HNPS Advances in Nuclear Physics

Vol 2 (1991)

HNPS1991

$$
12 \text { and } 13 \text { April } 1901
$$

ATHENS, GREECE
vew To4 mokviren
vew To4 mokviren
mer年
mer年

HIGH SPIN STRUCTURE OF 1730s

R. Vlastou, C. T. Papadopoulos, C. A. Kalfas, S. Kossionides, L. Hildingsson, W. Klamra, Th. Lindbland, C. G. Linden, R. Wyss
doi: $10.12681 /$ hnps. 2856

To cite this article:

Vlastou, R., Papadopoulos, C. T., Kalfas, C. A., Kossionides, S., Hildingsson, L., Klamra, W., Lindbland, T., Linden, C. G., \& Wyss, R. (2020). HIGH SPIN STRUCTURE OF 173Os. HNPS Advances in Nuclear Physics, 2, 281-294. https://doi.org/10.12681/hnps. 2856

HIGH SPIN STRUCTURE OF ${ }^{173} \mathrm{Os}$

R. VLASTOU* C.T. PAPADOPOULOS

National Technical University of Athens, Athens 15773, Greece

C.A. KALFAS and S. KOSSIONIDES

Institute of Nuciear Physics, N.C.S.R. "Demokritos", GR 15310 Aghia Paraskeri, Greece L. HIILDINGSSON, W. KLAMRA, Th. LINDBLAND, C.G. LINDEN, and R. WYSS The Manne Siegibaahn Institute of Physics, Stocikholm, Sweden

Abstract

High-spin states in ${ }^{173} \mathrm{O}_{3}$ have been studied by $\boldsymbol{\gamma} \boldsymbol{\gamma} \boldsymbol{\gamma}$ cincidence measurements following the $\left.{ }^{146} \mathrm{Nd}\left({ }^{32} \mathrm{~S}, 5 \mathrm{n}\right)\right)^{173} \mathrm{Os}$ reaction. Four main sequences have been identified as the two signature branches of the bands built on the $[642] \frac{5_{2}}{}{ }^{+}$and [523] $\frac{5}{2}^{-}$Nilsson states. Muitipolarity assignements have been derived utilizing the directional correlation (DCO) ratios as well as the anisotropies of the γ-rays. $\mathrm{B}(\mathrm{M} 1) / \mathrm{B}(\mathrm{E} 2)$ ratios have aiso been extracted to deduce further information on the detailed structure of the bands

[^0]
1. Introduction

Nuclei situated in the transitional region between the spherical $Z=82$ isotopes and the deformed rare earth nuclei provide good testing ground for muciear models. In this region the melear potential becomes soft and the shape α the mexiei can be infuenced by the confguration of the excited quasiparticies. For this reason a systematic stuay was undertaken by several European laboratories (the ESSA-30 collaboration) with the ESSA30 detector system at the Daresbury Tandem laboratory, which covered muclei in the region of $A \sim 170$. The aim has to evaluate the structure of the yrast region in these muciei and to establish the nature of the band coossings. We here present a part of this ertensive investigation - the bigh spin structure of ${ }^{173} \mathrm{Os}$.

2. Experimental results

High spin states of ${ }^{173} \mathrm{Os}$ were popuiated through the reaction $\left.{ }^{364} \mathrm{Nd}\left({ }^{32} \mathrm{~S}, \mathrm{jn}\right)\right)^{173} \mathrm{Os}$ The ${ }^{32} \mathrm{~S}$ beam of energy 166 MeV was deiivered by the Tandem Acceierator at the SERC Daresbury Laboratory. The target consisted of two stacked seff-supporting foils of isotopically enricined $(98 \%){ }^{146} \mathrm{Nd}$ each of an approrimate thickness of $600 \mathrm{\mu g} / \mathrm{cm}^{2}$. At this energy the $4 n$ and $5 n$ (${ }^{174} \mathrm{Os}_{\mathrm{s}}$ and ${ }^{173} \mathrm{O}_{3}$) reaction channels were dominant.

