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Abstract

The first realizations of quantum algebraic symmetries in nuclear and molecular spec-
tra are presented. Rotational spectra of even—even nuclei are described by the quantum
algebra SU,(2). The two parameter formula given by the algebra is equivalent to an expan-
sion in terms of powers of j(j + 1), similar to the expansion given by the Variable Moment
of Inertia (VMI) model. The moment of inertia parameter in the two models, as well as
the small parameter of the expansion, are found to have very similar numerical values.
The same formalism is found to give very good results for superdeformed nuclear bands,
which are closer to the classical SU(2) limit, as well as for rotational bands of diatomic
molecules, in which a partial summation of the Dunham expansion for rotation~vibration
spectra is achieved. Vibrational spectra of diatomic molecules can be described by the
q-deformed anharmonic oscillator, having the symmetry Uy(2)D0,(2). An alternative de-
scription is obtained in terms of the quantum algebra SU,(1,1). In both cases the energy
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formula obtained is equivalent to an expansion in terms of powers of (v + %), where v is the
vibrational quantum number, while in the classical SU(1.1) case only the first two powers
appear. In all cases the improved description of the empirical data is obtained with ¢ being
a phase (and not a real number). Further applications of quantum algebraic symmetries

in nuclei and molecules are discussed.

1. Introduction

Quantum algebras [1-5], or QUE (quantized universal enveloping) algebras, have been
recently attracting much interest in physics [6~12]. They are generalizations of Lie algebras
in which the associativity condition is a quantum Young-Baxter equation instead of the
usual Jacobi identity [7]. These generalizations are called q-deformations of the correspond-
ing Lie algebras, where q is the parameter characterizing the deformation. Mathematically
they are Hopf algebras [13]. Sometimes they are referred to as quantum groups. In par-
ticular, the quantum algebra SU,(2) has been the subject of several investigations, since
it is connected to the g-analogue of the quantum harmonic oscillator [6-12].

Here we give an account of realizations of quantum algebraic symmetries in nuclear
and molecular physics. In section 2 the description of rotational spectra of deformed nuclei
in terms of SU,(2) and its relation to the Variable Moment of Inertia (VMI) model is given.
Superdeformed nuclear spectra are described by the same symmetry in section 3, while
in section 4 this symmetry is used for the description of rotational spectra of diatomic
molecules. Vibrational spectra of diatomic molecules are described in terms of the g-
deformed anharmonic oscillator in section 3, while an alternative description of the same
spectra in the framework of SU,(1,1) is given in section 6. Section 7 contains discussion
of the present results and plans for further work.

2. SU,(2) description of rotational nuclear spectra and its relation to the
Variable Moment of Inertia Model

It has been suggested [12] that spectra of rotational nuclei can be fitted very accurately

using a Hamiltonian proportional to the second order Casimir operator of the quantum
algebra SU,(2). It is therefore of great interest to understand the reasons of this success

and their possible further consequences.
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Here we examine the relation between the SU,(2) expression for energies of ground
state rotational bands to the usual expansion {14, 15] in terms of powers of j(j + 1) (where
j is the angular momentum), as well as to the Variable Moment of Inertia (VMI) (16]
formula, which is known (17, 18] to be equivalent to the Harris expansion (19] in terms of
even powers of the angular velocity w.

The generators J4, Jo, J- of the quantum algebra SU,(2) [1-12] satisfy the commu-

tation relations

(Jo, 2] = £J4, (1)
(V4. J-] = [20], (2)
with J! = Jy, (J4)t = J_. The q-numbers are defined as

g* —q~* _ sinh(rz)
—q~' 7 sinhk(r)’ (3)

=] =

where ¢ = e". In the limit ¢ — 1 (= — 0) one clearly has (z] — z, i.e. the g-numbers
become usual numbers.

The irreducible representations D’ of SU,(2) are determined by highest weight states
with j = 0,%,1,.... The basic states |j,m > (—j < m < j) are connected with highest

weight states |7,j > as follows

o >= o[ Gy > (@

with J,|j,7 >=0 and < j,|j,j >= 1. The second order Casimir operator of SU,(2) is
Cl = J_J+ + [JQ][JO + 1], (5)

for which one has
Cllj,m>=[llj +1]l7,m > . (6)

A g-rotor is a system with Hamiltonian

1
Hv='2—fcg+EOy (7)
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where [ is the moment of inertia and Ej is the bandhead energy (for ground state bands
Ey =0). In the general case, i.e. with ¢ = e", one has for the energy levels of the q-rotor

_l_sinh(‘rj).sinh(r(j +1))

o1 sinh?(7) + Eo. ®)

1 ..
By = 52 ljlli + 1+ Bo =

In the special case of 7 = i|7| one obtains

1 sin(|rlf)sin(l7|(5 + 1))

27 sin?(|r|) + Bo. )

-=—~b]L;+1]+E =

In [12] it has been found that good fits of rotational spectra of even—even rare earths
and actinides are obtained with eq. (9). It is easy to check that eq. (8) fails in describing
such spectra. In order to understand this difference, it is useful to make Taylor expansions
of the quantities in the numerator of eq. (8) (eq. (9)) and collect together the terms
containing the same powers of j(j + 1) (all other terms cancel out), finally summing up
the coefficients of each power. In the first case the final result is

T s
=Bt (\/;Il/z(‘r‘))z( II/’(’)J(J +1)+ f\/g—;-ls/z(f)(au +1))?
272 [ 2 [
3 g BaMUU + 0 + 5y o (GG + D)+ (10)

where \/Z ] n+4(7) are the modified sphenca.l Bessel functions of the first kind [20].

In the second case (eq. (9)) following the same procedure one obtains

Ej=Ey+— )2(10(|T|)J(] +1) = [rla (GG + 1)) + -lflsz(ITD(J(J +1))°

2-’( (ITI)
1 3. . 2 . .
-glfisJa(ITI)(J(J + 1)+ ZlrtarDGG +1)° -, (11)
where j,(7) are the spherical Bessel functions of the first kind [20].
Both results are of the form

E;j=Eo+Aj(j +1)+ BG(G + 1))+ CUG+ 1) + DGG + 1)) +...,  (12)

which is the expansion in terms of powers of j(j +1) used for fitting experimental rotational
spectra [15]. Empirically {15] it is known that the coefficients A, B, C, D, ...have alter-
nating signs, starting with A positive. In addition, B is roughly three orders of magnitude
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smaller than 4, C is about three orders of magnitude smaller than B, and D is also three
orders of magnitude smaller than C [15].

