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GR-54006 Thessaloniki, Greece

Abstract
WKB equivalent potentials ( WKB-EP) giving the same WKB spectrum as the g-
deformed harmonic oscillator with symmetry SU,(2) are determined. The WKB-EP’s of
the anharmonic oscillator systems with Uy(2) or SU,(1,1) symmetries are also calculated.

1. Introduction

Quantum algebras {1, 2] have been attracting much attention recently as mathematical
tools for solving the Yang-Baxter equation in quantum inverse problems and in statistical
mechanics. A relevant collection of original papers is given by Jimbo {3]. The quantum
algebras are one parameter special deformations of the universal enveloping algebras of
complex simple Lie algebras corresponding to the trigonometric solutions of the quantum
Yang-Baxter equation. These algebras are also concrete examples of Hopf algebras [4, 5].
The quantum algebras are in duality with the quantum groups or quantum group matrices
which are related to the transformations of the Manin [6]~Woronowicz (7] quantum plane.
A recent review of these issues is given by Dobrev [8]. The deformed SU,(2) algebra

can be realised by using as basic algebraic structure the g-deformed harmonic oscillator

* Presented by C. Daskaloyannis
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introduced by Biedenharn {9] and Macfarlane [10]. Assuming that the basic formulae of
the oscillator representations of the algebra generators are valid after deformation. the
g-deformed versions of the classical Lie algebras are generated, as U,(N), SU,(1,1) etc.,
and many of these algebras are actually the subject of intensive investigation effort.

The q-deformed harmonic oscillator [9, 10] is determined by the creation and annihi-

lation operators a* and a. which satisfy the relations:
*—¢lata=q", [N,a*]=at, [N,a]=-q, (1)

aa

where .V is the number operator. The relevant Fock space is defined by the eigenvectors:

+\n
al0 >=0, [n>= ET(S]!_))ITEN >,
where the g-factorial is defined as
[n}! = [n][n -1]...(1],
and
_ sinh(rz) _
o= Smm . TR @)

The Hamiltonian of the q-deformed osallator is
Fw
H= T(aa‘*’ +a%a),

with eigenvalues:
hw
E(n) = oe(ln] + [ + 1)),

Using two q-deformed algebras with generators a;,af, N, and a2,a, N2, the q-
deformed SU,(2) (9, 10] is defined:

1
Ji=afa, J_=afa;, Jo= -2-(N1 - Ng). 3)
The operators defined by egs. (3) satisfy the commutation relations:

Vo, Je] = +Js,  [J4,Jd=] =[200],
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where [.] is defined by eq. (2).

The q-deformed version of the ST(1,1) is defined [11, 12] by:
Ky =afaf. K_=aja;, Ko= %(Nl + Ny +1).
The above generators satisfy the commutation relations:
(Ko, K+ = K¢, [Ky,K_]|=-[2Ko].

2. Construction of the WKB-EP
Following teczaiques of the inverse scattering method [13], we can calculate different
potentials V'(z) having an energy spectrum exactly the same as the one described by the

function:

E. = f(n), orbytheinversefunction n = n(E). (4)

These potentials are in the same equivalence class, corresponding to the same energy spec-
trum. The family of the equivalent potentials can be restricted by imposing restrictions
on their shape, as symmetricity around the zero, annihilating far from zero, smoothness
etc. The constructions of the exact potential do not give always simple shapes of the po-
tential nor one unique potential form. A simpler idea was to consider a smooth symmetric
potential, whose the WKB energy spectrum is the same as in eq. (4). We shall call this
potential WKB-Equivalent Potential (WKB-EP). This WKB-EP should give us an idea
how the exact potential is, and useful properties as the potential range or the mean square
radius of the potential can be approximately estimated.

Let us consider a symmetric potential V(z), with an absolute minimum at z =0, as

it is shown in Fig. 1. The first order WKB approximation of the Schrédinger equation
L
2m dz?

(2) + V(z)¥(z) = Eu(z)

defines the WKB energy spectrum

1/2 £
(n+ %)w =2 (%T;) /(E - V(z")?de,
0
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where r is the turning point satisfving the relation

=0.