The emitted γ-rays were detected with the ESSA - 30 multidetector array of thirty Compton-suppressed germanium detectors, twenty-eight of which were in operation during the present experiment. In this array, six groups, each containing five detectors, were located at the angles $37^{\circ}: 63^{\circ}, 79^{\circ}, 101^{\circ}, 117^{\circ}$ and 143° with respect to the beam airection. The set-up allowed the reaction products to recoil from the target and all the detected $\%$-rays were therefore prompt and fully Doppier shifted. Recoil nuclei were stopped by a lead stopper outside the detectors system. A ${ }^{152}$ Eu source was used to ootain the efficiency calibration for the summed spectra of the 28 detectors. The energy calibration
was performed by using both the spectra of a ${ }^{132} \mathrm{Eu}_{\mathrm{u}}$ source and lmown transitions in ${ }^{174} \mathrm{Os}$ [ref.1].

In order to establish γ-ray cascades and hence the decay scheme, event-by-event wincidence data were recorded and stored on magnetic tapes for subsequent off-line analysis. About 60 million events were gain matched, symmetrized and stored into a 4096×4096 channel coincidence matrix.

3. The level scheme

Very little information an the meleus ${ }^{173} \mathrm{Os}$ was available prior to this experiment. From α-decay measurements of ${ }^{177} \mathrm{Pt}$, a 91.8 keV trassition of ${ }^{173} \mathrm{Os}$ has been eatablished ${ }^{2}$. A 91.3 keV transition has also been observed at Grenoble in the ${ }^{144} \mathrm{Sm}+{ }^{32} \mathrm{~S}$ reaction ${ }^{3}$ at 205 MeV beam energy in coincidence with Os X-rays, where the reaction products were separated by means of an on-line isotope separator. Recentily one sequence of the positive-parity band of ${ }^{173} \mathrm{Os}_{\mathrm{s}}$ has been reported by Wells et a^{4}).

In the present wort the identification of $\mathbf{Z}=\mathbf{7 6}$ isotopes was performed by setting gates on the X-rays of Os. The assignement of γ-rays to different isotopes of Os was made by means of excitation function resuits from short mearurements of the ${ }^{144} \mathrm{Sm}+{ }^{32} \mathrm{~S}$ reaction at 160,163 and 170 MeV .

The level scheme of ${ }^{173} \mathrm{O}$ deduced from these data is shown in Fig.1. The ordering of the transitions is determined by their relative intensities and their coincidence relationships.

Two atrong caccades (labelled band 1) together with a set of linking transitions constitute the most intense collective band. Most of the $\boldsymbol{\gamma}$-rays within this band were strong enough to provide information concerning their militipolarity assignment by evaluating the anisotropy and DCO ratio.

A $\frac{13}{2}^{+}$spin and parity has been asaigned to the bwer level of this band as expected

Fig. 1 The level scheme of ${ }^{173}$ os
both from the features ai the band and the systematics of $\mathrm{N}=97$ isotones. This assigament is in agreement with the one proposed recently by Wells ${ }^{4}$). The favoured and unfavoured members of this band are both present and are extended up to spins $\frac{61}{2}^{+}$and $\frac{55}{2}^{+}$, respectively.

A second coilective band (band 2) with an intensity of about haif of the preceding one has also been established. It consists of two branches of stretched E2 transitions together with a paraliel sequence of weaker anes and a set of less populated linking transitions. All the strong transitions within the band show DCO ratios and/or anisotropies characteristic of stretched quadrupole transitions. From the interband transitions only the 91.6, 128.0 and $168.4 \mathrm{keV} \gamma$-rays were strong enough to provide reliable evaluation of the anisotropy.

