HNPS Advances in Nuclear Physics

Vol 2 (1991)

HNPS1991

> 12 and 13 April 1991
> ATHENS, GREECE
vew To4 mokviren
vew To4 mokviren
-a/m
-a/m

SPECTROSCOPY IN A ROTATING DEFORMED NUCLEUS

C. T. Papadopoulos, R. Vlastou
doi: $10.12681 /$ hnps. 2857

To cite this article:

Papadopoulos, C. T., \& Vlastou, R. (2020). SPECTROSCOPY IN A ROTATING DEFORMED NUCLEUS. HNPS
Advances in Nuclear Physics, 2, 295-307. https://doi.org/10.12681/hnps. 2857

SPECTROSCOPY IN A ROTATING DEFORMED NUCLEUS

C.T. PAPADOPOULOS* and R VLASTOU
Nationai Technicai University of Athens, Athens 157 73, Greece

Abstract

Recent advances in the physics of nuclei at high spin are presented. In particuiar the new phenomena observed by the latest generation of γ-rays spectrometers are discussed. An overview of experimental and theoretical treatment of "bacirbending" effect, quasiparticle aiignment and band coossing is described in more detail. The outines of the Craniked Shell Model, winich is a successiull fameworls ior the interpretation of experimental data, are aiso reportea.

[^0]
1. Introduction

In the past decacie major advances have been achieved in the spectroscopic study of the meleus due to the new generation of γ-ray spectrometers of high resolution ${ }^{2}$) (4π-arrays ai excape suppressed Ge-detectors) as weil as to the ingin energy heavy ion beams to produce nuclei at high angular momentum by fusion-evaporation reactions. Thus the γ-ray spectroscopy has been extenced to the study of nuclei in "extreme" conditions like the fast rotating nuciei, muclei far from the 3 -stability line, nuciei at hign-spin, super-deformed muclei ($a: b=2$) and hyper-deformed muclei ($a: b=3$).

The physics of a mucleus at high-spin is just ardinary muciear physics. However, the mucieus under different conditions exiibits new interesting phenomena, as the "backbending" effect, the pair correlation, the band terminations etc. The Corioiis and centrifugai forces in these fast rotating and deformed muclei play a decisive role in the derivation of these phenomena. Most of the experimental data on high spin spectroscopy reier to states near the yrast line, so in spite of the high energy of the mucleus the density of the leveis is small and the mucieus is "cold".

2. Theoretical and experimental basis

The atomic mecleus is a many body quantum system with a finite muber of strongiy interacting fermions. The contribution of the pair correlation between the fermions, gives rise to the superlluid liquid drop behaviour of the mucieus. Gross properties of the mucieus, as mass and binding energy, are weil reproduced by this liquid drop concept. The strong interaction between the mucieons is thus weak enough to allow them to behave as independent particies, but suficiently strong to ailow a finite mumber of valence mucieons to infuence the muciear sinape. So, deformed mecei can be generated by a iew nucieons moving outside of ciosed shells and occupying anisotropic orbits.

Independent particie motion can be treated by a number of approxima-
tions to ine nuciear potential. The most important of them are illustrated in Fig. 1 (taken riom ref. 2). The spectrum of energy levels corresponding to independent particle motion, becomes increasingly complex by introducing more reaiistic approximations to the muclear potential.

Fig. 1. The spectrum of $N=2$ (or $\mathrm{s}-\mathrm{d}$) shell independent particle states in a variety of potentials describing the nucleus.

In the single-particie levels of the deformed harmonic oscillator large gaps appear causing extra stability as the quadrupoie deformation ϵ of the nucieus gets bigger. In addition the Coriolis and centrifugal forces acting when a deformed mucleus is rotated, spiit the two-fold degeneracy of the Nilsson leveis. The resuiting energy levels are labeied by the conserved quantum numbers parity ($\pi=+\alpha r$) and signature ($\alpha=+1 / 2$ or $-1 / 2$).

According to the suggestions of ref. 3 a pair of nucleons in a high j - orbital can be iroken and aligned along the axis of rotation, causing the well known "backbenc" in the energy sequence of rotational γ-rays. This alignment occurs at rotationai fequencies where the Corioiis force is sufficient
to overcome the pairing force.
The eifect of Corioiis and centrifugal forces to the spectrum of energy levels is strongest on the highiy-alignabie high-j, low- Ω orbitals, lowering them to the Fermi-levei from shell normaily mach higher in energy (intruder orbitals). The form α the muciear potential can thus strongiy influence the independent particle energy spectrum giving rise to new shells and new phenomena and driving the mucleus to extreme deformations where they can be stabilized of the muclear rotation.

