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COLLECTIVE POTENTIAL FOR HEAVY ION NUCLEAR REACTIONS 

C. SYROS 
Laboratory of Nuclear Technology 

University of Patras, GR-26110 Patras, Greece 

Abstract 
It is shown that the nuclear charge polarisation during heavy ion nu­

clear reactions enhances the secondary maximum of the collective energy 
surface and produces a secondary minimum in the deformation energy near 
R ~ Rmin + 2fm. The potential energy and mass formulas are given as a 
function of A and Z. It has been shown that charge polarisation without 
shape deformation and indeed of the prolate type does not produce any sec­
ondary minimum. It is also seen that the relativity effect consists in shifting 
the secondary minimum towards higher rest excentricities. For deformation 
of the oblate type the collective potential has a similar form like that in the 
spherical case. Entry and exit channel collective potentials are also given for 
the case of strong nucléon transfer. The mass for the two-body interacting 
system has been calculated and for large distances it tends to the corre­
sponding reduced mass. The present theory is based on a particular form of 
the single particle potential following from the scalar ττ-meson classical field 
theory. 

1. Introduction 
The precise determination of the nuclear collective potential energy for 

heavy ions is one of the principal problems in the present day nuclear theory. 
Many authors undertook recently various attempts to establish a viable the­
ory for the heavy ion nuclear interactions with considerable successes [1-7]. 

Despite the encouraging results the problem continues to be present in 
the literature [8-14] not only regarding the new experimental results but 
also the theoretical investigations [16, 17]. 

The present work is based on an early development [18] in connection 
with the nuclear structure, radii and binding energies. That theory has 
been used recently for calculations in fission theory and heavy ion nuclear 
reactions [2, 15]. 
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The main purpose of the present paper is to generalise previous 

results [13] and to proceed in deriving various consequences of the theory 

towards obtnining collective potentials for heavy ion nuclear reactions. 

Many outstanding problems are still awaiting their solution, the chief 

of them being the determination of the mass formula which has to be used 

in solving the classical or the quantum mechanical equations describing 

the motion of two fusing heavy ions. This problem may appear in a 

number of different variances and in particular those concerning the 

spallation, the nuclear fission, the nucléon ejection during fusion, etc. 

In addition, as it will be seen later in the present work there is at 

least one more aspect of an important phenomenon discovered almost 

one and a half decade ago [19-20] in connection with the existence of 

the secondary minimum of the potential energy barrier in the fission of 

the heavy nuclei. It is related to the nuclear charge polarisation which 

appears during the collision of heavy ions due to the strong Coulomb 

repulsion in conjunction with the also very strong attraction between a 

part of the neutrons. This line of thinking might lend a new aspect to 

the proximity theory of the collective interactions. 

In Section 2 the basic theoretical concepts of the present work are 

formulated in the simplest possible form of a classical field theory. We 

start with a non - qumtised Ligrangian density for the two interacting 

fields of t\\2 nucléons and the π - mesons. The coupling term used here 

is the scalar one and the π - meson field is, of course, the one component 

scalar field. The result is a set of two second-order differential equa­

tions. The solution of them leads to a multiplicity of polypoles which 

may successfully represent shape deformations of the interacting nuclei. 

In the present work, however, only the monopole solution is discussed 

as in Section 3. Of course, as it was expected, the result to the lowest 

approximation is equivalent to folding the simple Yukawa potential 
-μ.τ. 

~ e 'r . However, the folding procedure does not lead to results beyond 

spherical symmetry except in the case in which asymmetry is arbitrarily 

introduced in the folding density distribution function for the nuclear 

matter. In Section 4 the results for the collective nuclear potential are 

given. They are referring to the centric collision of ions with given 

excentricity and charge polarisation. The effect of the relativistic con-
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traction is also discussed. Extensive numerical calculations have been 

made with a Hewlett-Packard 45b computer. The case of the collision 

of prolate ellipsoids with non - zero impact parameter is investigated in 

Section 5. In Section 6 the entrance and exit channel calculations of 

V „ are briefly discussed, while the ion mass for fusion reactions is 

given in Section 7. Finally, some conclusions and the discussion of them 

are given in Section 8. 

As the principal result of the present work might be considered 

the revelation of the double humped collective potential energy surface 

as a consequence of the shape deformation and the simultaneous nuclear 

charge polarisation. Another important result is the fact that the shape 

deformed nuclear potential can be obtained directly from the solution of 

the resulting Euler-Lagrange field equations (or higher order polypoles. 

A number of useful generalisations of our approach is obvious. 

2. THE FUNDAMENTALS OF THE THEORY 

Our contribution to the solution of the problem expounded in Sec­

tion 1 begins with a non-quantised Lagrangian density for the deriva­

tion of a single particle nuclear potential. This potential is subsequently 

used as the basis for the deduction of a collective potential for heavy 

ion nuclear reactions. Since we consider the heavy ion fusion as the 

inverse process of the nuclear fission the potential we obtain expresses 

the features of the shape deformation. The form of the Lagrangian 

we use is preferable to us because it allows to use the nuclear density 

matrix in the form of products of normalised Slater determinants, 

SA( Xi , . . . xA), where the elements of SA may be appropriate Schröd-

inger or Dirac single-particle wave functions. Using these Slater deter­

minants we write the Lagrangian density in the form (18] 

