarding its form-factor, depth and radius. A 

rough estimate of its parameters is also attempted by using 

various possibilities. This is done by considering either a num

ber of individual nuclei or by least squares fitting. The poten

tial depth parameter Vö apart from being state dependent varies 

also with the mass number of the nucleus. Comments on 

relevant limitations and inaccuracies are also made. 

1. Introduction 

The very-well known Woods-Saxon (WS) potential 

Vv»s(r) » -V„f-â(r) » — (1) 
l + « ( r - R ) ' a 

has been extensively used in various calculations in nuclear 

»Presented by M.E. Grypeos 
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=0. Note that we have mostly 

physics and is discussed in standard texts [1]. Such a potential 

does not satisfy the physical requirement which is usually im

posed [2] that the force experienced by a particle at the centre 

of a spherically symmetric potential be zero, though the value of 

dVws 
is very small for R/a >>1, that is apart from the light 

dr r«o 
nuclei. 

An alternative potential has been considered, however, by Buck 

and Pilt[3], the so-called "cosh" potential, which is a sym

metrized form of the WS one, namely 

l+cosh(R/a) 
Ve(r) = -Vofc(r) = -Vo rrr-r, (2) 

cosh(r/a)+cosh(R/a) 
dV 

and has the desirable feature: — 
dr 

dropped the corresponding subscripts in the potential parameters 
in order to simplify the notation. The form factor of this poten

tial is very similar to that which had been used [4] to describe 

very successfully the densities of nuclei for a wide range of 

mass number. Buck and Pi It have used potential (2) as the central 

part of a cluster-core potential and have realized that by 

suitably choosing R and a, potential shapes can be obtained which 

are remarkably similar to the folding potentials used in ref 5 

and hence they also exhibit rotational spectra. 

More recently, Carbonell et al [6] have used potential (2) in 

connection with a semiclassical method of quantization for a par

ticle in a nuclear potential and for the comparison of their 

results with those obtained with the Schrodinger equation. In 

their case the WS potential is inadequate (according to ref 6b) 

to calculate the classical trajectories since the numerical 

methods used for the integration of the equations of motion are 

inapplicable in the vicinity of r=0 for this potential. 

In this paper we would like to discuss the "cosh" potential and 

comment on the possibility of using instead of expression (2) an 

alternative one, which is closely related to it. The relevant 

remarks are made in the next section where the dependence of the 

radius R and of the various moments of the potential on the mass 

number is also discussed. In section 3 a rough estimate of the 
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parameters of the potential is attempted by considering for this 

purpose various possibilities. The last section is devoted to the 

presentation of numerical results and comments. 

2. The potential form factor, depth and radius 

Instead of using potential (2) an alternative possibility is 

to use a symmetrized Woods-Saxon potential in the form which has 

been used in the case of nuclear densities (and very recently in 

the analysis of hypernuclei [7]), namely to use Instead of (2): 

sinh(R/a) 
Vsr(r) = -Vofsf(r) » -V< 

cosh(r/a)+cosh(R/a) 

r-R -1 -r-R -1 
- -Vo<[l+exp( )] +[l+exp( )] -1} (3) 

a a 

Both potentials (2) and (3) are of symmetrized Fermi form and 

have zero slope at the origin, but their form factors differ, 

their ratio being: 

fsF
 β
 sinh(R/a) 

f
c
 * l+cosh(R/a) 

if the values of R and a in the two potentials do not differ ap

preciably. 

This ratio is almost unity for R/a>>l, that is for the 

heavier elements for which both potentials are very close to the 

Woods-Saxon one. 

The choice of the numerator in potential (2) seems to 

originate from the requirement the form factor to become unity at 

the origin, where the potential is minimum. Thus,V
0
 is the actual 

depth of the "cosh" potential:D
C

 a
 V

0
. This is not the case for 

the other two potentials (see table 1). Therefore, for each of 

these potentials v
0
 is a "depth-parameter", which determines its 

depth to a large extent, but not entirely, since D depends also 

upon R and a. 