Based on the features of this band and the known systematica, a band head spin of $\frac{5}{2}^{-}$is proposed and thus the two signature components ($\alpha=\frac{1}{2}$ and $\alpha=-\frac{1}{2}$) of band 2 are extended up to spins $\frac{61}{2}^{-}$and $\frac{59}{2}^{-}$, respectively. The positive signature sequence is thought to be the ground state band. This in in agreement with the resuits of refs. ${ }^{3,2}$. where a $\gamma-$-ray of 91.6 keV is associated with the de-excitation of ${ }^{173} \mathrm{Os}$ presumably to its ground state. Further a $\frac{5}{2}^{-}$ground state is expected from the experimental level systematics of the neighbouring $N=97$ isotonea ${ }^{171} \mathrm{~W}$ [ref. ${ }^{5}$] ${ }^{169} \mathrm{Ef}$ [ref. ${ }^{6}$] and ${ }^{167} \mathrm{Yb}$ [ref. ${ }^{7}$].

Two weak side brancines were observed feeding the $\alpha=\frac{1}{2}$ and $\alpha=-\frac{1}{2}$ members of band 2, respectively. Their placement in the level scheme is, however, uncertain due to intensity considerations and to the smail number of levels, so they are displayed by dashed lines in Fig.1.

No transitions have been found to connect band 1 and band 2 . The relative excitation energy of band 1 could therefore not be determined.

4. Conígurations of the Collective Bands at Low Rotational Frequencies

Since aimost no information on this nucleus was previously kmown, the assignments of the two bands are based on Nilsson jevel systematics and comparisons with other erperimental data avaiiable in this mass region. For $\mathrm{N}=97$ and β_{2} deiormation dose to 0.2 . the neutron Fermi level is situated on the $f_{7 / 2}\left[523!\frac{5}{2}\right.$ or $i_{13 / 2} ; 642!\frac{5}{2}$ orbitals, the strongiy up-sloping $\left[505 i \frac{11}{2}\right.$ configurations from the $h_{11 / 2}$ shell being reacined oniy for $J_{2}>0.33$. For $Z=76$ the proton Fermi level lies near the top of the $h_{11 / 2}$ shell and the bottom oi tine $h_{9 / 2}$ and $i_{13 / 2}$ ones, i.e. near the $[514\} \frac{9}{2},[541] \frac{1}{2}$ and $\left[660!\frac{1}{2}\right.$ arbitais, respectiveiy.

For all the conifgurations discussed in this paper a reference confguration based on a parametrized moment of inertia $J=J_{0}+J_{1} \omega^{2}$ with $J_{0}=15 \mathrm{MeV}^{-1} \hbar^{2}$ and $J_{1}=90$ $\mathrm{MeV}^{-3} h^{4}$ has jeen subtracted. The choice of the reference introduces a certain arbitrariness into the exraction of the experimental routhians and aignments.

However of varying the J_{0} and J_{1} parameters within a range representative for severai nuclei in this region, it appears that the general trend of these quantities as a function of $\hbar \omega$ is preserved. The ralues of the Earris parameters used in the present work have been adopted خom rei. ${ }^{4}$) for ${ }^{172}$ Os as they produce an approximateiy constant value of the rotation alignment i_{5} at low rotational íequencies.

The two sequencies beionging to band 1 are assigned as the iavoured ($\alpha=\frac{1}{2}$) and unfavoured ($\alpha=-\frac{1}{2}$) members of a configuration characterized by a signature splitting
 from the core as shown in Fig. 2 by the iarge initial aligned angular momentum ($i=5.5 \hbar$). In the neutron Nilsson diagram there is no other high-j orbital able to induce such a large initial alignment at low rotational fequency and moderate deformation. The commoniy used A and B labeling for the two lowest-lying quasineutron orbitals from the $i_{13 / 2}$ sheil is used for the two signature branches of band 1 .

In contrast to the first structure, band 2 is characterized by the absence of signature
spiitting. An $f_{7 / 2}\left[523!\frac{5}{2}\right.$ neutron configuration is assigned to this $\delta I=1$ band. It is produced by the coupling of $f_{7 / 2}$ neutron-holes to the core winch explains the absence of spiitting and the weak initial alignment (2 $/$). The E and F configurations, corresponding to the two lowest-lying quasineutron arbitals from the $f_{7 / 2}$ shell, are assigned to the two signature partners of band 2.