1(μ·Φ·-Σ-ί.Φ-ί·<0 (2.1} 

GSAT<Î>SA , 

S Î ( S A . ~ S A , Φ. - 4 * ) - -
v a„. ax, ' >x, 
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where, eg-., Ύ ; - ι τ ^ " π 1 1 , s ^ , ε Hatniltonian and 

x*j = ί-xvjlj = 1,2, . . . A} 

the four-vector of the j - th nucléon. The parameter μ = l/r<,,and r0 is 

the nucléon radius. The field Φ will obviously depend on all coordinates 

U, = (t, r,))· 
The form (2. 1) of Ç£ is particularly suitable for the density 

averaging procedure which we are intending to use subsequently in 

solving the Eulcr-Lagrangc equations. The variational principle 

δJclxJ . . . dxi c£ (s*, 4 " SA , Φ, -4T * ) (2. 2) 

gives rise to the two coupled equations 

zfiYj-^r + mAsA = - Ο Γ Φ β Α (2.3) 
j V <?x, I 

and 

Σ ϋ ] Φ +μ»Φ - - G S Î T S A . (2. 4) 
j 

We are interested in solving eq. (2.4) in the time-independent limit 

and we put G -*- — V2· 

We consider also the simplest case Γ = 1 (scalar coupling) and we 

use the property 

f SÎ SA ar*... αΤχ - Α"' Σ P„ (u), (2. 5) 
J n« 

where 

Q«J?i) -Ψί,(Γ7)·Ψη.(ί) (2.6) 

and n„ is a set of one - nucléon quantum numbers. 

Thus, we can consider the stationary problem and carry out the 

reduction of the mauy-particlc problem (2. 4) by means of the integration 

/ Φ(τ„ . . . r*)dr3

2 . . . drA - Φ ( Γ , ) . (2.7) 
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Next, we exploit the fact that Φ is a fast decreasing function of 

all rj, . . . ΓΑ and apply the Gauss theorem 

j div.· grad31>(r,, .. . r., . . . rA) drj 

(2.8) 

= grad,<ï>(rît . . . r p . . . r.) dAj = 0 Ί 

for j = 2, 3, . . . Λ. 

From (2.4-2.8) it follows that 

V2 Φ (?,) - μ 2

 Φ (7t)=*4ng2

5 (7,); G = 4ng2, (2.9) 

where § (rt) is the mean nuclear mass density defined through the 

expression 

0 ( Ο = Λ~ 1Σρ η ( ί ) . (2.10) 

A further simplification is concerning the volume, V, for which 

the Gauss theorem has been applied in (2.8). The nuclear mass density 

being approximately constant inside V is put to a first approximation 

equal to 

ί ^ Α - Σ γ ' Α - . ^ Α (2. U) 

From (2.9) and (2.11) we obtain the equations 

ν ί

Φ . ( 0 - μ 2 Φ Ι ( 0 = 4ng*A. ; 0 < r < a (2.12) 

and 

ν2Φ0(7)-μ2Φ0(Γ) = 0; a < r , (2.13) 

where a is the radius of the nucleus. 

3. THE SINGLE-PARTICLE INTERACTION 

The single-particle potential used in the present paper is obtained 
by solving eqs. (2.12), (2. 13) and by taking only the spherically symme­
tric solution. 
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It was shown a long time ago that it is possible to derive a single 

particle central potential [18] which exhibits a characteristic dependence 

on the mass number, A, of the nucleus. To this purely nuclear potential 

the Coulomb potential was added and it was, then, used for nuclear 

structure calculations. 

The resulting total potential energy for the interior of the nucleus 

is given by the simple closed expression 

V,(r) = -3g 2 /r„ [ l - ( l + A 1 / j )e- A V i (r 0 /r)s inh(r/r ( I )] + 

«, r '/ ι ( 3 1 ) 

+ 3Z · e2/2r„ . A h . [ l - (1/3) (r/r0 A
 ,3)2j ! 0 < r < a 

and for the outside of the nucleus by 

V0(r) = -3gVr„ [ A M ^ ' H U - A ^ s i n l i A V j ] (r„/r) <Γ(Φ'] + 

+ Z-e»/r·. r > a . { 3 · 2 ) 

Equations (2. 12) - (2. 13) may give as solutions all higher order 

polypoles which are appropriate to the non-spherical nuclei. These, 

however, are not considered in the present work. 

The factor g2 is the interaction constant of the scalar π-meson 

and the nucléon fields. The boundary conditions for (2.12) and (2.13) 

have been taken such that the condition V) = V„ holds. The form of 

the above potential is shown in fig. I for the nuclei 
10. I 2 8 T 2M-. 500 7 5 0 γ 

We use the above potential to calculate nuclear deformation energies 

and collective potentials for interacting heavy ions. 

The method used consists in folding the nuclear density of the 

part of the one nucleus which is outside the rest of the other nucleus 

with the potential valid for the exterior region, both nuclear and Cou­

lomb. Other authors have also used in connection with (3. 1) various 

folding procedures with great success. 

This procedure does not produce a secondary minimum in the 

potential energy barrier. The way of foldiug used in the present work 

is given by 

V (R) - JV e(R + ?) - o(7) - d7», (3. 3) 
ν,-ö 
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5 40-
I 

20 

- 2 0 -

- 4 0 

Fig. 1. Single particle potential curves for spherical nuclei 

according to eqs (3. 1) and (3. 2) as a function of the distance. 

The various curves correspond to different mass and proton 

numbers. The curves for protons intersect the r-axis. A certain 

form similarity with the Woods-Saxon potential is obvious. 

The principal characteristic of the present potential is the 

slope change with the mass number. While the depth increases 

for neutrons, if the mass number, A, increases, it decreases 

strongly for increasing proton number, Z. Another important 

feature is the change of sign in the slope of V (r) in the neigh­

bourhood of r=0, if Ζ increases beyond a certain Ze(A). Also 

the slope of V(r) at the boundary of the nucleus increases for 

increasing mass number. The interaction constant, g, lias been 

given the value g =1,92. 10~9. The potential energy curves 

intersect the axis of ordinntes from top to bottom in the fol­

lowing order: J^X (protons), '^X (protons), "^U (protons), 

'°Π (protons), 'JΠ (neutrons), '^Te (protona), ''jTe (neutrons), 

*$U (neutrons), ^ X (neutrons) and ™ X (neutrons). 
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where Vt ^ V2 are the initial volumes of the two nuclei, (3 is 

the common volume of the interacting ions and o(r') the nuclear matter 

density distribution. Eq. (3. 3) yields effectively the potential energy of 

a fraction of the one nucleus in the field of the other one. In doing the 

integration in eq. (3.3) we do not consider neither friction or change of 

the density of the nuclear matter nor angular momentum effects or 

transfer This implies that the nucléons accommodate themselves in the 

increasing volume of the bigger nucleus. The influence of the angular 

momentum and of the spins of the interacting nuclei on the resulting 

collective potential energy will be considered elsewhere. R is the posi­

tion vector having its origin at the centre of mass of the one nucleus 

and pointing to the centre of mass of the other nucleus. 