It is interesting to check if the empirical characteristics of the coefficients 4, B, C,
D are present in the case of the expansions of egs. (10), (11), especially for small values
of 7 or |r]. (Since we deal with rotational spectra, which are in first order approximation
described by the usual algebra SU(2), we expect T (or |7|) to be relatively small, i.e. the
deviation of SU,(2) from SU(2) to be small. This is in agreement to the findings of [12],
where |r| is found to be around 0.03.)

In (10) it is impossible to get alternating signs. The first term contains \/;,L:I 1/2(7),
which is an even function of r, positive for all values of  [20]. The second term contains
V= I2(r), which is an odd function of , positive for positive = [20]. However, the
second term also contains 7, which has the same properties. Thus the second term is
always positive. In the same way one can prove that all terms in (10) are positive, taking
into account that \/ZI,,Is/g(r) is an even function of 7, \/;l:.[‘{/g(‘l’) is an odd function of
7 (20], etc. We conclude that it is impossible to get alternating signs in eq. (10), i.e. this
equation is inappropriate for describing nuclear rotational spectra.

In eq. (11), however, the situation is different. The first term contains jo(|7|), which
is an even function of |7|, positive for small values of |r| (|7| < ) (20]. The second term
contains j;(|r|), which is an odd function of |r|, positive for small |r| [20]. Thus the
second term is negative, because of the minus sign appearing in front of it. In the same
way it turns out that the third term is positive, the fourth term is negative, etc. The
condition of alternating signs is thus fulfilled. In order to check the order of magnitude of
the coefficients for small values of |r|, it is useful to expand the spherical Bessel functions
appearing in (11) and keep only the lowest order term in each expansion. The result is

2 4
By = Eo+ ;i +1) = B-GG + 17 + LG + )y
é 8
I+ o+ 2R+ - . (19

We remark that each term contains a factor |7|? more than the previous one. For |r|in the

area of 0.03, |r|? is of the order of 1072, as it should. We conciude therefore that eq. (11)
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is suitable for fitting rotational spectra, since its coefficients have the same characteristics
as the empirical coefficients of eq. (12). Examples of fits and parameter values are given
in [21, 22]. In all cases the fits are of very good quality.

We now turn to the comparison of the expansion of eq. (11) to the Variable Moment
of Inertia (VMI) [16] model. In this model the levels of the ground state band are given
by '

iG+1)
3= oarn Ze() + C(e(J) e0) ) (14)

where C and ©g are the two free parameters of the model, the latter being the ground state

moment of inertia. The moment of inertia for each j is determined from the variational

condition
0E;
15
%) =" 4
which is equivalent to the cubic equation
Ny oot 0+
8()" - 8(1)*80 - =55— =0. (16)
This equation has only one real root, which can be written as
N eiG+1) 6} \ﬁj(j +1)? 3G +1)
D=VT TtV e T osac
o[j+1) 6] [GG+1)? 63 +1) S
+\/ ic T Vwer tTTwc T3 1n

Expanding the roots in eq. (17) and keeping together terms containing the same powers
of j(7 + 1) one obtains

G+1) GG +1)
203 (2CR} 2

Using (16) in (14) one has

GG +1)° _ 50U+ 1)
(2cely ~ 7 (2cep)

8(j) = Oo(1 + +7 +..). (18)

E; = 2(60) - 80)(36(7) - 60). (19)

Using (18) in (19) one obtains the following expansion for the energy

1GG+D)?  (GG+D)P  GGE+1)*
3 2ce3 T celr Secey To0 (O

E;= _(J(J + L)= %
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It is known [16] that C and ©, obtain positive values, while

1

= 3c63" (21)

g

is the softness parameter, which for rotational nuclei is of the order of 10~* [16]. Thus the
coefficients of the expansion of eq. (20) have the proper signs and orders of magnitude.

Comparing eqs (11) and (20) we see that both expansions have the same form. The
moment of inertia parameter I of (11) corresponds to the ground state moment of inertia
©p of (20). The small parameter of the expansion is [7{? in the first case, while it is the
softness parameter 1/(2C03) in the second. However, the numerical coefficients in front
of each power of j(j + 1) are not the same. In [21] a comparison is made between the
parameters obtained from fitting the same sbectra with eqs (11) and (20), the parameter
values for the latter taken from [16]. The agreement between 1/(2I) and 1/(20,) is very
good, as it is the agreement between |7|? and o as well. Therefore the known [16] smooth
variation of 8 and o with the ratio Ry = E4/E, is expected to hold for the parameters [
and |r|? as well. In fact, as seen in [21], larger Ry leads to smaller 1/(2/) and smaller |7|
in both the rare earth and the actinide regions, as expected.

It is necessary for E; to be an increasing function of j. In order to guarantee this in
eq. (9) one must have

G+ < 5 (22)

In the case of |r| = 0.036 (as in 232U [21)), one finds j < 42, this limiting value being larger
than the highest observed j in ground state bands in the actinide region {23]. Similarly,
for || = 0.046 (as in "®Hf [21]), one finds j < 32, this limiting value being again higher
than the highest observed j in ground state bands in the rare earth region [23].

In conclusion, we have demonstrated that two different expansions of the second order
Casimir operator of the quantum algebra SU,(2) in terms of powers of j(j + 1) can be
obtained, of which only one is suitable for the description of rotational ground state bands.
This expansion is very similar to the one given by the Variable Moment of Inertia (VMI)
model. The moment of inertia parameter, as well as the small parameter of the expansion,

are very similar in both expansions. In addition to obtain:  a two—parameter formula for
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ground state spectra alternative to the VMI one, we have shown that stretching effects can
be taken into account by allowing the algebra to deviate from the usual SU(2) limit.

3. Description of superdeformed bands by the quantum algebra SU,(2)

As we have seen in section 2, the quantum algebra SU,(2) has been used for fitting the
ground state bands of deformed rare earth and actinide nuclei (12, 21] with satisfactory
results. On the other hand. the experimental discovery of superdeformation i24] (for
relevant reviews see [25, 26]) has stirred considerable activity in the study of high spin
states, the role of the pseudo~SU(3) symmetry in creating new magic numbers at high
deformations {27], as well as the importance of the high N intruder orbitals (28. 29] for
the properties of the supe;deformed bands having been realized. It is therefore of great
interest to examine to what extend the data for superdeformed bands can be described by
the quantum algebra SU,(2) and to point out the differences between such descriptions of
rotational bands with normal and super deformations.