Fig. 2 Experimental quastparticle aligoments for bands in ${ }^{1 / 3} 3_{\mathrm{o}}$

5. Three and Five-Quasiparticle Confgurations

The quasiparticle alignment, i_{5}, is observed to increase with increasing anguiar ifequency for both bands. However, the variation of i_{x} as a function of $\hbar \omega$ does not exinibit rapid changes. In first, only gradual upbends have been observed in both cases (fig.2). Similar smooth increase of i_{z} has also been observed in the frast-band of ${ }^{174} \mathrm{Os}$ [ref. ${ }^{5}$!. This behaviour is rather expected since the interaction strength between the ground-state band and the S-band and configuration in predicted ${ }^{9}$) to have a strong mass dependence and to be large at this region of Os isotopes.

The alignment in both signatures of band 1 gains about $8 \hbar$ units in the frequency range $0.20-0.35 \mathrm{MeV}$. The plot of the second moment of inertia $J^{(2)}$ (fig.3) which is more sensitive to band crossings and independent of the reference configuration reveals a maximum at $\hbar \omega=0.3 \mathrm{MeV}$ for $\alpha=+\frac{1}{2}$ and a shoulder at about 0.27 MeV for $\alpha=-\frac{1}{2}$ signatures. From theoretical calculations of quasiproton and quasineutron routhians it appears that crossing is not compatible with protons. Instead an $i_{13 / 2}$ neutron alignment is expected for the positive parity band. Due to the blocking of AB crossing, the BC and AD crossings are candidates for the $\alpha=\frac{1}{3}$ and $\alpha=-\frac{1}{2}$ signatures, respectively. The gain in the experimental aligament ($8 \hbar$), due to the possible $B C$ and $A D$ neutron crossing, is consistent with the theoretically expected value which is of the order of 9 h umits.

The experimentally observed gain of alignement, tentatively associated with BC and AD crosinga, occurs at frequencies close to the predicted coes. For the AD crossaing, the experimental crossing frequency is not well defined in the $J^{(2)}$ plot. However, it seems to occur earlier than the BC crossing. It should be mentioned here that the AD crossing is predicted by the theory to occur above the BC crossing and this is the ordering that has been observed experimentally in the neighbouring $N=97$ isotones ${ }^{169} \mathrm{Hf}$ [ref. ${ }^{6}$] and ${ }^{173} \mathrm{~W}$ [ref. ${ }^{10}$] where the AD crossing takes place slightly above the BC crossing. On the other hand, behaviour similar to that of ${ }^{173} \mathrm{O}_{3}$ has also been observed in the $i_{13 / 2}$ bands of heavier Os_{s} isotopes, for example ${ }^{177,179} \mathrm{Os}_{\mathrm{s}}$ [ref. ${ }^{11}$] and ${ }^{175} \mathrm{Os}$ [ref. ${ }^{12}$]. In these isotopes it appears that the alignment in the $i_{13 / 2}$ bands might be due to AD and BC crossings and these crossings are either degenerate (${ }^{175} \mathrm{Os}$) or the AD crossing takes place at bower frequency than the BC crosting.

The second moment of inertia increases for both signatures at $\hbar \omega=0.40 \mathrm{MeV}$ and this can be the sign of a second bandcrossing in the two positive-parity bands. Since three
neutrons from the $i_{13 / 2}$ orbital are already decoupied a proton origin of this crossing is more ilkeiy. The lowest negative-parity proton orbitals (originating fiom a mixture of the $h_{9 / 2}$ and $h_{11 / 2}$ subsheils) are predicted to align at $\hbar \omega=0.5 \mathrm{MeV}$. A proton cossing is. therefore, proposed at $\hbar .{ }^{2} \geq 0.40 \mathrm{MeV}$.