in studying heavy ion reactions one has to answer the question as 

to the direction of the nucléon transfer. One also has to think about 

parallel or antiparallel neutron and proton transfer. These questions 

have been investigated in the present work. The result is summarized 

in the Fig. 3c which gives the force exercised by each of the ions on 

protons or neutrons in the critical region of the interaction volume. To 

find the force on protons we take, as usual, the gradient of the poten­

tial energy and we find 

3 g M l + AV') e-A t / n[cosh(r/r0)/(r r , ) - s i n h ( r / r 0 ) / r 2 ] -

F ( r ;A ,Z ) = - Ζ · e2 · r / (rj · A) ; r < r 0 A , / » , 

W ( r ) | - { j (3.4) 

3 g i [ A , / . , e A l / , - ( l + A t / s ) s i n h A l / i ] e - r / r « ( l / ( r r 0 ) + l / r 2 ) -

- Z e 2 / r 2 ; r > r„ AV» . 

If we put Ζ = 0 in eq. (3.4) we get the force acting on the neu­

trons when they are exactly on the nuclear surface. This force exhibits 

a sharp maximum just on the nuclear surface (Fig. 2a, b). 

From Fig. 2a, b it follows that in the neighbourhood of the nuclear 

surface there is a shell around the nuclear surface of approximately 3fm 

thickness, where the force acquires particularly high values (Fig. 2c). 

In the interior of the nucleus and beyond the spherical shell the force 



The single particle nuclear force, 

F(r; Λ, Z), as a function of the 

distance, r, from the centre of 

nucleus with parameter the mass 

number for neutrons (a) and fpr 

protons (b). The maximum of 

the force is at r=r„A '* both for 

neutrons and protons. The curve 

shows a resonance-like form of 

which the FWHM is about 2 im. 

This implies that an exceedingly 

strong force acts on the nucléons 
on the nuclear surface (c), whilst 
the rest of the nucléons are 
quasi-free. This strong surface 
force gives rise to the formation 
of a shell of strongly attracted 
nucléons which compress the 
rest of the nucléons inside the 
nucleus. Considering that the 
ratio Λβ/Λ is a rather small 

number, where A* the number 

of the nucléons inside the strong 
force shell, we see that it is 
consistent with the independent 
particle model. Using the sur­
face force one easily calculates 
the classical surface tension as 
well as the pressure inside the 

nucleus. 

- 5 L 
Fig. 2a. 

Fig. 2b. 

,ou 
_ ^OOO Ο ° ° ° °n e 

y r t o „ o o O o n o ° 0 0 ° 
Ρ é c o " G ° o ° °OOOo!l w / Γ Α Λ Ο ρ , OSO Ο ^ J O " O 
fco ο ° ο , ° ; " ο ο 0 , ? σ η 
RbO°o5>°co£oo<?o00c U J ο ο ο ο y- 'J ο w

0 0 οΛ°ο 

, _ , W o 0 ° , 
ι /^ _ η ν w Λ> Ό ο °„ <ί»ο 

Fig. 2c. 
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on the nucléons is considerably weaker and tends exponentially to zero 

wiht increasing: distance from the surface. 

The situation arising- is reminiscent of a gas of almost free nuc­

léons which are compressed by a spherical layer of nucléons. 

If the mass number, A, is very high, then the ratio A s /A, 

where A, is the number of the nucléons on the surface, is very small. 

This might give some explanation for the success of the independent 

particle model. The majority of the nucléons are moving quasi - free in 

the nucleus inside a nuclear «wall» kept by the strong central surface 

force. 

From eq. (3. 4) we can gain still more information about the heavy 

ion nuclear reactions. To this end let us take the derivative of F with 

respect to the mass number in the neighbourhood of the nuclear surface. 

The result is : 

g2A~7 se-A , / , /(rJ(X4-AV s)) .{(-A , / s)(cosh(X + A 1 / 9 ) -

-sinh(λ + A , / s)/(λ-fA , / ,))+(l + A ,/,)·(sinh(λ + A l / , ) -

-2cosh(X+AV,)/(X+AVï)+2sinh(X+A , / î)/(X+A1 / ,) i)} 

^ F a ( r , A , Z ) 

+ Z-e2/rJ-(2-A 5 / , / 3 + λ·Α_ ΐ); α - i ; λ < 0 

(3.5) 
Λ ' Ζ ) - 1 g 2 . A - , / s e - ( ^ ^ ) / ( r : . ( , + A V S ) ) . { A V , s i n h ( A V 3 ) + 

r=reA "+Χτ9 , • ,. 

+ e A / » _ ( l + A
, / S ) c o s h ( A V î ) 4 . ( e A ^ _ A V , . e A V , _ 

- ( t + A , / j)cosh(A , / ,)+sinh(A , / 8) + 2.AVïsinh(A , / 3))/ 

(X+A,/s) + (2 . ( l + A , / î ) s inh(A , / , ) -2 .A , / j e A , / 3 ) / 

(λ+Α , / Λ)2} + 2Ze2A~V3/(3rJ(X4-A,/s)*); a = 0 ; λ > ο 

In eq. (3.5) λ > 0 ( λ < 0 ) means that the derivative of the force is 

taken outside (inside) the nucleus. 