The aim of the high-spin spectroscopy is to provide information concerning the correiation between the macroscopic parameters (size, shape, suriace diffuseness. pairing energy, moment of inertia, rotational frequency etc) and the microscopic configuration (proton and neutron mumbers, fermi energy, particie coniguration etc). This entails investigation of detailed properties of discrete energy leveis of muclei, such as excitation energy, spin, magnetic dipoie moment, electric quadrupoie moment etc.

3. Backbend and particle alignments

When a deformed mucleus with moment of inertia $\mathfrak{\Im}$, is rotated with a frequency - (Fig. 2) the rotationai energy is classically $E_{R}=1 / 2 \Im \omega^{2}$ and quantum mecinanically $E_{R}=\left(\hbar^{2} / 2 J\right) I_{R}\left(I_{R}+1\right)$, as the rotational anguiar momentum is $\Gamma_{R}^{2}=J^{2} \omega^{2}$. Hence E2 electric quadrupoie transitions between two rotational states ($I_{R} \rightarrow I_{R}-2$) with $\Delta I_{R}=2$ will have a photon energy $E_{\gamma}=\left(\hbar^{2} / J\right)\left(2 I_{R}-1\right)$. Thus the energies of the γ-rays are approximatelly $E_{\gamma} \simeq(2 \hbar / J) I_{R} \simeq 2 \hbar \omega$ and will increase ineariy with the rotational component of the angular momentum and with rotational frequency.

As an example, the spectrum of γ-rays from the yrast states in the mucleur ${ }^{58} E r^{1}$) is shown in Fig. 3. It can be seen that initially E_{γ} increases with spin up to $I=12^{+}$. However, the energy of the $\gamma-$ rays transitions starts to decrease up to spin 16^{+}and then increases again, thus producing the weil known "backbend". As suggested in ref. 3) the Coriolis force $\bar{F}_{c} \sim \bar{v} \times \bar{u}$
acting on a pair of nucleons in the highest j orbital tends to separate them (see Fig. 4).

Fig. 2
As the macieus rotates faster, the Corioiis force becomes sufficient (of the order of 0.5 MeV) to overcome the pairing correiation energy ($\Delta \sim 1 \mathrm{MeV}$) and the pair is broken. The two meleons align their angular momentum j_{x} with the axis x at rotation so that the total angular momentum $I=I_{R}+j_{z}$ and the rotational anguiar momentum I_{R} then decreases. This in turn lowers the γ-ray energy between states as weil as the rotationai frequency ω, producing the "bacibend" in γ-ray spectra seen in Fig. 3. In ${ }^{158} \mathrm{Er}$, at $\mathrm{I}=12^{+}$an alignment of a pair of $i_{13 / 2}$ neutrons takes place. Then, as it can be seen from Fig. 3, another bacirbend is observed at about $\mathrm{I}=28^{+}$, which can be attributed to the aigmment of a pair of $h_{11 / 2}$ protons. Between spins 38^{+}and 40^{+}the nucleus decomes energeticaily favourable to change its shape from prolate to oblate. There is another sudden decrease in the γ-ray energy at 40^{+}as ail the four ralence protons align and finally all the valence mucieons are aligned at spin 46^{+}.

Fig. 3. Spectrum of yrast γ-rays in ${ }^{158} \mathrm{Er}$ up to spin 46. The alignment of a pair of $i_{13 / 2}$ neutrons and of $h_{1 / 2}$ protons, the prolate to oblate phase change and the band termination are indicated. The figure is taken from ref. ${ }^{1}$).

Appart from the γ-ray spectra, the bacisbending effect can also be iflustrated in the plots of the total angular momentum I_{z} or the moment of inertia \Im with respect to the rotational frequency ω.

It is apparent from the above discussion that the experimentaily observed discontinuities in the rotating deformed muclei are strongly related to excitations of intrinsic states of the mucleus.

4. The Craniked Shell Model

The theory of the aiignment of quasiparticies in a deformed nucleus, as deveioped by Bengtsson and Frauendori ${ }^{4}$, gave a particulariy elegant and successini frameworis to interpret the experimental data. This, so called, Cranked

Sheii Model is based on the Eartree-Fock-Bogolyubov formaiism which leads to the cescription of the rotating mucleus in terms of quasi-particles (which are mirtures of both particle and hole states) moving in a deiormed uniformly rotating potential about the x-axis (z being the symmetry acis).