Eq. (9) has been used for fitting several superdeformed bands in the A=130 and
A=150 regions, the results being reported in [22]. In addition, recently discovered superde-
formed bands in the A=190 region have been fitted, also reported in {22]. For obtaining
the fits an autoregularized iterational method of the Gauss-Newton type [30] has been
used. In all cases the fits are of very good quality. In addition, the following comments
apply:

i) In the case of the bands with normal deformation (section 2) the parameter |7|.
which determines the spacing among the levels within a band, obtains values around 0.03.
These values guarantee that the coefficients in the expansion of eq. (9) are small, follow-
ing the pattern observed in ref. 15 (alternating signs, fall by approximately 3 orders of
magnitude in successive coefficients). In addition, || decreases with increasing collectivity
(increasing Ry = E,/ E; ratio, for example).

ii) In the case of superdeformed bands, |r| obtains even smaller values, indicating that
their symmetry is closer to the usual SU(2) symmetry. In particular, |r| is about 0.01 in the
A=130 and A=190 regions, which are assumed to correspond to axis ratios around 1.5:1
to 1.65:1 [24. 31], while it obtains even smaller values, around 0.004 in the A=150 region,
which contains the best examples of superdeformed bands found so far, corresponding to

an axis ratio close to 2:1 [24].
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iii) In the case of the 2nd and 3rd superdeformed bands in '%*Hg, the levels of each of
which are known [32] to lie midway of the levels of the other, almost identical parameter
values are obtained.

Before concluding, it is appropriate to discuss a little further the physical motivation
for using the quantum algebra SU,(2) for the description of superdeformed bands. Three
comments are then in place:

i) By defining, as usual,
Je =T +1Jy, Jo=J; -1y, Jo=J;, (23)
we can rewrite the SU,(2) commutation relations (egs (1) and (2)) in the form
Ve dd= 3200, Updid=ides Ul =idy, (24)

which is the g-generalization of the SO(3) commutation relations, which are obtained
from eq. (24) in the limit ¢ — 1. We remark that while in the classical SO(3) case the
three commutation relations have exactly the same form, in the quantum case the first
commutation relation in eq. (24) differs (in the right hand side) from the other two, thus
indicating that the z— direction is not any more equivalent to the z— and y— directions.
Therefore it is not surprising that the SUy(2) symmetry is more appropriate than the
classical SU(2) symmetry for describing objects deformed in one of the 3 dimensions (like
deformed and superdeformed nuclei).

ii) One could argue that the better description of deformed and superdeformed spectra
obtained in the SU,(2) case than in the SU(2) case is due to the extra parameter g (or,
equivalently, 7) present in the first case. However, this is not an arbitrary additional
parameter. As demonstrated in section 2 and ref. (21], the SU,(2) expansion given in eq.
(11) has the same form as the expansion of the VMI (16] formula in terms of j(j + 1).
In addition, the v parameter of SU,(2) corresponds [21] to the softness parameter o of
the VMI (16]. Therefore the parameter 7, which deforms the algebra, has a well-defined
physical meaning.

iii) In the case of superdeformed bands, in particular, it has been demonstrated [33-

35] that good fits can be obtained by using the Harris formalism (19]. (This fact has
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even been used ‘or making spin assignments in the A=190 region [33-35].) However, the
Harris formalism has been long known to be equivalent to the VMI approach (17, 18].
Since, as shown in [21], the SU,(2) formula is also equivalent to the VMI approach. it
is not surprising that good fits of superdeformed spectra can be obtained in the SU,(2)
framework as well.

In conclusion, we have demonstrated that superdeformed bands, as well as rotational
bands with normal deformation. can be very accurately described in the framework of the
quantum algebra SU4(2). Stretching effects are taken into account by allowing the algebra
to deviate from the usual SU(2) limit. [t has been demonstrated that this deviation is
equivalent to an expansion in terms of powers of j(j + 1), summed up to all orders.

4. Description of rotational molecular spectra by the quantum algebra
SU,(2) |

In section 2 it has been suggested that rotational bands in even—even nuclei can be
described very accurately in terms of a Hamiltonian which is proportional to the second
order Casimir operator of the quantum algebra SU,(2) [12, 21]. It is therefore of interest
to examine if such a Hamiltonian can describe rotational spectra of molecules [36, 37] as
well, and to understand the reasons of such a success and tTI}E_ir further consequences.

Algebraic techniques have been already applied to tht; study of molecular rotation~
vibration spectra [38—43], in analogy to a similar approach used for nuclear spectra ([44],
for recent surveys see [45, 46)). The basic symmetry of diatomic molecules is U(4) [41, 42].
Of the various possible chains of subalgebras of U(4), the chains containing O(3) (which
is isomorphic to SU(2)) are of interest, since angular momentum must be a good quantum
number in this context.

In this section we examine if rotational spectra of diatomic molecules [36, 37] can be
described in terms of the quantum algebra SU,(2). It is known (36, 37] that rotational

molecular spectra are described by an expansion of the form
E,(j) = Bej(i + 1) + D,(i(G + 1) + HoGG + )P + LGG+1) +...,  (29)

where j is the angular momentum and v is the vibrational quantum number. More gen-

+ erally, rotation-vibration molecular spectra are described by the Dunham [47] expansion
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(for relevant reviews see {48, 49|)
. 1, ...
E(v.j) =Y Yu(v+3)'GG+ 1) (26)
1k -

where Y;; are numerical coefficients. The first few terms of the Dunham expansion are
known to occur from the solution {50] of the Schrodinger equation for the Morse potential

[51]. By writing the Dunham expansion in the form

. 1 1 1
E(v.7) = (Yoo + Yio(v + 5) + Yao(v + 5)? + Yao(v + 5)° +...)

" 1 1 1
+i(J +1)(Yo + Yu(v + 3) + Ya (v + 5)2 +Yau(v+ 5)3 +...)

. 1. 1 1
+(7(J + 1))*(Yoz + Yiz(v + 5) + Yao(v + 5)’ + Yaa(v + 5)“ P s n)

+0+ D) (Yos + Yis(v + )+ Vaa(v 4 3 + Yaalo 4 )T ) o0 (2D

the relations between the coefficients B,, Dy, Hy, ...and Yi; become clear. Extensive
tables of coefficients for several diatomic molecules can be found in [52]. In [53] we report
the relevant coefficients for the HF, HCl. HBr molecules.