<?Fa Equating <?A = 0 gives the critical value of Ac (Z) for pro­

tons (Z>0) and for neutrons (Z = 0) for which the resultant force at the 



The force acting on the nucléons 
In the neighbourhood of the 
nuclear surface as a function" of 
the mass number having as a 
parameter the number of pro­
tons, Z. For neutrons (Z=0) (a) 
the force is generally higher 
than for protons (Z>0) (b). The 
three curves ο, β, γ give the 

force on three different surfaces : 

(a) corresponds to r = a + 2r, 

(a =» radius), (β) to r = a and 

(γ) to r=a—2r9. It is important 

to note that the force exactly 

on the nuclear surface is a mono· Τ 

tonically increasing function of u. 

the mass number both for neu­

trons and protons. In the neigh­

bourhood of the nuclear surface 

this ceases to be anymore the 

case. This fact complicates the 

determination of the direction 

of the nucléon transfer during 
the heavy ion nuclear reactions. 
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A2.Zj 

Fig. 3c. 

20H 

1 0 -

μ=(Α1-Α2)/(Α1+Α2) 

Flg. 3d. 

Tlte nuclcon transfer criterion (c) is shown also for protons (d) with 

the detail (e) and for neutrons (f). It is seen that the force directing 

the nucieon transfer becomes positive after a certain mass number, 

Ac, or mass asymmetry (Λ, — Λ») /(Λ| + Λ,). For larger values of the 

mass number, A > A c , t h e nucléon transfer force (f) is constantly 
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0.5 

- 0 5 -

μ = ( Α Γ Α 2 ) / ( Α , + Α 2 ) 

Fig. 3β. 

2 = 0 

directed towards the heavier ion. For A<Ac the force is very weak 

and mainly directed towards the smaller ion with several exceptions 

capable of causing nucléon oscillations. This curve corresponds to 
stable nuclei. For non-stable nuclei the situation changes drastically. 
In Intervals of f S 0 the nucléon transfer may become stochastic. 
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ÄJ-ZJ 

t 20h 

10-

- 5 -

Fig. 3c. 

Z > 0 

U = (A 1 -A 2 ) / (A 1+A 2 ) 

Fig. 3d. 

The nucleoli transfer criterion (c) is shown also for protons (d) with 
the detail (e) and for neutrons (f). It is seen that the force directing 
the nucléon transfer becomes positive after a certain mass number, 
Ac, or mass asymmetry (At — A,) /(A t +· Λ,}. For larger values of the 

mass number, A > Ac, the nucléon transfer force (f) is constantly 
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0.5 

- 0 5 · -

U. 

30 

20 

10 
/ 

I / 
/ 

/ I 

μ = ( Α Γ Α 2 ) / ( Α , + Α 2 ) 

Fig. 3e. 

2 = 0 

100 200 
A 

Fig. 3f. 

directed towards the heavier ion. For A<Ac the force is very weak 

and mainly directed towards the smaller ion with several exceptions 

capable of causing nucléon oscillations. This curve corresponds to 
stable nuclei. For non-stable nuclei the situation changes drastically. 
In Intervals of f S 0 the nucléon transfer may become stochastic. 
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ι ; 

considered point (? = r0A 4-Xr0) changes direction with increasing 

mass number. 
More precisely we have the following behaviour of the nuclear 

force : 
increasing function of A for 

increasing A < At(Z) fot all values of r. 

F,(r;A,Z) = (3.6) 
decreasing function of A for 
increasing A>AC(Z) at points r ^ a . 

Considering eq. (3.6) we construct the following nucléon transfer 

criterion, f, for determining towards which of the two ions is the motion 

of the transferred nucléons during partial or complete fusion reactions. 

It is defined by 

f (A„ A„ Z„ Zt) = |Fi(a; A„ Z , ) - F,(a, A„ Zt)\ -f [Fe(a+2 · r0; A„ Z i ) - ( 3 . 

- F , ( a - 2 r0; A„ Z,)) + [ F ( ( a - 2 - r0; A„ Z , ) - F 0 ( a + 2 · r0; A«, Z t)]. 

The expression for f gives the resultant of the forces acting on a 

chain of three nucléons (Fig. 3c-f). These three nucléons occupy the 

critical contact region of the ions where the nucléon transfer is initiated 

(Table I). 

The nucléon transfer criterion has been evaluated for the case of 

A I + A Î = A const, and Zt 4-Zj = Ζ constant. The result is shown in 

Fig. 3d. In defining f the convention has been adopted that positive 

values imply nucléon transfer from (Aj, Zt) towards (Ar, Zt) while nega­

tive values indicate the contrary (Ai>A s and Z!>Zt). 

The change of sign of the nucléon transfer criterion implies the 

existence of oscillations in the mass number space. The relationship 

between the nucléon transfer and the mass number oscillations and their 

physical significance will be discussed elsewhere. 

Another factor causing deformation of the two interacting nuclei 

is the differential action of the nuclear and the Coulomb forces. While 

the protons belonging to the two nuclei repel each other and their 

motion becomes decelerated when the repulsion becomes too strong, the 

corresponding neutrons attract each other stronger and stronger and 

their motion becomes accelerated. This leads to a pronounced deforma­

tion of the colliding nuclei which eventually take on an ellipsoidal form. 
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T A B L E I 

Some extreme values of the force as function of the mass and atomic numbers, 
A and Z. The force acting on the neutrons is constantly directed towards the 
bigger nucleus for distances satisfying r > —Olir, (r > 0 for the exterior, r < 0 
for the interior of the nuclear surface). For r <—0.5 there exists a maximum of 
the force at the indicated mass numbers. For protons there exist also maxima at 
the relevant distances from the nuclear surface for the indicated nuclides. The 
existence of a maximum implies the change of force direction acting on the 
nucléons in the neighbourhood of the nuclear surface between two interacting 

ions (see also Fig. 2). 

Distance 
from 

nuclear 
surface 

in 
r0 · units 

+ •2.0 

+ 1.5 

+ 1.0 

+0.5 

0.0 

- 0 . 5 

- 1 . 0 

- 1.5 

- 2 . 0 

Position of the 

force maximum 

Λ(Ζ = 0)| 

I 

— 

1 

1 

1 

Ϊ 

- i 

— 

118 ! 