Analogous remarks can be made regarding the meaning of R as it 

is clear from table 1. For all three potentials. R is a parameter 

which characterizes the range of the potential, but it is somehow 

smaller than the "haIf-depth radius". 
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The above remarks, as well as, the following one are pertinent 
to the cases in which the condition R/a>>l is not quite satisfied 
that is to the lighter nuclei. 

the choice of the numerator in the "cosh" potential discussed 
earlier seems, however, to have, another implication. The volume 
integral of the potential becomes a transcendental function of 
the radius R: 

2 

RÎ l' sinh(R/a) 
Γ 4TTV

0
 (ira) l+cosh(R/a) 

|V
e
 | = |4ττ J V

c
(r)r*dr| = — — R

3
[ l + — — ] [ — . . . . . . 3 (3) 

and it is not easy to use it in order to express R as a function 

of the mass number of the nucleus. Transcendental terms appear 

also in the volume integral of the Woods-Saxon potential [8]. On 

the contrary for the Vsp(r) these terms are absent as the 

results given in ref 4 for the symmetrized Fermi density show and 

our detailed calculations have verified. One can therefore write 

on the basis of a folding model and the well-known properties of 

the convolution (in analogy, for example, with the approximate 

treatment of ref 9 for the WS hypernuclear potential): 

4ιτ 3 ( ira)2 
— V0R [1+ — ] =» A r | V „ N j ( 6 ) 
3 Λ -

where, in the case of a bound nucléon, Ae»A-l, A being the mass 

number of the nucleus. |VM«J is the volume integral of the spin-
average, (central), nucleon-nucleon potential |VNi»| »| VimlrieLfj 
The above equation is a third-order equation with respect to R 
and can be solved exactly. In fact it has the same structure with 
the equation arising from the normalization integral of a 
trapezoidal distribution [10] . The corresponding equation for the 
Fermi distribution [11] is approximate. 

Thus, in the case of the VSp potential, one may obtain the 
following "exact" expression of the radius R in terms of the mass 
number 

1 .war . 22 Tra » ι/ζ l/i 2
a rea. <> \/i 1/3 

R - — . r3Ae [Ci*[i+-r< ) ] ' > ' n ' i - u + rr< > V > 
r 0A e r 0A c 
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1/3 1 tra 2 1 ira 6 1 Tra 8 
» r0Ae [ 1 - -< ) + — ( ) + ( ) + . · · ] (7) 

3 1/3 81 1/3 243 1/3 
forte forte Γολο 

where Γο
 a
 (3|V

N
M l/^Vo)

1
'

3
. The leading term of this expansion 

(see section 4 for the expression of V
0
) : R*r

0
(A-l)W3 is of the 

form which is often used for the radius of the Woods-Saxon poten

tial. In ref 12, however, the r
0
 in such an expression was de

pendent on λ. 

It should be noted that the higher moments of potential Vsp(r) 

may also be given analytically and contain no exponential terms. 

The same holds for the "cosh" potential but not for the WS one. 

The expression of the n-th moment is (see also ref. 8): 

fv
e
(r)r

n + 2
dr 

η η
 J

 0 

<r >SF » <r >
c
 » — « 

I V
e
(r)r

2
dr 

J
 ο 

3R
n
 (Tra)

2
 -Ir "•* (1-(-1)" ) (l-2"

k
 ) a

 k
*
x
-, 

» —-£1+ — — — ] Γΐ+(η+3)! Σ i-- Ç(k+1)(-) 1 
n+3 R* L ic-o (n+>-*)l R J 

η » 1,2,3,... (8) 

where ζ is Riemman's ζ-function. 

The expressions of the first moments are quite simple:We give 

the expression for the second and fourth moment which we shall 

use in the next section 

Î 3 2 7 tfa j 
<r > - - R [i+ - (_) ] (9) 

s? 5 3 R 

4 3 4 Tra ι -ι rra j 49 rra 4 31 rra 6 
<r > = -R [! + (-- ) 1 [ l + 7 ( - - ) + - - ( — · ) + — - ( — ) ] (10) 5 f 7 R R 3 R 3 R 

Use of express ions (7) for R in the above formulae leads t o the 

dependence of the various moments on the mass number. I t i s ob

vious that the leading term of <rn> i s proport ional t o A " Ì 3 
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3. The estimata of the potential parameters 

In this section we discuss the problem of the estimate of the 

potential parameters V0, R and a. We have paid attention to three 

possible ways in determining these parameters. In the two of 

them the R and a will be determined from the known corresponding 

quantities of the charge density distribution. 