For the quantum algebraic description of rotational molecular spectra we use the
algebra SUy(2). Both egs. (10) and (11) are of the form shown in eq. (25), which is the
expansion in terms of powers of j(j +1) used for fitting experimental rotational spectra both
in molecules [36] and nuclei [15]. Empirically [15, 36, 52] it is known that the coefficients
By, Dy, H, ...have alternating signs, starting with B, positive. In addition, D, is roughly
4-5 orders of magnitude smaller than B,, and H, is about 4-5 orders of magnitude smaller
than D, (36, 52].

It is interesting to check if the empirical characteristics of the coefficients B,, D,, H,
are present in the case of the expansions of eqs. (10), (11), especially for small values of
7 or |r|. (Since we deal with rotational spectra, which are in first order approximation
described by the usual algebra SU(2), we expect 7 (or |7|) to be relatively small, i.e. the
deviation of SU,(2) from SU(2) to be small. This is in agreement to the findings of [21]

where |7| is found to be around 0.03.)
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As in section 2. aiternating signs are gotten only in eq. (11) (and not in eq. (10)).
In eq. (13) we remark that each term contains a factor |r|? more than the previous one.
" For |7| in the area of 0.01, ||? is of the order of 1074, as it should. We conclude therefore
that eq. (11) (or eq. (9)) is suitable for fitting rotational spectra, since its coefficients
have the same characteristics as the empirical coefficients of eq. (25). Examples of fits are
reported in [33]. In all cases the fits are of very good quality. Since |7| is small, it is ciear
from eq. (13) that 1/(2I) will be very close to E3(v)/6. In addition, D,/B, should be
approximately equal to |r|?/3. i.e. |7 should be close to (3D,/B,)!/2. The values shown
in [53] indicate that these approximate equalities hold very well. Even the small variation
of the parameters between the v = 0 and v = 1 spectra of HCl are reproduced very well.

It is known that the Yi; coefficients of the Dunham expansion are proportional to
powers of the quantity (B./«.) [47, 48, 54], where B, is the rotational constant in the
equilibrium position and w, is the equilibrium vibrational constant [36). A comparison of
the expansion of eq. (13) to the expressions given in [47, 48, 54| shows that the role of the
small parameter of the expansion played there by (B./w.)? is played here by |r{?. The
situation resembles this in nuclear physics, where the correspondence between |r|* and
the softness parameter o of the Variable Moment of Inertia (VMI) Model [16] has been
established [21].

From what we have already seen, it is clear that the usual expansion of rotational
spectra in terms of j(j + 1) {eq. (25)) can be summed up through use of the SU,(2)
quantum algebra, as shown in eq. (9). In order to check the consequences of this finding
for the Dunham expansion, we write eq. (26) as follows

E(v,j) = (Yoo + Yori(j + 1) + Yoa(G(7 + 1))* + Yoa (3G + 1))* + .. )+
(v+ 3)(¥io+ Yiri(i + 1)+ HalGG + D) + YasGiG + D) +--.)
(v + 31 (Yao + ¥ar(G + 1)+ Yali(G + 1) 4 YaaliGG + 1P +-.)

o+ 3P (0 + Yaui(G +1) 4 Yl + DF + YosGG+DP +..0 400 (28)

Numerical values for the coefficients Y;; for HF, HC] and HBr are reported in [53]. Data for
other molecules can be found in (52]. We remark that Yy, Yo2, Yos, Yoa have alternating



180

signs (starting with Yp; positive) and magnitudes falling oy about 4 orders of magnitude
from one to the next. Thus the terms in the first couple of parentheses in the rhs of eq.
(28) look like the expansion in eq. (25) and can be summed up as eq. (9). A similar
situation occurs for Y}y, Y12, Yi3, ..., having as a result the summation of the terms in
the second line of eq. (28), as well as for Y3, Y22, ..., resulting in the summation of the
terms in the third line of eq. (28). We conclude that eq. (28) can be written as

sin(moj )sin(ro(j + 1)) sin(ryj)sin(n(j +1))
sin?(r) )+ o+ 1 sin?(ry) )

E(U,j) = (},00 + ’/0

sin{raj)sin(r2(j + 1))
sin2(rp)

T (29)

+(Y20 + 12
which implies that the Dunham expansion (eq. (26)) can be written in the form

sin(rij)sin(ri(j + 1))
sin?(r;)

) (30)

B(v,j)= Y (u+ %)"(Y,-o +Y;

where ; are real and positive, and the partial summation over powers of j(j + 1) has been
carried out.
It is necessary for E; to be an increasing function of ;. In order to guarantee this in

eq. (9) one must have
G +1) < 3 (31)

In the case of |7| = 0.0174 (as in HF [53]), one finds j < 89, while for |r| = 0.0113 (as in
HBr [53]), one finds j < 138. These limiting values are higher than the highest observed j
in these diatomic molecules [33].

In conclusion, we have demonstrated that two different expansions of the second order
Casimir operator of the quantum algebra SU,(2) in terms of powers of j(j + 1) can be
obtained, of which only one is suitable for the description of rotational molecular spectra.
Rotational bands can be described in terms of two parameters, the moment of inertia [
and the small parameter of the expansion, ||, which is related to the Dunham coeficients.
The Dunham series for rotation-vibration spectra of diatomic molecules can in this way

be partially summed up.
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5. Description of vibrational molecular spectra in terms of the gq-anharmo-
nic oscillator

In section 4 it has been demonstrated that a very accurate description of rotational
molecular spectra can be obtained in terms of the quantum algebra SU,(2). It is therefore
of interest to examine if an improved description of vibrational molecular spectra can also
be obtained in a quantum algebraic framework.