100 

104 ! 
i 

Λ 

02 

170 

170 

248 

170 

152 

62 

62 

Ü2 

Ζ 

28 

68 

68 

96 

69 

28 

28 

28 

28 

Normalised absolute 

maximum 

value of the force 

1 

Neutrons ι Protons 

1 

2.801 1.315 

4.944 * 3.086 

3.770 ! 6.570 

1 

15.644 ! 13.106 

28.090 | 25.200 

18.194 15.960 

11.92G ! 10.215 

7.894 6 490 

5.231 4.064 

Absolute value of 

the force for 

max{AJ and max{Z) 

Neutrons 

2.801 

4.944 

8.770 

15.644 

28.090 

18.194 

11.831 

7.726 

5.068 

Protons 

1.025 

2.936 

6.480 

13.010 

25.027 

15.370 

9.248 

5.383 

2.965 
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Contrary to this déformation is acting the relativistic contraction, li no 

nuclear charge polarisation is assumed, then the collective potential 

shows only one single minimum. However, while the ions proceed to 

the collision, the protons of them show a certain «unwillingness» to 

follow the neutrons. As a consequence, while the distance of the two 

nuclear matter centres becomes smaller and smaller, the distance of 

the two nuclear charge centres may decrease slower than the distance 

of the mass centres until it suddenly becomes zero. At this point the 

charge in the compound nucleus acquires again a more or less uniform 

distribution. 
— • —*• 

This process may be described by a polarisation function, P(R) , 

for the nuclear charge which is calculated in the next section. 

4. THE CHARGE POLARISATION IN CENTRIC COLLISION 

The most important feature of the present theory is the introduc-

tion of the polarisation function, Ρ (R), in the collective potential. We 

define the polarisation by the expression 

P ( R ) = j 7 oC i(0 . d r 3 - f j 7 - o C î ( 0 clr3, (4.1a) 
ν.+Γ) V Î + Ô 

- * • - • 

where çr (r) and Q„ (r) are the charge density distributions of the 

two ions. 

To clarify the physical conditions for which the charge polarisation 

inside the interacting ions takes place the following different ca?es are 

considered : 

(i) If the heavy ions are in sufficient distance from each other and 

they already interact through the Coulomb potential, the protons 

show a tendency to occupy the farest parts of them. Therefore, 

the average charge distance, Reen t e r i ng the Coulomb potential 

is bigger than the distances of the centres of the nuclear masses. 

It is given by 

Rc = R-f-P(R), (4.1) 

where P ( R ) = [3r0 | 8 • ( 1 - ε 2 ) " ^ ^ / ' - } - A ' , ' 3 ) ! 
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(ü) 

and ε is the excentricity of the heavy ions. The absolute value, P, 

of the polarisation is used due to rotational symmetry. These equa­

tions result from the reasonable assumption that the protons occupy 

the farest parts of the two ion volumes together with an adequate 

number of neutrons. The excentricity used to express the form of 

the interacting ions is for prolate ellipsoids defined as usual by 

•V 
Ι ) 2 Λ Ι β 2 

1 r- = 1/1 r aiid is in the present work assumed 

a 2 V or 

to he the same for both ions. However, there is no difficulty in 

introducing two different cxcentricities or even completely differ­

ent triaxial ellipsoids. Here and throughout this work we use the 

notation \At, Zx, a, b} and |A 2, Za , α, β} to express the mass num­

ber, the atomic number, the large semi -axis and the minor semi-

axis of the bigger and the smaller ellipsoids respectively. 

If the nuclear interaction starts, nucléons pass from the smaller to 

the bigger heavy ion with the consequence that the half axes of 

the latter increase. In this case the polarisation function is obtained 

after some calculations and is given by 
P(R) = [3r0 /8 | -[«,(R)-Ml -ε«) '·Ί* Α,,Λ\. 

The function ct^R) is a solution of the equation 

x4 M 3 x3 | c 2 x 2 4 c 0 = 0. 

(4.2) 

(4.3) 

Eq. (4. 3) is a consequence of the nucléon number conservation 

during fusion and the assumption that the nuclear matter density 

remains essentially unchanged. The coefficients of the polynomial 

are given functions of the distance, R, of the ion centres and are 

given by the expressions 

c „ = - ( l0 /3r„) . A , . R - ( 8 / 3 r „ ) · A, 

- 0 / 3 r J ) - R 4 + (2/ra· A ^ . R » 

C - 0 

Ca = 2- [ (R/r„) 2 -A; / s l 

c3 - (8/3r0)· R . 

R -\- A,1' -
(a) 

(b) , 

(c) 

(d) 

(4.4) 



136 

(iii) If the uuclear interaction has advanced at a stage in which the 

remaining volume of the smaller heavy ion cannot accommodate Zj 

protons, charge transfer sets in from the smaller to the bigger 

heavy ion. In this case the charge polarisation weakens, but the 

proton charge centres change their positions during the fusion 

reaction in the same way as in case (ii) above. 

(iv) If the fusion process of the heavy ion has arrived at a stage in 

which the remaining volume of the smaller ion is too small to 

contain any protons, the polarisation disappears suddenly. The 

polarisation function equals zero and the distance of the nuclear 

matter centres is given by 

Rc = R-f-Q(R), (4.6) 
where 

Q(R) = d,(Rl + d,(R). (4. G) 

If it happens that the inequality is satisfied 

R 2 - r t ; (R)- f -u 2 >0, 

then d](R) and dt(R) are given by 

d,(R) = (A+B)/C and <1»(R) = (D-t- E)/ F, (4.7) 

where the quantities A, B, C, Ü, E, V are also functions of the distance R 

and are çiven by 

A = ( R - ( 3 / 8 R ) (2 α R + R ! - u | ( R ) - f a 2 ) * / ( 4 a R-l-R 2 -f t f (R)+a 2 )) · 