The first one is related to a rather recent proposal by Sal-

cedo et al. [13] who estimated, in their study of inclusive pion 

nuclear reactions the radius R and difuseness parameter a for a 

point-proton density distribution 

P(r) = ,P* (ID 
(r-R)/a 

l+e 
from the corresponding quantities of the same type charge density 

distribution 

P.(r) » * ° ' (12) 
(r-R,)/a. 

l+e 

Here we shall use the relations 

2 

Po * Po.U- —-) (13) 
6Ra 

<r*> +r* » <rO (14) 

JpûSdr'- jp^ridr' (15) 

which result from the properties of the convolution [14] and also 

the formulae for the m.s. radius and for the volume integral of 

the symmetrized Fermi density distribution. The use of (13) in

stead of p0» % ρ α
 of Salcedo et al (13) should be more ap

propriate and is derived from expressions (11) and (12) of ref. 

15b (see also 15a) , which in the present case take the form 

r ·
 2n\ 

p»(r) = pdf*-? I )p„( IrMJdr* » fl+ Σ — a«1p(r) (16) 
J
 ι L

 n - l
 (2n+l)l

 J 

where A"p(r) » [(d/dr) *n+(2n/r) (d/dr)
 2 n
"

l
]p(r) and <r^>? is the 

2n-th moment of the charge density distribution of the proton 

(<r
:
> • r^ ). The above expansion is expected to be valid for va-



360 

lues of r sufficiently larger than the proton size and was used 

here for r
a
R. 

λ linearization procedure leads after some algebra to the fol

lowing expressions for R and a: 

R * R.+« 

-[ 
(TTrg/6)2RJCX + (TTa,/R.)212-(TTa,)4B+2(TTa,)2B2-B3 ^ 

- | ( n a . ) 4 R i + 2 ( T r a . ) 2 C ( i r a , ) 2 - |Ri]B+2[-3(tra») 2 +^R2]B2+4B3 J 

(17) 

a » r-eR,c+7(TTa,)2-5rS-| W 2

 ( 1 8 ) 

2 5 2 
where B=^a,) r

p
 and the expression of ε in (18) follows from 

(17). 

Having determined the parameters of the point proton density 

which is taken to be the same with the point nucléon one, we 

may now proceed in obtaining the parameters of the (symmetrized) 

Woods-Saxon potential which is assumed to be given in the folding 

model by the expression 

V(r) = AeJp(|f
>- r'\) VNMÎrMdfï » 

2 η 

= ΓΑ, V
SB
dr Ι |1+ Σ — - — Δ p(r) (19) 

L 1 J L
 η>1 (2η+ΐ)ί

 J 

Again the above expansion is valid for large r compared to the 

range of the nucleon-nucleon potential Vu* and for sufficiently 

short range V»
B
 only the first term in the sum may be taken into 

account. 

The relation between the depth parameter V
0
 of the (symmetri

zed) Woods-Saxon potential and the parameters of the (symmetri

zed) Fermi distribution for point nucléons is found in a way 

analogous to that of pac and p0. The result is 
Γ -> r <r

2
>Kin 

- Ve * (AcpojV5,
s
(r)dr ) |_1 ^ - J (20) 

The potential radius R„ and difuseness parameter a, are re

lated with the corresponding parameters of the point-nucleon dis

tribution by the relat ion (which is obtained now without 

l inearization): 
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as t/3 I 2
2
 a? t/3 ί 2

2
 aj 1/3 

3 3 

3(R
:
-Rv)+7^a)

2
+5<r

2
>a,, 1/2 

a, = [ ] (22) 
7TT2 

where 
3 7 7 <r2>M

M 

a
7
 = - R2+ - B· a

3
» [R2 + (TTa) 2]R/[1 ] (23) 

4 4 4 6Ra 
5 

and B'» (iTa)2 <r2>»
w
 (24) 