Rotational-vibrational molecular spectra [36] are usually described in terms of the
Dunham expansion (eq. (26)) [47, 48]. The first terms of the Dunham expansion are
obtained from the exact solution [50] of the Schrédinger equation for the Morse potential
(51]. They are also obtained in the O(4) limit of the U(4) algebraic model for diatomic
molecular spectra [42], which has also been extended to triatomic molecules [43]. Ignoring
angular momentum (i.e. ignoring the rotational bands built on each vibrational bandhead),
the Dunham expansion takes the simplified form [48]

E@)= Y Ya(o +3), (32

l.e. an expansion in powers of (v + %)

In the algebraic framework, vibrational spectra of diatomic molecules have been de-
scribed in terms of the anharmonic oscillator [55-58], using techniques similar to those
used earlier in the algebraic approach to the Morse potential [59]. The relevant chain of
subalgebras is U(2)D0(2). We briefly summarize here this approach, which we are going
next to generalize. The generators of SU(2) take the form [57]

Jy=atay, J-=afa,, Jo= %(a}"al - afay), (33)

where af, a3, af, a2 satisfy usual boson commutation relations. The generators of SU(2)

satisfy the commutation relations
[Jo,Jz] = £J4, (34)

(o J] = 2Jo. (35)
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The basis takes the form

L N Y
v >= ————(a7)"(a3 )" "0 >, (36)
v >= (e
with v = N; and V — v = N,. In the above [V is the total number of bosons, vy (V2) is

the number of bosons with index 1 (index 2), and v is the vibrational quantum number.

The second order Casimir operator of the O(2) subalgebra takes the form [56]
Co(0(2)) = 4J¢ = (af ay — aF az)? = (Ny — N2)?, (37)
while the first order Casimir of U(2) is
C(U(2)) = N =Ny + N = attay +afay, (38)

i.e. the total number of bosons. (Recall that U(2) is obtained by supplying SU(2) with
the additional generator IV, which is the first order Casimir operator of U(2).) Finally, the

Hamiltonian of the anharmonic oscillator takes the form [53, 58]
H = Eo + A(C,(U(2)))? — AC2(0(2)) = 4af a1)(aF a2), (39)

where A is a free parameter (the overall scale). The eigenvalues of this Hamiltonian in the

above basis (eq. (36)) are
E(N,v) = Ey + A4v(N = v). (40)

This equation can be rewritten in the form
1 1
E(N,v)=-2N + 1) + 4N + )(v + )4+ 5l (41)

which shows that eq. (41) contains the first two powers of (v+}) contained in the Dunham
expansion of eq. (32), the ratio of the coefficient of the first power over the coefficient of
the second power (i.e. Yj9/Y3) being —(N + 1).
In the case of the g-generalization of SU(2), called SU,(2), the generators take the
form [7]
Jt=afay, J-=afa;,, 2Jp=N — Ny, (42)
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where the operators a}f, a; (i = 1,2) satisfy the commutation relations
aiaf —¢7'afa; =¢™, i=1,2 (43)
In addition one has the relations
Ni,aT]|=af, [Niyai]= —ai, 1=1,2, (44)
as well as
aiat =[(Ni+1], atai=[N], i=12 (45)

where g-numbers are defined as in section 2.

The generators of SUy(2) satisfy the commutation relations given in section 2. The

basis takes the form

v >= m(ar)“(@>‘v'°|o >, (46)

where v =NV, N —v = N,.

The first order Casimir operator of U,(2) is [60]
C1(Uy(2)) = [N] = [N + No]. (47)

As in the classical case mentioned above, U,(2) is obtained by supplying SU,(2) with this
additional operator. By analogy to the classical case (eq. 39) the Hamiltonian takes the

form

H = Ey + A(C1(Uy(2)))? — AC2(04(2))
=Ey + A[N; + N2][N1 + Nz] —_ A[Nx - Nz][Nl - Nz] (48)
Its eigenvalues in the basis of eq. (46) take, after a little of calculation, the form

E(N,v) = Eg + A2v][2N — 20]. (49)

This result goes to eq. (40) in the limit ¢ — 1. In the case ¢ = e” eq. (49) takes the form

sinh(2ur)sink((2N — 2v)7)
sinh?(r) ’

E(N,v)=Ey+ 4 (50)
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while in the case ¢ = '™ one correspondingly has

sin(2vr)sin((2N - 2v)r)

sin?(t) (34

E(Nov)=Ey+ A

It is instructive at this point to check how the last two equations compare to the
Dunham expansion of eq. (32). In each case one can take the Taylor expansions of
the functions appearing in the numerator of the right hand side, collect together terms
containing the same power of (v + 3), and finally sum up the coefficients of each power of

(v+ 1). In the case of ¢ = ¢" one obtains

_ T3 sinh(r)sinh(r(2N +1)) 1,,sinh(2r(N +1))
E(N’v)—E°+Asinh2(r)[ = +(v+2)2—————-——T

~(v+ %)24«:03}1(21’(1\/ +1)+(v+ %)31_;1,2 sinh( 2T£N +1)

1,464 ,sinh(27(N +1))
sppaine L
27 15 T

—(v+ %)“-la—arzcosh(%(N +1)+(v+
—(v + %)s-l‘z?r‘cosh(Zr(N+1))+m], (52)

while in the case of ¢ = ¢'” one has

r? sin(r)sin(T(2N + 1))

1 _sin(2r(N + 1))
sin¥(r) = re A —

E(N,v)=Ep + A 5 -

+(v+

7 sin(21(N + 1))

—(v+ -;—)24cos(2r(N +1)+(v+ -;-)3(-—-1:—? -

~(v+ %)“(—?)rzcos(%(N +1)+(v+ %)5 %Tiw

-(v+ %)6%T4COS(ZT(N +1))+...) (83)

We remark that in both cases we obtain expressions resembling the Dunham expansion
of eq. (32). In both cases in the limit * — 0 one obtains the classical expression of eq.
(41). For the ratio of the coefficient of the first power of (v + }) over the coefficient of
the second power of (v + 1) one has — tanh(27(N +1))/(27) in eq. (52), while one gets
~tan(27(N +1))/(27) in eq. (53). In both cases in the limit 7 — 1 one gets the classical
value —(N + 1) [42]. However, it is clear that the extra parameter = (or ¢), which is
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related to the deformation of the algebra. allows for this ratio to obtain values different
from —(N +1).

For a brief comparison to experimental data, we select the standard example of the
X'T} state of Hy [61], which has been studied in the framework of the O(4) limit of the
vibron model in [42]. (For a more sophisticated fitting, in the framework of the vibron
model including higher order terms, see [62].) The potential curve of the X'} state
of H,, reported in (63], has been obtained [61] through use of the Rydberg—Klein-Rees
(RKR) method [64-66). For the X'} state of H; it is known that vme; = 14. Therefore,
as in the case of [42], V can be either 28 or 29. We have selected the latter value. as in
ref. [42]. (The former value also gives very similar results.) We have found [63] that an
improved fit is obtained using eq. (53) (which corresponds to ¢ = e'"), while eq. (52)
(which corresponds to ¢ = €7) does not improve the fit. The situation is the same as in the
case of rotational spectra of diatomic molecules (53] or deformed nuclei (12, 21]. In these
cases it has also been found that the choice of ¢ being a phase (¢ = ¢'") was the one giving
improved results. The results of the fit are given in [63]. A clear improvement is seen.