[ e

E= ‘/.(I) and Em:n = V’mln = V(O)a n(Emin) +

Wheeler [14]. reported by Chadan and Sabatier [13], has proposed a simple method
to construct the 'WiB-EP to some definite energy spectrum as in eq. 4. This method can
be summarized as follows:

Let us define the “inclusion’
I(E)= 2/(E - V(z'))dz'.
0

After using the inverse Abel transform the following equation can be shown:

RA\YVEf 1
IE) = (ZZ) /(E-—E’)"‘/’ <n(E')+3> dE'.

Min
From the inciusion we can define the “excursion’:

X(E)= g—; =2z,

and from the relation £ = V(z) we can find the potential V(z) by inversion of the equation:

1.0
V(x)
ost
G—— vﬂlh
-1.0 -0.8 " 0.0 0.5 1.0
X

Figure 1: General form of a symmetric potential
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X(V)=2z —= V=V()

Using this method we can construct WKB-EP’s for any energy spectrum if the func-
tional form (4) of the sequence of the energy levels is known. These WKB-EP's are not
the exact ones but have similarities to the exact ones. In the case of systems having
symmetries defined by the gq-deformed algebras, the functional forms (4) of the energy
spectra are proportional to the eigenvalues of the corresponding Casimir operators, i.e. we
have examples of exactly solvable problems [15]. The corresponding potentials can then
be constructed.

3. Potential of the q-deformed harmonic oscillator

In the case of the q-deformed harmonic oscillator we distinguish two physically inter-
esting cases: in the first one ¢ is a complex number with |g| = 1 (i.e. ¢ = €'7, T is a real
phase). while in the second case the g-number is a real one (i.e. ¢ = 7, 7 is real).

3.1 Case of an imaginary phase ¢ = e'”

The q-osciilator has a spectrum given by

_ Esin(r(n +1/2))

= G2

r = 2xk/l, k and [ are natural numbers
with 0 € k < [ and the g.c.d.(k,l)=1.

In this case, the energy eigenvalues have discrete values:

hw 1
n |< Emas = 5 Tt o ?
|En|< E 2 |sin(T/2)|

where the values of E, are bounded:
0<Ep<Emazy Emin=minE, =0.
The inversion of the spectrum gives:

n(E)+ == éa.rcsin (i—f— sin(r/2)) .

N -
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In ref. '16] it is shown that:

1/ 82\ /2sin(r/2)\'/?
—_ | —_— i sl B D) 3
x—r(2m> ( = ) V2F(8,m), (5)
where
§ = arcsin 2s m= s+1
= arest Vs+1/’ - 2
and

2V sin(7/2)
B i
hw

The function F(6,m) is the elliptic integral [17]. After integration by parts, eq. (5) can

be written as follows:

(g )/
(s~t)? 2tdz‘.] ’ (6)

o (1132

a_L(¥ hid 2sm(r/2))’/’
1) ()

By further Taylor expanding the integral in the right hand side of eq. (6) we reduce it to

= 2.5‘/2}2e [1 -

where

(M

a series form o
r=2s%R, |1+ Z sznfzn-x] )

n=1

where

1
In= [ (1= wudu = B(n+ 1,32
0

and B(z,y) is the usual Beta function [17]. If we square eq. (7) we take

2
T _ 4 , 16 , 320 4
(2Re> —3(1-}»153 +1053 +30033 +...).

This series can be inverted to give

3_£__3(i3+4448 22 \* 345344 _z_z_)’+
2RI T 15\2R?) T 1575 \2R?) 675675 \2RZ)

Thus finally

3 4 8 44 12
[1__(:_> +ﬁ(L) _3_45_3_(_L) _— (8)
15 \ 2R. 1575 \ 2R. 675675 \ 2R.
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The form of the potential V(x) of eq. (8) is shown in fig. 2 for various values of the

parameter 7. For £ — oco the potential goes to a finite limiting value. These potentials

have similarities to the Pdschl-Teller potential [18]. The Pdschl-Teller potential has similar

shape with the Woods-Saxon potential. which is widely used in nuclear physics [19], but

has a smooth derivative at the origin. The Pdschl-Teller potential has been recently used

in the hypernuclear physics (20] as an alternative to the Woods-Saxon one.
3.2 Case of a real phase g =eT

The g-oscillator has a spectrum given by

£ = h_u_sinh(r(n +1/2)
"7 2 sinh(r/2)
and
n(E) + % = ;1_-sin.l1"1 (% sinh(‘r/Z)) .