The alignement i_{x} in both sequences of band 2 , starts to increase reguiarly from $\hbar \omega=0.1 \mathrm{MeV}$ and gains about $10 \hbar$ units as it reaches $\hbar \omega=0.35 \mathrm{MeV}$ and then gains rapidly another $6 \hbar$ units. As for band 1 , information concerning band crossings has to be extracted fom the $J^{(2)}$ moment of inertia (fig.3): small peaks show up at 0.17 MeV rotational fequency for both signatures, followed by a stronger one at 0.28 and 0.29 MeV for $\alpha=+\frac{1}{2}$ and $\alpha=-\frac{1}{2}$ signatures, respectively. This indicates that two alignments occur in the experimentally observed frequency range. This bind of effect is not unique. A similar situation has aiso been observed in ${ }^{172} \mathrm{~W}$ [ref. ${ }^{13}$], ${ }^{172} \mathrm{Os}$ [ref..4] ${ }^{174} \mathrm{Os}$ [ref. ${ }^{14}$] and ${ }^{176} \mathrm{Pt}$;ref. ${ }^{15}$]. The iow spin anomalies found in these isotopes have been tentatively interpreted in terms of a three band mixing analysis. An intruder $h_{9 / 2}$ proton band, however, infuencing the grast band at low spin, would impiy a significant rise of $\mathrm{B}(\mathrm{M1}) / \mathrm{B}(\mathrm{E} 2)$ values. In ${ }^{173}$ Os. the experimental $B(M 1) / B(E 2)$ ratios, as described in detail in sect.6, show a pronounced decrease with increasing rotational frequency, consistent with neutron rather than proton alignment at low rotational fequencies. The alignment of $i_{13 / 2}$ quasineutron pair is thus considered to be responsible for the first anomaly of the ground state band at 0.17 MeV .

The three-quasiparticle band appears then to be crossed by a five-quasiparticle band at 0.28 MeV . The second peak in fig. 3 may be due to the intersection of two bands of different $\left(\nu i_{13 / 2}\right)^{2}$ configurations, since the protons are expected to become important above 0.4 MeV .

The gain of $6 \hbar$ units of alignment at 0.35 MeV , which corresponds to the strong peak in the $J^{(2)}$ plot of fig. 3 , should be attributed to rotation alignment of an $h_{9 / 2}\left[541!\frac{1}{2}\right.$ quasiproton pair or a mixed alignment ot two quasiprotons occupying the $h_{9 / 2}[541] \frac{1}{2}$ and $h_{11 / 2}$ [514] $\frac{9}{2}$ levels.

6. $\mathrm{B}(\mathrm{M1}) / \mathrm{B}(\mathrm{E} 2)$ ratios

Additional information on the muclear structure of the bands an be gathered from measurements of the competition between $M 1$ and E 2 transitions within the $\Delta I=1$ bands. Values of the reduced transition probabilities $\mathrm{B}(\mathrm{M1}) / \mathrm{B}(\mathrm{E} 2)$ could be extracted, using the formula:

$$
\frac{B(M 1 ; I \rightarrow I-1)}{B(E 2 ; I \rightarrow I-2)}=0.693 \frac{I_{\gamma}(M 1)}{I_{\gamma}(E 2)} \frac{E_{\gamma}^{s}(E 2)}{E_{\gamma}^{3}(M 1)} \frac{1}{1+\delta^{2}}
$$

where the γ-ray intensities have been determined from coincidence gates to avoid contamination effects, and the $\mathrm{E} 2 / \mathrm{M1}$ mixing ratio δ for the $\Delta I=1$ transitions can approximately be set to zero. The extracted ratios for both band 1 and band 2 of ${ }^{173} \mathrm{Os}$ are presented in fig.4. These experimentally deduced $B(M 1) / B(E 2)$ ratios can be compared to theoretically estimated vatres fir specific comfigurations, ibtained from the semiciasaical