Fig. 4.
The properties of the nucleonic motion in a potential cranked about the intrinsic x-axis with a frequency of $\hbar \omega$ is obtained from the cranking hamiitonian, considered in the rotating frame $h^{\prime}=h_{s p}-\omega j_{x}$, where $h_{s p}$ is the single-parricle hamiltonian in the laboratory fame and j_{x} is the component of the single particle anguiar momentum on the rotational x-axis. The term ωj_{z} represents the centrifugal and Coriolis forces acting on the mucieon. The eigen vaiues $e^{\prime}=e_{p p}-\omega j_{z}$ af h^{\prime} are referred to as the singie particle energies in the rotating system or the "routhians". The rotational alignment of a single particle is given by:

$$
\begin{equation*}
i=-\frac{d \epsilon^{\prime}}{d \omega} \tag{1}
\end{equation*}
$$

For heavier maclei, winere the pairing correiation energy Δ is larger than

Fig. 5. Spectra of Nilson states (left), quasiparticle energies, Ev, for the Nilsson model plus pairing (center), and routhians, e^{\prime}, as a function of $\boldsymbol{t} \boldsymbol{w}$ (right) indicating the effects of pairing and rotation on independent-particle motion in a deformed potential. The hamiltonian for independent-particie motion in a rotating deformed potential is given at the top of the figure, and the various terms associated with each predicted spectrum are indicated. These spectra were calculated assuming $e_{2}=0.242, e_{4}=\gamma=0.0$ and $\Delta_{n}=0.87$ MeV and are appropriate for the $\nu=l$ quasineutron spectra of ${ }^{165} \mathrm{Yb}$. The figure is taken from ref. 2.
the average spacing α the independent particle states, it is necessary to incluce the efiects of pairing expiicity in the hamiltonian

$$
\begin{equation*}
h^{\prime}=h s p-\lambda N-\Delta\left(p^{+}+p^{-}\right)-\omega j_{z}, \tag{2}
\end{equation*}
$$

where p^{\dagger} and p^{-}are the two particle creation and annihilation operators, N^{\prime} is the particle muber operator (eigenvalue N for particle states and - N for hole states) and λ is the chemicai potential (represents the average Fermi level corresponding to the appropriate particie number).

Fig. 5 illustrates the effects of pairing and rotation on independentparticie motion in a deformed potential. The right part of the figure demonstrates the routhians e^{\prime}, eigen values of the cranked hamiltonian h^{\prime} of eq. (2), as a function of $\hbar \omega$. The style of lines and the letter labels indicate the parity and signature of the quasi-particie trajectories as described in Table I

Table I
Letter labels and corresponding Parity-Signature labels used to identify the one-quasiparticle routhiars

Letter label	Parity neutrons	signature label orotons
A	$(+,+1 / 2)$	$(-,-1 / 2)$
B	$(+,-1 / 2)$	$(-,+1 / 2)$
C	$(+,+1 / 2)$	$(-,-1 / 2)$
D	$(+,-1 / 2)$	$(-,+1 / 2)$
E	$(-,+1 / 2)$	$(+,-1 / 2)$
F	$(-,-1 / 2)$	$(+,+1 / 2)$

Only positive eigenvalues are plotted, since the information is repeated for negative e^{\prime} due to the symmetry of HFB equations. Every configuration corresponding to a certain distribution of quasiparticles over the trajectories is associated with a rotationai band. The ground-state band or g -band of the system corresponds to zero quasiparticle conifguration (referred to as a quasiparticle vacuum state). Excitations of the syatem above the quasiparticle vacuum-atate energy in the rotating coordinate frame are constructed of piacing one or more quasiparticles into unoccupied states of positive eigenvaiues leaving the conjugate state free. Different bands can cross at certain ro-
tationai frequencies cailed crossing frequencies. The band coossing is strongly related to the characteristic multivalued behaviour exhibited by the angular momentum and the moment of inertia, the so called "bacirbending effect". The first excited rotational band crossed with the ground state band is called the "Stockhoim" or S band.

It is apparent from fig. 5 that the leveis with the higinest slopes, sucin as leveis A and B, play an important role in the behaviour of the rotating system, as they are easiest to align (see eq. (1)). The abrupt change in the slope corresponcis to a rapid increase in nuclear alignment and therefore to a backbending.

For example, the siopes of curres A and B change sign at a rotational frequency $\omega \simeq 0.23 \mathrm{MeV}$ and the vacuum contribution to the total angular momentum increases by the amount given by the change in slope according to eq. (1). Moreover the total excitation of the S-Band (defined by leveis A and B occupied by quasiparticles) equals $e_{A}^{\prime} \omega_{e}+e_{B}^{\prime} \omega_{e} \simeq 0$ and thus the S-band crosses the ground-state band at ω_{e}, becoming yrast (AB crossing). For an odd-nucieon system the odd particle occupies the lowest level, for example level A in fig. 5, while level B is empty. It then foilows from the properties of HFB soiutions that the conjugate state (which is not shown in fig. 5) $-A$ is empty, while -B is occupied. Thus the gain of aignment coming from the change in slope α - B is compensated exactly by the loss in level A, producing no jump in angular momentum and consequently no backbending. This effect is reierred to as "blocking" of the bacikbending an the yrast line by the oid nucieon.