(2a3/3 + ( « i ( R ) « 2 - a 1 - a 2 R2)/2R + ( R 3 - a 2 ( R ) - | - a 2 ) 7 2 4 - R 3 ) , (4. 8) 

Π ==(3 /8R)(2Rü, (R) + a 2 ( R ) - u 2 + R 2 ) 2 / ( 4 a , ( R ) R + a f ( R ) -

- a ! 4 - R 2 ) · (2ii»(R)/3+(a|(R) · « * - « { ( R ) - R « «;(R))/(2R) + 

+ ( n j ( R ) - , (
î + R î ) 3 / 2 4 R 3 ) , (4.9) 

C = 4 . o ; ( R ) / 3 - ( 2 . ( a s ( R i + « s ) / 3 - r - ( 2 - t t s - a ; ( R ) - 2 u2(R) R 2 -

- 2 a s R 2 - « ; ( R ) - a 4 ) / 4 R 4 - R 3 / l 2 ) , (4.10) 

D = (3(1-ε2)/8 R ) ( a 2 + 2a R + R 2 - a 3 ( R ) ) 7 ( a 2 + 4 u R + R ' - a ^ R ) ) · 

(2a 3 /3-r-(« 2 a 2

1 (R)-a 1 -a 2 R*)/2R4-(R 2 -a 2 (R)-fa 2 ) 3 /24 R 3 ) , (4. 11) 



137 

li = ( 1 - R " - ) . ( R —(3/8R)(2· R r l l (R)4-f tJ(R)-a 2 4-R 2 )V(4a,(R)R4-

+ a } ( R ) - o s + R f ) ) · ( 2 · a-;(R)/3 + (a» ^ ( R ) - a | ( R ) - R 1 · a«(R))/ + 

+ («;(R)-. n *. |-R«y/24-R 3 ) I (4.12) 

F = (4r^ • A,)/3-(l-E ! t)(2(a-;(R)-l-a : ,)/3 + (2· a 2 « 2 ( R ) - 2 • o } ( R ) -

- 2 R 2 n j (R)-2« 2 - R 2 - a f ( R ) - a 1 ) / 4 R 4 - R - 1 / t 2 ) . (4. 13) 

On the contrary, if the inequality is valid 

r t 2 ( R ) - a : - R 2 > 0 , (4.14) 

then eq«5. (4. 7) chanpe and become 

d,(R) = ( A - H ) / C and d 2(R) = (D - E)/ F. (4.15) 

In this case the quantities Λ, H, C, D, K, F are given by the 

expressions 

Λ = (3/8R)(2R o,(R) + « 2 (R)-n 2 4-R 2 )7(4R • e | ( R ) + ««(R)-

- a 5 + R 2 ) . ( 2 a ? ( R ) / 3 4 - ( a 2 a 2 ( R ) - a J ( R ) - a f ( R ) · R 2)/2R4-

+ ( a 2 ( R ) - a 2 4 - R 2 ) 3 / 2 4 · R 1 ) , (4.16) 

Β = (3/8R)(2R a + R 2 - a 2 ( R ) + c r ) ' / ( 4 a · R4- R 2 - a 5 ( R ) + a 2 ) • 

(2 a*/34-(rr (t J (R)-a«-« 2 · R2)/2R4-(R2-ft2(R)+-«2)724 R a ) , (4. 17) 

C = (4 a ; ( R ) / 3 ) - ( 2 ( a 5 + a ^ R ) ) / 3 + (2na- d 2 ( R ) - 2 R 2 a l ( R ) - u 4 -

- 2 a 2 R 5 -a{(R))/4R4-R'/12), (4.18) 

D = (3(t-E*)/8R)(2n R-J-R 2-fT 2(R)4-a 2) l/(4a· R- |-R»-« 3 (R) f-a2)· 

(2 a1/3-h(a2 a î ( R ) - « 2 R 2 - a 1 ) / 2 R + (R 2 +a 2 -« 2 (R)) 3 /24R· 1 ) , (4.19) 

E = (1 -e 2 ) (3 /8R · (2R «,(R)4-«2(R) - u2l-R2)2/(4R u,(R)-|· 

4 - a ? ( R ) - ( r 4 - R 2 ) - R ) ( 2 ( ^ ( R ) / 3 + ( « 2 « - ( R ) - R 3 a 2 (R)~ 

- -a ; (R)) /2R4-(« 2 (R)-« 2 + R2)V24· R"), (4.20) 

F « 4r3 · A , / 3 - ( l - E 2 ) ( 2 ( a î ( R ) 4 - a 3 ) / 3 + (2a2 · a s (R) -2R» a J ( R ) -

- a 4 - 2 a 2 R«-a}(R) ) /4R4-R7l2) . (4.21) 
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The relations (4. 6) - (4. 21) follow from geometrical considerations 

on the basis of Fig. 4 and from the fact that complete fusion of the ions 

takes place with nucléon transfer from the small to the big ion. This is 

not an assumption but the result of the calculation of the force respon­

sible for the nucléon transfer. It is evident that the nucléons likely to be 

transferred from one to the other ion must necessarily be on the nuclear 

Fig. i. Collision of two deformed heavy ions with impact 
parameter equal to zero. The initial values of the serai-
axes fulfil! the conditions a > a, b > β. The fact that 

nucléons move from the smaller to the bigger ion is ased 
to calculate the increasing axes 2a (R), 2b (R) with dimin­
ishing R. The initial volumes of the ions are V, and V,, 
v t > ν ι · The common volume is AI?BC. The volume of 

the smnller ellipsoid ARBC determines the transfer of 

nucléons which are distributed uniformly inside the bigger 
ellipsoid (shaded volume). The shaded volutile increases 
with decreasing centre distance, R. I) and d are the cen­

tres of the nuclear masses. 

surface. But exactly on the nuclear surface the force is a strictly increas­

ing function of the mass number. The effective force responsible for 

the actual nucléon transfer equals the difference of the forces by the two 

interacting ions on their common surface. 