The Wheeler theory gives [16]:

2 \*/? 2sinh(7/2)
= (m2> T( 2y 3F2(1/2,1/2,1;3/4,5/4,-3°),

where
_ 2Vsinh(r/2)
$= =

Figure 2: WKB-EP V(x) for the q—deformed oscillator, with ¢ = er

(9)

(10)
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In the same way if we square eq. (10) and take the first few terms of the generalized

hypergeometric function we do have that

1t = RAE [3F5(1/2,1/2,1;3/4,5/4,-97)]",

g o L[R2\ (2sinb(r/2)\ /2
P \em hw '

Using a similar method as in the case of a real phase we conclude that

V(z) = <2sin1:(1'/2))2 m;212

& (& ', s _f_)°+345344 (L)ﬂ ]
13 \ 2R4 1575 \2Ra 675675 \ 2R, e

The shape of the potential V(z) is shown in fig. 3. The WKB-EP in this case goes to

where

infinity when £ — 2 and for = 0 the potential is degenerated to the classical harmonic
oscillator potential. We shall mention here that the q-deformed oscillator near the origin

behaves like a seztic anharmonic oscillator:
Viz)~zt +ecz® +...

Therefore in second order approximation for large values of the range Ry the Taylor ex-
pansion over 7 of energy spectrum (9) should represent fairly weil the spectrum of the
sextic anharmonic oscillator without the z* term.
4. Anharmonic oscillator having an SU,(1,1) symmetry
The energy spectrum of a system with SU,(1,1) symmetry is given by:

E. =E - ‘lsin(r(n—N/2))sin(r(n+1-N/2))
T sin’(7) '

For 7 — 0 this corresponds to a Morse or Pdschl-Teller spectrum. The Wheeler theory

s=1 (ﬁ)m (3‘1?:_(12> . V3F(6,m),

gives (21]:

where

m? = sinz(‘r)ZTV"‘i'-'- + cos(TN/2),
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and
5 = arcsi _1_ sint V = Vain
= S T sa(NT/2) A '

The potentials in this case can be taken by inversion of the function

z

dt
- / (z=t)12(1 - 2)3/2’ (11)

Imin

1 (8N (2sinr\1?
T 2r \2m A ’

where for the SU,(1,1) spectrum z and zmin take the values

s

with

z = 2sin’ TE—_:"L"' +cos(NT), (12)
and
Zmin = cos(NT). (13)

After expanding the (1 — t2)!/2 in the right hand side of eq. (11), we find:

0.10 V(x) =1
o
\ ]
=5 \ !
e !
\ 0.05 1
\ /
/
=10 \ /
. \ /
S~ N\ et
-1.0 -0.8 T 0.0 0.8 1.0

Figure 3: WKB-EP V(x) for the q—deformed oscillator, with ¢ = e”
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r —=T(n+1/2) [
R g Ay ] Gopr

Zmin
The integrals in the above equation can be represented as follows:

z

2n
/ (2 —tt)llz dt =" By, L s(1/2,20 4+ 1)

= (2 = Zmin )1/2 ’an:n 2F1(-2n,1; 3/2; —(Z - z’"i")/z"‘i")’
where B,(z,y) is the incomplete Beta function (17].
If we Taylor expand the right hand side of eq. (11), we bring it into the form
z
(23’) =y'/? [1 + A+ A+ ],
where
R=(1-2%.)""R,
Y =2 = Zmin,
and the first few of the coefficients A; are calculated as follows:

2 Zmin

31— zmm

Az:.%'z_[;;(__z.;“"_.{._l_],

1- ziz'm'n)2 1- zrznm

4=

2 = zv?nin 2 Zmin
d=337 [3'°(1—z3,..-..)’ 3 (1-23..-..)2] '

Ay = 2 [357 zf‘m'n +32_5_2 rznm i3 22 1
3:5-7-9 {1= z%u’n)4 (1 zmtu)3 ( zmin)2 '

By inversion of the previous series we find the following series

:‘z"'""=°°(2LR') t+a ‘(23') T 2(’>R’>6+""
where

ag =1,
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ay = é Zmin
1T T31- 22 .’
2
a 4 23z5,,,—6

- 45 (1 - zrzm'n)2 ’

_-1:2-673,3'“',. e 362"“'"
315 (1-23;,)°

Replacing z and zmin by eqs. (12) and (13) finally we get the following series expansion

as =

for the potential:

. 2
V() = Vinin + = (1%”’—1) u?
4 sin® 7
[1 _ i COS(NT)u2 N 17423 cos?(Nt) — 6) o4

3 sin’r 45 sint 7

2 18(67cos?(Nt) —36)cos(NT) ¢
~35 e u +] (15)
where
v2mAz
u=—

The above formula seems to be very complicated, but it can be easily tested. In [21] it was
shown that for 7 — 0 the above potential should be the well known modified Pschi-Teller

potential:

0
-1.0 -0.8 0.0 08 1.0

Figure 4: WKB~EP for systems having SUy(1,1) symmetry and Uy(2) symme-
try (dashed line)
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3 VZ /
V(z) = Vinim + i‘;— tanh? ( 2’:“) .

It is trivial to see that the series expansion given by eq. (15) is indeed the power series
expansion of the above function for * — 0. This means that the WKB-EP of a system
with the deformed SU,(1,1) symmetry is a deformation of the Péschi-Teller potential. It
is well known [15. 24] that the Morse potential has an energy spectrum proportional to
the Casimir eigenvalues of SU(1,1). In [21] it is shown that the WKB-EP of the Morse
potential is the Pdschl-Teller potential. Therefore the potential given by eq. (15) is indeed
the deformed version of the Pdschl-Teller potential. The deformed SU,(1,1) symmetry
has been applied recently to the study of diatomic molecules [22].

In fig. 4 the form of the WKB-EP is shown.

5. Anharmonic oscillator with an U,(2) D O(2) symmetry
The energy spectrum of a system with Uy(2) symmetry is given by:

sin(27n))sin(27(N - n))

E,.=Ey+A
e sin®(7)

For 7 — 0 it corresponds to a Morse or Poschl-Teller spectrum. The Wheeler theory gives:

.1 (ﬁ)m (M)m VZF(6,m),

2 \2m A
where
m? = sinz(r)v——‘:ﬂ + cos(T(N +1)/2),
and

4§ = arcsin L . mmr V= Vmin
B msin((N + 1)7) A :

For the Uy(2) spectrum z and zmin take the values

E-En

z=2sin’r y, 4 cos(2r(N +1)], (16)

and

Zmin = cos{27(N + 1)}
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For this potential eq. (14) is valid, but the values of z and zmin given by eqs. (16) and
(17) should be used. The deformed U,(2) D O(2) symmetry has been applied to the study
of diatomic molecules [23]. The form of the WKB-EP is shown in fig. 4.
6. Conclusions

The WKB-EP’s for the qg—deformed harmonic and anharmonic oscillators are analyt-
ically calculated. The potential representing the q—oscillator spectrum, q being a phase,
behaves like a modified Paschl-Teller potential. Although if q is a real number the cor-
responding potential tends to infinity as x goes to zero, for q near to unity the potential
can be approximated by a sextic anharmonic oscillator. The potentials of systems with
SU4(1,1) or Uy(2) D O(2) symmetries are generated by a deformation of the modified
Pdschl-Teller potential.
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