5. Anaiysis of experimental data

In order to study the single-particie motion in a rotating system it is necessary to separate the energies associated with the single particie motion and the collective rotation. Further, in order to compare the experimental data with the cranked sheil model, the experimentally observed excitation
energies E and angular momentum I must be transiormed into the equivalent quantities in the rotating fame, the routians E^{\prime} and the angular frequency ω.

The angular frequency of a rotation about the x-acis at the discrete intermediate spin vaiue I is obtained irom the observed energy difference between two adjacent members of the rotational band by means of the relationsinip:

$$
\omega(I)=\frac{E(I+1)-E(I-1)}{I_{z}(I+1)-I_{x}(I-1)} \simeq E_{\gamma} / 2
$$

where $I_{2}(I)$ represents the projection of the total anguiar momentum on the rotational axis and can be obtained from the total angular momentum I and its projection on the symmetry aris K according to the expression:

$$
I_{z}=\sqrt{(I+\hbar / 2)^{2}-K^{2}}
$$

The energy in the rotating frame, i.e. the routhian $E^{\prime}(I)$, is defined for the transition $I+1 \rightarrow I-1$ as follows:

$$
E^{\prime}(I)=\frac{1}{2}[E(I+1)+E(I-1)]-\omega(I) I_{x}(I)
$$

The routhians $E^{\prime}(I)$ contain the energy associated with both the collective rotation and the quasiparticie excitation. Further, the anguiar momentum I_{z} also contains both the rotationai and quasiparticle contributions. However, in the anaiysis by means of the independent quasiparticles only the excitation spectra rather than the absolute energies are of interest. So it is necessary to isolate the quasiparticle routhians e^{\prime} and the quasiparticle alignment ifrom those associated with the collective rotation. This is achieved by referring the experimental routhians and alignments to a reference configuration. Usualiy the ground state of the even-even mucleus is chosen as such a reference since it contains no quasiparticle excitations. The moment of inertia of the reference configuration is aiten parametrized according to the Harris formula ${ }^{\text {s) }}$:

$$
J=J_{0}+J_{1} \omega^{2}
$$

The reference energy E_{g} and the reierence projection of the angular momentum on the rotation axis $I_{x} g$ are given by:

$$
E_{g}(\omega)=-\frac{1}{2} \omega^{2} \Im_{0}-\frac{1}{4} \omega^{4} \Im_{1}+\frac{1}{8} \frac{\hbar^{2}}{\Im_{0}}
$$

and

$$
I_{x g}(\omega)=\left(\Im_{0}+\omega^{2} \Im_{1}\right) \omega
$$

The quasiparticle routhians and alignments are therefore given by:

$$
\begin{aligned}
& e^{\prime}=E^{\prime}-E_{g}, \\
& i=I_{x}-I_{z g} .
\end{aligned}
$$

This article reviews some of the new physics that has been revealed in the structure of muclei by the latest generation of γ-ray spectrometer arrays. The subjects presented here are ciosely related to the experimental work undertaken at Daresbury Laboratory in an extented scientific cillaboration between 9 European laboratories funancially supported by the EEC (ESSA30 collaboration). The aim of this collaboration was the systematic study of fast rotating rare earth muclei in the region of $A \sim 170$ at high spins. The Athens group, consisted of C.A. Kaifas, S. Kossionides and the authors, in collaboration with the Stocikholm group undertook the study of the region of $R e$ and $O s$ isotopes ${ }^{0,7)}$. A part of this work, the study of ${ }^{173} \mathrm{Os}$ will be presented in the next contribution iof R Vlastou. Our group has now been eniarged by including two more members, Dr. S. Harissopuios and Mr. N. Fotiades, and is still heavily inroived in the high-spin γ-spectroscopy.

References

1. J.F. Sharpey-Schaffer and J. Simpson, Prog. Part. Nuci. Phys. 21 (1988)293.
2. J.D. Garrett, Nucl. Phys. A409(1983)259c.
3. F.S. Stephens and R.S. Simon, Nucl. Phys. A123(1972)257.
4. R. Bengtsson and S. Frauenciorf, Nucl. Phys. A314(1979)27 and Nucl. Phys. A327(1979)139.
5. S.M. Harris, Phys. Rev. 138(1965)B509.
6. L. Hildingsson, W. Klamra, Th. Lindblad, C.G. Lindon, C.A. Kalfas,
S. Kossionides, C.T. Papadopoulos, R. Vlastou, J. Gizon, D. Clarixe, F. Khazaie and J.N. Mo, Nucl. Phys. A513, (1990)394.
7. C.A. Kalfas, S. Kossionides, C.T. Papadopoulos, R. Vlastou, L. Eildingsson, W. Klamra, Th. Lindblad, C.G. Linden, R. Wyss, J. Gizon, S. Juutinen, R. Chapman, D. Clarke, F. Kharaie, J.C. Lisle and J.N.Mo, Nucl. Phys. A526(1991)205.

[^0]: * Presented by C.T. Papadopoulos