Another possible way of determining the parameters R„ and a, 

is the one which is outlined in Ref. 17 (see also ref. 16) in the 

case of the Λ-nucleus potential. According to this approach one 

uses relation (14) between the second momenta of the 

(symmetrized) Fermi distribution and the corresponding one be

tween the fourth moments (The factor 7/3 in expression A3 of ref 

17 should be written 10/3 [18]): 
10 

<r*>, = <r«> +r* + —<r*>r* (25) 
ρ 3 Ρ 

Analogous relations are used between the moments of the poten

tial and point-nucleon distribution. The analytic expressions (9) 

and (10) for the corresponding moments in the cast of the 

(symmetrized) Fermi form factors are also used. 

Again in this approach the parameters R and a,R
v
 and a

v
 are 

given analytically [23]. 

It should be clear that in both approaches, described above, 

the approximation is made, as in ref.17 that the convolution of a 

(symmetrized) Fermi distribution is a (symmetrized) Fermi 

distribution. This should be reasonable as long as the "folding" 

distribution (either proton charge density or nucleon-nucleon 

potential) are of sufficiently short range, compared to the 

folded distribution. Having determined R» and a
v
 in one way or 

the other the potential depth parameter V
0
 is adjusted so that 

the values of the experimental single particle energies, are 

reproduced by solving the Schrodinger equation. 
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Finally, all parameters could be determined by a suitable 

least-squares fitting to the experimental single particle 

energies. It appears, however, that in most cases such a proce

dure would not be satisfactory, mainly because of the large ex

perimental uncertainties. For this reason one of the parameters, 

namely a,, (on which the single particle energies, at least for 

the ground state [10], are not expected to depend strongly, un

less Ae is small) is fixed from our previous experience and the 

remaining . parameters are determined by least-squares fitting 

(see also next section). 

4. Numerical results and discussion 

In this section we determine the parameters for the sym

metrized Woods-Saxon potential (3) for a number of nuclei for 

which the parameters of the corresponding charge density dis

tribution have been determined [4] (together with those of some 

other nuclei) from the analysis of the elastic electron scatter

ing experiments. The corresponding values given in ref. 4 are 

displayed also in table 1. In this table the values of the point 

proton density parameters R and a and potential parameters Rv and 

a« are also given by using the improved and extended version of 

the approach of Salcedo et al. [13] for the densities, described 

in the previous section, namely our expressions (17),(18),(21) 

and (22). 

In table 2 the same values are given using the method of 

second and fourth moments (ref.17) that is expressions (36) and 

(37) of ref. 23 and the corresponding ones for the potential 

parameters. The second and fourth moments of the nucleon-nucleon 

potential were estimated by using the interaction 4 of Volkov 

(see table 1 of ref 19). The reason for such a choice is that 

this interaction is of rather short range, which is essential for 

the validity of the approaches we are using. 

It is seen from the results of tables 1 and 2 that the values 

of R... and av obtained with these two approaches do not differ 

very appreciably. It is observed, however, that the first ap

proach leads to larger values of R» and to smaller values of a·, 
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compared to those of the second approach. The différences are 

larger for the lighter elements though they are smaller for the 

medium ones (3O$A^70). It is indicated that the values with the 

Table 3 Parameters of the symmetrized Woods-Saxon potential (3) 

determined with the second method described in the text. The 

values in parentheses were determined by using for the experimen

tal single particle energies those obtained from the correspond

ing curves in fig.117 of ref 22b. 

Nue l 

i:c 

i*0 
1 

12 

2ISi 
1 4 

J2S 
1 k 

• oca 
20 

2 > 

»•NI 

it 

R(fm) 

2.092 

2.473 

2.ass 

3.020 

3.192 

3.312 

4.023 

4.131 

*(fm) 

0.439 

0.46S 

0.S41 

0.333 

0.S74 

0.346 

0.366 

0.328 

a.(fm) 

2.802 

3.037 

3.341 

3.434 

3.604 

3.837 

4.268 

4.340 

a,(fm) 

0.383 

0.603 

0.667 

0.666 

0.699 

0.690 

0.717 

0.693 

V,(M*V) 

ls-stata 

63.7 

71.7 

(73.3) 