The polarisation function P(R) as defined here represents a length 

which is added to the distance of the nuclear mass centres, R , to g ive 

the average distance of the proton charge centres entering the Coulomb 

potential. lt is illustrated in Fig. 5 for a pair of tons 102^0 — 95 Λ111. 
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In calculating the collective potential energy, Vcou. (R), the poten­

tial energy of each of the ions in the field of the other ion should be 

determined. In doing so one is tempted to take the half of the sum for 

reason of symmetrisation. However, the argumentation just given above 

shows that this should not be done due to the inequality (Fig. 3a, b (β)). 

! g r a d V : , ( r ) U „ > | grad V„(r) | r - „ (4. 22) 

It is, therefore, seen that nucléon transfer takes place generally 

easier from the nucleus with smaller A3 to the nucleus with larger Αχ 

than conversely {Ax > A2). This happens because the nucléon attraction 

is stronger towards the surface of the heavier ion as inequality (4. 22) 

shows. If the mass numbers Ai and A2 of the ions before the interaction 

are different, then, of course, it is not allowed to symmetrize the collec­

tive potential energy because of the effect just mentioned. In this case 

the half axes of the bigger nucleus increase. For spherical nuclei the 
1/3 

radius, Ri, will take the final value Rlf = (Aï-f-A2)r0, if no nucléon 

emission accompanies the fusion process. In any other case, e.g., of 

scattering, nuclear reaction or spallation, the final value of the radius, 

Ri, will be smaller than R1( associated with no nucléon emission. 

The collective potential energy obtained in the above way has the 

following forms corresponding to the clarifications given in the equa­

tions (4. 1) - (4. 5). Thus, we have : 

(i) : Veoii = (~3g2 · A,) / r e (A; , »e A Ì / , - ( l +ΑΪ / β )«η1ι A1/') e - R / W ( R / r 0 ) 

- H Z f Z f e 2 ) / ( R + Rc) (4.23) 

(H): Vc e U = ( - 3 g 2 (A t -A5))/r e ( (A,+ Aj)Va e ( A * + A s ' ) V l _ 

~ ( l + (A1-l-A;) l3)sinh(A1-rA2)1/3) · 

e - ( R + d 8 ( R ) ) / r e / ( ( R + d 2 ( R ) ) / r 0 ) - f ( Z 1 . Z 2 e 2 / ( R + Rc)), (4.24) 

where the nucléon transfer from A2 to Ax at each distance is given as a 

function of this distance by 

Ai = (3(L-e2)/r3
n)(2(a](R)-fa5)/3 + (2 a2 · u 2 ( R ) - 2 R 3 · a{(R) 

- 2 u 2 · R 2 - a } ( R ) - a 4 ) / 4 R 4 - R 3 / 1 2 ) . (4. 25) 
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20h 
j 

15 

3 4 5 6 
/ 

rX ι t ι ι ι ι — ι — ι — l — J _ l — ι 
10 

R- Rmin —* *n» 

Ftß. fia. 

Nuclear charge polarisation as a function of the distance of the ion 
centres. It is defined as the distance of the charge centres of the 
fusing ions. The axis of abscissae gives the difference R-Rmin, 
where Rmin is the value of R for which the one ion is absorbed by 
the other. In the last stage of the fusion the charge distance remains 
almost constant until it vanishes suddenly. As it is expected the 
charge polarisation implies the slower decrease of the distance of 
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Fie. 5b. 

the two charge centres with decreasing R. At very small distances 
the charge transfer sets in, but the distance of the charge centres 
remains almost constant until finally it vanishes completely. The cur­
ves are for the pair "JNo · "J* Am , and 1 · 8 correspond to the 
excentricités e = 0.875, 0.8, 0 7 , 0 6 , 0 5, 0.4, 0.2, 0.0 (a). 
In (b) the curves represent a detail of (a). It is seen that 
there is a small variation in horizontal part with varying R . 
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M*V 
- ποο 

4 0 0 

-500 

-1C00 

Fig 6. Collective potential energy of the fusing heavy ion 

system fjijNo · "'Am as function of the centre of masses 

distance. R. The ions are considered as spherical (e = 0) but 

the nuclear charge distribution densities in their interiors are 

not uniform (ΡφΟ). Under the conditions stated the potential 

energy surface exhibits a single minimura due to the nuclear 

attraction and a single maximum due to the Coulomb repulsion. 

After the beginning of the fusion the distance is measured 

between the centre of the bigger sphere and the centre of that 

part of the smaller sphere which is still in the exterior of 

the other sphere. 
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Fig. 7a. 

-500 1-

- 1 0 0 0 -

1 ! 

1 

2 

3 

4 

5 

6 

10 
f i l l i 
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14 
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2 5 0 -

Fig. 7b. 

- 5 0 h 

Collective potential energy of the fusing heavy ion «system ^jNo · '^Ain as a 

function of the centre-of-masses distance, R. The curves (a) show Vcoii. for various 

eccentricities ε = 00, 02. 0.4. 0.5, 0.6 and 0.8 with no charge polarisation, P=0. 

The charge of the eccentricity has as a consequence a tremendous change in the 

depth of the nuclear attractive potential from about —llOOMeV to OMeV (a). This 

change is not very simple in structure. As it is seen in the detail (b) there appears 

a weak structure of a double humped potential in the neighbourhood of « = 0600. 
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Fig. 7c. 

The secondary maximum which appears at R = Rmin4-6 to 8 fm is of 

abont 10 MeV, when the secondary minimura is (c) also situated at 

about 4- 10 MeV. If P ^ O and e = 0, then the minimum of Vcoii. is 

of about — Π0Ο MeV. The structure of the collective potential in the 

upper neighbourhood of ε = 0 5 is also shown (d). Comparing the 

curves in the parts (b) and (d) of the above figures it is seen that 

the charge polarisation strongly enhances the appearance of the 

secondary minimum in the collective potential energy surfaces. Since 

the polarisation shifts the Coulomb maximum towards smaller values 
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MeV 
1 2 3 4 S 

i. fm 

Fig. 7d. 

of R the consequence is that the depth of the minimum is diminished 

as compared to the corresponding minimum without polarisation. For 

spherical ions and Ρ φΟ the minima differ due just to the mentioned 

effect (see FIR. 6). The small energy barrier is of the order of 

about 10 (b) resp. 20 MeV (d), while the big one is of 650 MeV. 