The potential corresponding to the Dunham expansion is known to have the form 47,
48]

V(z) = apz’(1 + Z a;z?). (54)
j

It will be interesting to examine the consequences of the g-deformation on the potential.
In this direction. the known relations [47. 48, 54] between the Y;; coefficients of eq. (26)
and the coefficients a; of eq. (54) could be used.

In conclusion, we have shown that quantum algebras can be used for the description
of vibrational spectra of diatomic molecules, using techniques similar to those used for
the description of rotational spectra of diatomic molecules. While the Hamiltonian of the
anharmonic oscillator, having the symmetry U(2)20(2), corresponds to the first two terms
of the vibrational Dunham expansion, the Hamiltonian of the g-deformed anharmonic
oscillator, having the generalized symmetry U,(2)20,(2), corresponds to all terms of the
vibrational Dunham expansion, summed up in closed form. It also corresponds to partially
summing up the more general Dunham expansion of eq. (26). A similar partial summation

of the Dunham series, concerning the rotational quantum number, has been obtained in
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section 4 and ref. [53] using a q-deformed rotor having SU,(2) symmetry. It is then
plausible that one could fully sum up the Dunham series by considering a more general
quantum algebra having the vibrational quantum U(2) and the rotational quantum SU(2)
(each of them having different value of g) as subalgebras.

6. SU,(1,1) description of vibrational molecular spectra

The Morse potential [51], which offers a widely accepted description of vibrational
spectra of diatomic molecules [36], has been known to have the symmetry SU(1,1) (39, 40,
59, 67-70]. Vibrational spectra are then described by a Hamiltonian which is proportional
to the second order Casimir operator of SU(1,1). In section 4 we have seen that an improved
description of rotational spectra of diatomic molecules can be given by generalizing the
classical SU(2) algebra into the quantum SU,(2) one. It is therefore of interest to check the
consequences and the physical content of generalizing SU(1,1) into the quantum algebra
SU,(1,1), which is already known (60, 71].

In the classical case [70] the SO(2,1) generators satisfy the commutation relations
(K1, Ka] = —iKs, (K3, K3] =iKy,  [K3, Ki] =iK,. (55)

Defining
K+ = K] +2.K2, K_= K1 - iKg, K3 = K,, (56)

one obtains the SU(1,1) commutation relations
[K: K] = £K4, [K+,K-] = -2K,. (87)

The generators of SU(1,1) accept the following boson representation [67]

+

Ky =afaf, K_ = aa,, K. = =(ata; +afaz + 1), (58)

DN} =

where af, a;, af, a, satisfy usual boson commutation relations.

The second order Casimir operator of SO(2,1) is [70]

Ca[S0(2,1)] = —(K? + K} — K3). (59)
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If .V is the number of excitation quanta given to the system (which is equal to the total
number of bosons in the case of the boson representation) and v is the vibrational quantum

number, the eigenvalues of the Casimir operator are given in
1
CQ[SO(Z,I)HNL‘J >= Zu(u+2)|Nu > (60)
where the quantum number w is given by
1
v= —(N—w). (61)
2
N is related to the maximum number of vibrational states by
N=20pne: or N =2vp,+1. (62)
The vibrational spectrum is given by
E(N,w) = Ey — A < C,[SO(2,1)] >= Eo — %w(u +2), (63)

where by <> we denote the eigenvalue of the enclosed operator. Using (61) this can be

rewritten as
N2-1

E(N,v)=E; -4 +AN(v+%)—A(v+%)2. (64)

Rotational-vibrational molecular spectra are usually described in terms of the Dun-
ham expansion (eq. (26)) [47. 48]. Ignoring rotation (i.e. ignoring the rotational bands
built on the vibrational bandheads) one obtains the vibrational spectrum given in eq.
(32). We remark that eq. (64) corresponds to the first two nonvanishing powers of (v+ §)
contained in the Dunham expansion. The same result is obtained by solving [50] the
Schrodinger equation for the Morse potential [51]. It is also obtained in the O(4) limit
of the vibron model [42] for diatomic molecules, which has been extended to triatomic
molecules [43, 56] and to higher order terms [62]). The ratio Y39/Y;o (the anharmonic-
ity constant [59]) is in the present case proportional to 1/N, a result similar to the one
obtained in the vibron model [42].

In the quantum case, the generators of SU,(1,1) satisfy the commutation relations
(60, 1]

(Ko, Kl = +Ks, K4, K] = -[2K0), (65)
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where q-numbers are defired as in section 2.

The generators of SU,(1,1) accept the following boson representation (60, 71]
s okt g ] : »
K4t =dj 4y, K_ = a;a;, K, = §(N, + Ny + 1), (GG)

where the bosons a}, a; (i = 1,2) satisfy eqs (43) and (44).
The second order Casimir operator of SU,(1,1) is [60]

C:[SU,(1,1)] = [Ko][Ko — 1] - K+ K~ = [Ko][Ko + 1] - K-K-. (67)

Its eigenvalues are given in [60]

Ca[SUL(1, V)] |kp >= [s][x = 1]lsp >, (68)
where
K=1+In;-—n1|, #=1+n;+n«z’ (69)
since the basis has the form |xu >= |n; > |n2 >, with [60]
Ini >= —=—(af)™[0 > (70)
Vinil!
The vibrational spectrum is given by
H = Ey — AC,[SU,(1,1)]. (1)
Using the relation |ny — n;| = w + 1 one obtains
wl [w+2
E(Nw)=Ey— A [5] =5 } , (72)
which in the limit ¢ — 1 goes to eq. (63). Using further eq. (61) one has
E(N,v):E’o—A[ -%] v+1—%], (73)

which is the q-generalization of eq. (64).
It is interesting to check how eq. (73) is related to eq. (64) and to the Dunham
expansion (eq. (32)). This can be done by replacing the g-numbers in eq. (73) by their
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equals from eq. (3), subsequently taking the Taylor expansions of the hyperbolic (or
trigonometric) functions. collecting together terms containing the same power of (v + ),
and finally summing up the coefficients of each power of (v + }). In the case of real ¢ the
final result is