Fig. 4 Experimental $B(M 1: I \rightarrow I-1) / B \cdot(E 2: I \rightarrow I-2)$ values for the two bands of ${ }^{173} \mathrm{Os}$. The solid and open data poines refer to $\Delta I=1$ transitions from $a=-1 / 2$ co $\alpha=+1 / 2$ and $\alpha=+1 / 2$ to $\alpha=-1 / 2$ decay sequencies respectively. The solid and dashed lines are model predictions in which gradual neueron aligment is taken into accounc.
formula ${ }^{10.17}$):

$$
\begin{align*}
\frac{B(M 1 ; I \rightarrow I-1)}{B(E 2 ; I \rightarrow I-2)} & =\frac{12}{5 Q_{0}^{2} \cos ^{2}\left(\gamma+30^{\circ}\right)}\left\{1-\frac{K^{2}}{\left(I-\frac{1}{2}\right)^{2}}\right\}^{-2} \frac{K^{2}}{\Gamma^{2}} \tag{1}\\
& \times\left[\left(g_{1}-g_{R}\right)\left(\left(I^{2}-K^{2}\right)^{1 / 2}-i_{1}\right)-\left(g_{2}-g_{R}\right) i_{2}\right]^{2}
\end{align*}
$$

where g_{1} and i_{1} are the gyromagnetic factor and alignment for the strongly coupled quasiparticle while g_{2} and i_{2} reier to aligned quasiparticies. The alignment values were taken from the experimentally extracted i_{x} of fig.2. For the quadrupole moment the value of $Q_{0}=7.7 \mathrm{e} . \mathrm{b}$, experimentaily deduced for ${ }^{174} \mathrm{Os}$ [ref. ${ }^{14}$], was used. The deformation parameter γ was approximately set to zero since the TRS calculations do not indicate any siguificant variation of γ from zero within the range of observed rotational frequencies. For the theoretical parameters, the g-factors given by the Schmidt limits with $g_{s}=0.6 g_{0}$ (free) and $g_{R}=0.4$ were used throughout the calculations. The theoretical predictions based an eq.(1) are illustrated by soiid and dashed lines in fig. 4 in comparison with the experimental $B(M 1) / B(E 2)$ ratios. An increase in the ratio of the reduced transition probabilities can be due both to an increase in the MI transition strength and to a loss of collectivity. However there is n ondication of significant shape changes in ${ }^{173} \mathrm{Os}$. Therefore the contribution of the $B(E 2)$ vaiue to the rise of the ratio should be negiigible. Any variation of the $B(M 1) / B(E 2)$ ratio can thas be attributed to the aligment of a pair of quasiparticles which is expected to influence the $\mathrm{B}(\mathrm{M1})$ values. Because of the opposite signs of the proton versus neutron g-factors, a mixed ($\pi \otimes \nu$) configuration adds up constructively and exhibits enhanced M1 transitions, whereas a $(\pi \otimes \pi)$ or ($\nu \otimes \nu$) configuration is expected to quench the M1 transition strength relative to the case of only a single quasiparticie.

The ratios of the reduced transition probabilities for the [523] $\frac{5}{2}^{-}$band, shown in fig.4, exhibit a pronounced decrease by a factor of 10 at spin $\frac{13}{2}^{-}$. This is the place where the first peak in the experimental $J^{(2)}$ (fig.3) and the first alignment gain (fig.2) appear. The observed trend can oniy be reproduced by the theory if the gradual alignment gain is attributed to a pair of $i_{13 / 2}$ neutrons. Thus, the experimental decrease in the $B(M 1) / B(E 2)$
ratio of the $5 / 2[523]$ band is in agreement with the above proposed neutron arigin of the first anomaily observed in the second moment on inertia $J^{(2)}$ at $k \omega=0.16 \mathrm{MeV}$.