77.2 

(78.7) 

84.1 

(83.2) 

86.1 

V,(MeV) 

lp-stat· 

62.2 

60.3 

66.3 

73.8 

(71.9) 

73.8 

(73.6) 

81.0 

Vo(MeV) 

Id-state 

73.2 

(73.2) 

66.9 

(71.2) 

68.0 

V.(M*V) 

2s-stata 

73.3 

72.1 

66.9 

(39.8) 

62.6 

V,(MeV) 

lf-9tate 

70.6 

first approach are less reliable in particular for the lighter 

nuclei. In fact this approach does not work at ail if it is ap

plied to *He while for *Li gives unrealistic results. The situa

tion becomes worse, as it is expected, if a nucieon-nucleon force 

of a longer range like the Volkov ι force is used. In this case, 

even for ι*C this approach is not applicable. 

In tables 2 and 3 the values of the potential depth parameter 

V
0
 determined by using the values found for R» and a

v
 and the 

nuclear contribution to the proton energies for various states 

are also displayed. These energies were estimated from the ex

perimental proton energies given in ref.22 (or by the cor

responding curves, of fig.H7 of ref.22b), subtracting ap-
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proximate values for the Coulomb energies Ec. The same expression 

for Ec as in ref. 7 has been used for the present rough estimates 

using the values of table 2, for R. and a«. The values of Ee ob

tained in this way are quite close to those of ref 7 in which the 

R. and a« of the corresponding (or neighbouring) nuclei had been 

taken from ref. 20 and 21. The values of V0 obtained for each set 

of values of R, and a» given in tables 2 and 3 do not differ very 

much for A>24. There is, however, a marked state dependence of 

V0. V0 is smaller for the lp-states and (usually) even smaller 

for the Id or 2s states. In addition V0 varies rather smoothly 

with A for the Is and lp states, though for the Id and 2s states 

it behaves rather irregularly. This should be mainly attributed 

to the existing uncertainties (see below). We may also note that 

the values of V„ we have found are in some cases rather similar 

to the corresponding ones for the Woods-Saxon potential (with 

spin-orbit term) obtained by Elton and Swift [12], though they 

are usually different. 

We have also made a least squares fitting to the single par

ticle energies by assuming for aT the value 0.65 fm. In view of 

the variation of V0 with the mass number which is also indicated 

from the results of tables 2 and 3, we have attempted a least-

squares fitting by considering symmetric nuclei with 121A140 and 

assuming the following variation of V0 with A : 

V* 
V0 a Vj + (26) 

A 

taking as adjustable parameters the Vx, V: and |VHN|. The best 

fit values by fitting to the single-particle energies of the 13 

states are Vx * 80.4MeV, V:» -166MeV and | VMM |=845MeV.fm3, 

while for the lp states, we find Vx- 66.2MeV, V2» -190MeV and 

|Vmi|»8S2MeV.fm3. 

It should be pointed out that the folding model approach used 

in section 3 with an average spin and isospin independent 

nucleon-nucleon potential is essentially limited to the case of 

light symmetric nuclei. Although the described approach could 

perhaps be also attempted for some assymetric nuclei, its 

validity in these cases should be in general quite doubtful. 
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We note finally that in ref. [23] where some more details of 

this investigation are given the state dependence of Vo is dis

cussed in relation with the concept of an effective nucléon mass 

(as· it was done for the Woods-Saxon potential [24]}as well as the 

addition of a spin-orbit term in the potential. 

In conclusion we would like to make clear that we have at

tempted in this paper only a rough estimate of the potential 

parameters. This is mainly due to the approximations involved, to 

the rough estimate of the Coulomb energies and to the rough ex

perimental values used for the single particle energies. In order 

to become free of the second ambiguity and diminish the third one 

we have also used the more recent neutron separation energies 

reported in ref. 25. unfortunately only the i*C and i*0 nuclei 

(and some lighter ones) were studied in this reference. The 

values of the potential depth parameters obtained by using the 

experimental values for the neutron energies in the Is and lp 

state are now smaller than those of tables 1 and 2. The dif

ferences are however of the order of «10% or less. 
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