E(N,v) = Ey + —%(cosh(r) — cotblrN) 4 weish(rN)(v + %)

e
Smb(7)?|

—r2cosh(TN)(v + -;—)2 + §r3 sinh(TN)(v + %)3 - %r‘ cosh(TN)(v + %)‘

+—2—7'5 sinh(7.V)(v + 1)5 - —2—1-6 cosh(rV)(v + l)‘5 +...] (74)
153 i 2 45 : 2 T .
while in the case of ¢ being a phase the final result is
E(N,v)=E, + 3 prey )2[ %(cos(‘r) —cos(TN)) + rsin(rN)(v + %)

—r2cos(rN)(v + %)2 - (—2)7'3 sin(TN)(v + 11):" - (—l)‘r4 cos(TN)(v + %)4
+%7’ sin(rN)(v + = )5 2 27 cos(rN)(v + 3 )° ) (75)

The following remarks can now be made:

i) Both eq. (74) and eq. (75) reduce to eq. (64) in the limit ¢ = 1 (= — 0).

ii) While eq. (64) contains only the first two nonvanishing powers of (v + ), egs
(74) and (75) contain all possible powers. Thus egs (74) and (75) correspond to the full
Dunham expansion (eq. (32)). However, while the Y;; coefficients in eq. (32) are not
related to each other, their counterparts in eqs (74) (or eq. (75)) are interrelated, since
they all depend on 7 and N.

iii) The anharmonicity constant (i.e. the ratio Y2¢/Yj0), which in the classical case
(eq. (64)) is fixed to —1/N, it is here —r/sinh(7N) (in eq. (74)) or —7/sin(7N) (in eq.
(75)). Therefore the anharmonicity constant is not fixed by N (or, equivalently through
eq. (62), by vmaz). This extra freedom is useful when one attempts to fit experimental
data, as it will be demonstrated below.

For the briefest possible comparison to experimental data we consider the case of H; in

its X ‘E;" state, which has been considered in the case of the anharmonic oscillator (section
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3) as well. We first fitted the data using the classical eq. (64). When attempting to use
eq. (74) one is driven to failure, while eq. (75) gives a result much better than eq. (64), as
it can be seen in (72|, where the results are reported. Thus the data indicate that g should
be a phase, and not a real number. This conclusion is the same as the one drawn from
the comparison of the q-rotor (having the symmetry SU,(2) ) to the rotational spectra
of deformed (12, 21] and superdeformed [22] nuclei, as well as to the rotational spectra ot
diatomic molecules [53]. It should also be pointed out that the parameter r remains small
in all cases.

In conclusion, we have shown that the quantum algebra SU,(1,1) can be used for the
description of vibrational spectra of diatomic molecules, in the same way as the quantum
algebra SU,(2) can be used for the description of rotational spectra of molecules [53] and
nuclei [12, 21, 22]. The second order Casimir operator of SU,(1,1) corresponds to a special
form of the Dunham expansion containing all powers of (v + i), while in the classical
case of SU(1,1) only the first two nonvanishing powers of (v + 1) are obtained (39, 40, 59,
67-70].

In the classical case the relation between the second order Casimir operator of SO(2,1)
and the eigenvalues of the Morse potential is known [70]. It is interesting to find the relation
between the second order Casimir operator of SU,(1,1) and the eigenvalues of the Morse
potential in the quantum case. For the latter, the q-Schrodinger equation [73] for the
Morse potential should be solved. In addition, it is worth evaluating dissociation rates for
the Morse potential in the quantum case, by generalizing the procedure outlined in [74].

7. Discussion

We have demonstrated that quantum algebras can give improved descriptions of ro-
tational spectra of deformed and superdeformed nuclei, as well as of rotational and vibra-
tional spectra of diatomic molecules. These successes call for further investigations, some
of which are listed here:

i) It is interesting to check what forms of classical potentials give the same spectra
as the q-harmonic oscillator, the g-rotor and the q-anharmonic oscillator. Progress in this
direction is reported in the talk of Costas Daskaloyannis [75].

ii) Can the quantum algebra SU,(3) be successfully used for the description of rota-

tional nuclear spectra?
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iii) Can the g-generalizations of the O(4) and U(3) limits of the vibron model [42]
(which has U(4) symmetry) give improved descriptions of molecular spectra?

iv) Can the g-generalizations of the U(5), SU(3) and O(6) limits of the Interacting
Boson Model (IBM) [44] (which has U(6) symmetry) give improved descriptions of nuclear
spectra?

v) The q-generalized Schrodinger equation has been recently solved for the harmonic
oscillator, giving the q-deformed harmonic oscillator spectrum [73]. It will be interesting
to see what spectrum is obtained by solving the g-Schrodinger equation for the Morse
potential.

References
[1] P. P. Kulish and N. Yu. Reshetikhin. Zapiski Semenarov LOMI 101 (1981) 101
[2] E. K. Sklyanin, Funct. Anal. Appl. 16 (1982) 262

(3] V. G. Drinfeld, Quantum Groups in Proc. Int. Congr. of Math., ed. A. M. Gleason
(Am. Math. Soc., Providence, RI, 1986) p. 798

(4] M. Jimbo, Lett. Math. Phys. 11 (1986) 247

(5] E. Witten, Nucl. Phys. B330 (1990) 285

[6] L. C. Biedenharn, J. Phys. A 22 (1989) L873

(7] A. J. Macfarlane, J. Phys. A 22 (1989) 4581

(8] A. Jannussis, University of Patras preprint (1990)

[9] Y. J. Ng, J. Phys. A 23 (1990) 1023

(10] X. C. Song, J. Phys. A 23 (1990) L821

(11] H. Yan, J. Phys. A 23 (1990) L1155

[12] P. P. Raychev, R. P. Roussev and Yu. F. Smirmov, J. Phys. G 16 (1990) L137
(13] E. Abe, Hopf Algebras (Cambridge University Press, Cambridge, 1980)

(14] M. J. A. de Voigt, J. Dudek and Z. Szymanski, Rev. Mod. Phys. 55 (1983) 949
[15] F. X. Xu, C. S. Wu and J. Y. Zeng, Phys. Rev. C 40 (1989) 2337 .