The $B(M 1) / B(E 2)$ ratios of the $[642] \frac{5}{2}^{+}$band to not echibit any rapid changes, as can be seen in fig.4, and cannot provide an unambiguous explanation for the gradual increase of aligoment at bow rotational frequencies. The smooth variation of the ratio can be reproduced equally well by the single $: 13 / 2$ neutron configuration over the observed spin range or by considering a gradual alignment of a pair of $i_{1 s / 2}$ neutrons at spin $\frac{23}{2}^{+}$, where the upbend in the alignment plot (fig.2) starts to occur.

This work was supported by the European Economic Community Stimulation Programme (ST2J-0205), the Swedish Natural Science Foundation and the UK Science and Engineering Research Counsii.

References

1. J.L. Durell, G.D. Dracoulis, C.Fahlander and A.P. Byrne, Phys.Lett. B115 (1982) 367
2. E. Hagjerg, P.G. Hansen, P. Hornshoj, B. Jonson, S. Mattsson and P. TidemandPeterson, Nucl. Phys. A318 (1979) 20
3. A. Gizon, private commmunication
4. J.C. Wells, N.R. Johnson, C. Baktash, LY. Lee, F.K. McGowan, M.A. Rilley, A. Virtaneu and J. Dudek, Phys. Rev. C40 (1989) 725.
5. E.Runte, F. Meismer, V.Freystein, T. Hild, H. Salewski, W.D. Scinmidt-Ott and R. Michaelsen, Z. Phys. A328 (1987) 373.
6. I Rezanka, L.M. Landenbauer-Bellis, J.O. Rasmussen, W.Ribbe and E. der Ma-
teosian, Phys. Rev. C11 (1975) 176.
7. N. Roy, S.Jonsson, H. Ryde, W. Walus, J.J. Gaardhoje, J.D. Garrett, G.B. Hagemann and B. Herskind, Nucl.Phys. 328 (1982) 125
8. L. Fildingsson, W. Kamra, Th. Lindbland, C.A. Kalfas, S. Kossionides, C.T. Papadopoulos, R. Vlastou and J.Gizon, Proc.Int.Conf. on the spectroscopy of heavy muclei, Crete, Greece, 1989, ed. J.F.Sharpey - Schafer and L.D. Skouras (Inst.Phys. Conf.Ser.No.105,1990) p.83.
9. R. Bengtsson and S. Frauendorf, Nucl.Phys. A314 (1979) 27
10. H. Ryde, private communication
11. G.D. Drakoulis, C. Fahlander and A.P. Byrne Nucl.Phys.A401 (1983) 490.
12. B. Fabricius, G.D.Drakoulis, R.A. Bark, A.E. Stuchbery, T.Kibedi and A.M. Barter, Nuci. Phys. A523 (1991) 426.
13. M.N. Rao, N.R. Johnson, F.K.McGowan, LY. Lee, C.Bahtash, M.Oshima, J.W. McConneil, J.C. Wells, A. Larabee, L.L. Riedinger, B. Bengtssom, Z. Xing Y.S. Chen, P.B. Semmes and G.A. Leander, Phys.Rev.Lett. 57 (1986) 667.
14. J. Gascon, F. Banville, P. Taras, D. Ward, T.K. Alexander, H.R. Andirews, G.C. Ball, D.Horn, D.C. Radford, J.C. Waddington and A. Christy, Nucl. Phys. 470 (1987) 230.
15. G.D. Drakoulis, A.E. Stuchbery, A.P. Byrne, A.R. Poletti, G. Geri and R.A. Bark,J. of Phys. G12 (1986) L97.
16. F.Donau and S.Frauendorf, in Proc. Conf. on high anguiar momentum properties of muclei, Oak Ridge, 1982, ed. N.R. Johnson (Harwoak Academic New York, 1983) p. 143.
17. A.J. Larabee, L.H. Courney, S. Frauendorf, L.L. Riedinger, J.C. Waddington, M.P. Fewell, I.R. Johnson, I.Y. Lee and F.K. McGowan, Phys. Rev. C29 (1984) 1934.

[^0]: * Presented by R. Vlastou