[16] M. A. J. Mariscotti, G. Scharfi-Goldhaber and B. Buck, Phys. Revl 178 (1989) 1864



192

17] T. K. Das, R. M. Dreizier and A. Klein, Phys. Lett. 34B (1971) 235

(18] A. Klein, R. M. Dreizler and T. K. Das, Phys. Lett. 31B (1970) 333

[19] S. M. Harris, Phys. Rev. 138 (1965) B509

[20] M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions” (Dover. New
York. 1972)

[21) D. Bonatsos. E. N. Argyres, S. B. Drenska, P. P. Raychev, R. P. Roussev and Yu. F.
Smirnov, Phys. Lett. 251B (1990) 477

[22] D. Bonatsos. S. B. Drenska. P. P. Raychev, R. P. Roussev and Yu. F. Smirnov. J.
Phys. G, to appear

[23] M. Sakai, At. Data Nucl. Data Tables 31 (1984) 399

(24] P. J. Twin et al., Phys. Rev. Lett. 57 (1986) 811

(25] P. E. Hodgson, Contemp. Phys. 28 (1987) 365

[26] P. J. Nolan and P. J. Twin, Ann. Rev. Nucl. Part. Sci. 38 (1988) 533

[27] J. Dudek, W. Nazarewicz, Z. Szymanski and G. A. Leander, Phys. Rev. Lett. 39
(1987) 1405

(28] T. Bengtsson, [. Ragnarsson and S. Aberg, Phys. Lett. 208B (1988) 39
[29] W. Nazarewicz, R. Wyss and A. Johnson, Nucl. Phys. A 503 (1989) 285
(30] L. Aleksandrov, Math. Phys. and Comp. Math. 11 (1971) 36

[31) D. Ye et al, Phys. Rev. C 41 (1990) R13

[32] M. A. Riley et al, Nucl. Phys. A 512 (1990) 178

[33] J. A. Becker et al, Phys. Rev. C 41 (1990) R9

[34] C. W. Beausang et al, Z. Phys. A 335 (1990) 325

[35] J. A. Becker et al, Nucl. Phys. A 520 (1990) 187c

(36] G. Herzberg, Molecular Specira and Molecular Structure, Vol. 1: Spectra of Diatomic
Molecules (Van Nostrand, Toronto, 1950)

[37] G. M. Barrow, Introduction to Molecular Spectroscopy (McGraw-Hill, London, 1962)
(38] R. D. Levine and C. E. Wulfman, Chem. Phys. Lett. 60 (1979) 372



193

(39] C. E. Wulfman and R. D. Levine, Chem. Phys. Lett. 97 (1983) 361
[40] C. E. Wulfman and R. D. Levine, Chem. Phys. Lett. 104 (1984) 9
[41] F. Jachello. Chem. Phys. Lett. 78 (1981) 581

[42] F. Iachello and R. D. Levine, J. Chem. Phys. 77 (1982) 3046

[43] O. S. van Roosmalen, F. Iachello, R. D. Levine and A. E. L. Dieperink, J. Chcm.
Phys. 79 (1983) 2515

[44] A. Arima and F. Iachello, Ann. Phys. 99 (1976) 253; 111 (1978) 201; 123 (1979) 468

(45] F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University Press,
Cambridge, 1987)

[46] D. Bonatsos, Interacting Boson Models of Nuclear Structure (Clarendon, Oxford, 1988)

(47] J. L. Dunham, Phys. Rev. 41 (1932) 721

(48] J. F. Ogilvie and R. H. Tipping, Int. Rev. Phys. Chem. 3 (1983) 3

(49] J. F. Ogilvie and R. H. Tipping, J. Quant. Spect. Radiat. Transfer 33 (1985) 145

(50] S. Fliigge, Practical Quantum Mechanics (Springer, Berlin, 1974)

[51] P. M. Morse, Phys. Rev. 34 (1929) 57

[52] C. E. Miller, A. A. Finney and F. W. Inman, Atomic Data 5 (1973) 1

[53] D. Bonatsos, P. P. Raychev, R. P. Roussev and Yu. F. Smirnov, Chem. Phys. Lett.
175 (1990) 300

[54] H. W. Woolley, J. Chem. Phys. 37 (1962) 1307

[55] O. S. van Roosmalen, R. D. Levine and A. E. L. Dieperink, Chem. Phys. Lett. 101
(1983) 512

[56] O. S. van Roosmalen, I. Benjamin and R. D. Levine, J. Chem. Phys. 81 (1984) 5986
57] I. Benjamin, Chem. Phys. Lett. 112 (1984) 403
58] I. L. Cooper and R. D. Levine, J. Molec. Struct. 199 (1989) 201

[

[

[59] R. D. Levine, Chem. Phys. Lett. 95 (1983) 87

(60] H. Ui and N. Aizawa, Mod. Phys. Lett. A 5 (1990) 237
[

61] S. Weissman, J. T. Vanderslice and R. Battino, J. Chem. Phys. 39 (1963) 2226



194

[62] S. K. Kim, I. L. Cooper and R. D. Levine, Chem. Phys. 106 (1986) 1
(63] D. Bonatsos, P. P. Raychev and A. Faessler, Chem. Phys. Lett., to appear
(64] R. Rydberg, Z. Phys. 73 (1931) 376

(65] O. Klein, Z. Phys. 76 (1932) 226

[66] A. L. G. Rees, Proc. Phys. Soc. 59 (1947) 998

[67] Y. Alhassid, F. Iachello and F. Girsey, Chem. Phys. Lett. 99 (1983) 27
[68] Y. Alhassid, F. Giirsey and F. lachello, Ann. Phys. 148 (1983) 346

[69] S. Brajamani and C. A. Singh, J. Phys. A 23 (1990) 3421

[70] D. J. Lee, K. J. Shin and S. K. Kim, Chem. Phys. Lett. 175 (1990) 87
(71] P. P. Kulish and E. V. Damaskinsky, J. Phys. A 23 (1990) L415

(72] D. Bonatsos, E. N. Argyres and P. P. Raychev, J. Phys. A, to appear
(73] J. A. Minahan, Mod. Phys. Lett. A 5 (1990) 2625

(74] Y. Alhassid, J. Engel and F. [achello, Phys. Rev. Lett. 57 (1986) 9

[75] D. Bonatsos, C. Daskaloyannis and K. Kokkotas, these Proceedings


http://www.tcpdf.org