The virtual equilibrium deformation corresponds to R =» a — a -f- 2 fm, 

where a and α are the two large semi-axes. This equilibrium could 

only be realised In the process of fusion if the nucléon kinetic 
energies were removed by γ-emission. 
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rii) and (tv): V c e„ = ( - 3 g 2 - ( A , - AJ))/r„ • ( ( A 1 - r - A ; ) V A t + A , ' ) ' 

- ( l + (A, h Ai)V»sitili(Λ,-h A ; > V » ) •e-tR + < ,»<R ,» / r^((R-l-d,(R))/re) 

+ ((Z, + Zi) (Z, - Zi) · e')/(R 4- Re). (4. 26) 

Again, the charge transfer frotti Aj to At is given by 

Zi = - Z t + (3 Ζ, (1 - e2)/(rj A,)) · ({2 (ot;(R)-f α')/3 + (2α* · e»(R) 

- a « - 2 n*(R). R'-2ct 2 R , -a|(R))/4R -f R*/t2). (4. 27) 

- 8 0 

Flg. 8. Potentini enerpy curve for the Ion pair jjNe· '*C 
with excentricity e = 0 and polarisation l a 0. In this 

case no secondary minimum appears. 

It follows from the above expressions that the nuclear charge polar­

isation enhances the secondary minimum in the collective energy sur­

face. Also the charge polarisation together with the neutron attraction 

may be considered as responsible for the ellipsoidal form of the colli­

ding nuclei. Charge polarisation alone does not produce any secondary 

minimum in spherical nuclei. The results of the above equations are 
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M«V 

Flg. 'Ja. 

Ffg. 9b 

The same as in FÌR. 8 with P=0 and e=0.84t, 0.838, 0.834, 0.831, 
0 827 rorre«powUtiK to the curve« 1 · Γ». Λ»τ"Ι·» Ι«» these enne* 
MO secondary minimum appears duc to absence of polarisation. 
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shown in the Figs. G- 14b, where no relativity effects .ire considered. If 

the relative velocities of the two approaching ions are higb, then the 

relativistic contraction results in a reduction of the large serai - axes 

of the two prolate ellipsoids. If the initial form of the nuclei is spher­

ical, then, of course, the relativity effect consists in giving them the 

IMjr. 10. The same as in Fig. 6 for the ion pair " N e - 'JC. 
No secondary minimum appears due to the conditions e=0 

despite the non-vanishing charge polarisation (P^fcO). 

form of the oblate ellipsoids. For prolate ellipsoids the excentricity has 

the expression 

ε » V l - i b / a J M l - ß 2 ) - 1 , (4. 28) 

where as usual (*) 

M Ü - i E W M - c H - i r 2 ) 1 ' ' . (4.29) 

c is the speed of light in vacuum, EH is the kinetic energy and M is the 

mass of the ion. Secondary minimum in the collective interaction ap­

pears only for particular values of the excentricity, ε (β), and it disappe­

ars completely for oblate ellipsoids as illustrated in Figs. 15a - 1Gb. 

Ο This β should not be confused with the minor semi - axis of the el­
lipsoids. 



149 

MeV 

Potential energy (a) 
as function of the 
centres distance of 
the fusing ion system 
î°Ne - ^C. In con­
trast to the case of 
Fig. 7 now the ions 
are both deformed 
(ε η^ 0) and have 

non-uniform charge 

density distributions 

(Ρ=£0). The effect 

of this combination 

of parameters (e f̂eO, 

Ρ =£0) is that the 

potential surface ex­

hibits now two ma­

xima (Coulomb) and 

two minima (nuclear). 

Due to the low num­

bers (A t, Zf) and 

(A», Z,) the barrier 

heights are very 

small (~keV). This 

appears clearly in the 

detailed (b) curves. 
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Fig. 111». 
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MeV 

Fig. 12a. 

-2001-

Fig. 12b. Ltm 

The curves show the potential energy of the fusing system 
" i u * '5iN d f o r t h e excentricities (from bottom to top) e=0 475, 
0.486, 0 490, 0.495, 0.5 nnd for charge polarisation (P^&0). 
The doubly humped structure of the energy surface Is now 
clear. The barrier heights now are of the order of magnitude of 
a few MeV as it can be seen from the detailed (b) curves. 
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Fig. 13η. 
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"""Rrnin 

M*V 

Fig. 13b. 
Lfm 

-100-

The doubly humped character of tiie energy surface becomes 
accentuated with increasing mass and atomic numbers, A, Z. 
In the case of the ion system ?i*Ara - "jNp the barrier heights 
are approx. 20 MeV (b) and 050 MeV (a). This behaviour of the 
energy surface is a consequence of the combination of the 
parameters e ^ O and P^feO. The values of the excentricity 
are β = 0.517, 0 523, 0.530,0.536, 0.593. There is no difficulty 

in talcing different excentricités for the two ions. 
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R-PL 

50h 

Fig. 14a 

MtV 

The sntne (a) as in 

Fig. 13 for the ion 

system 'JjJSm - ̂ Zn 

for Ρ=τί=0 and ε=0.513, 

0.520, 0.527, 0.534. 

0.541. It is seen from 

the detailed carves 

(b)that there is an ex* 

centricity for which 

the nncleus *^U can 

undergo a transition 

from the spherical 

to the deformed (b) 

state with Ral .Sfm 

almost without any 

energy consumption 

and indeed with the 

emission of about 

δ MeV. 

Fig. 14b. 
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MeV 

-200L 
Fig. 10a. 

-501-
Fip. ISh. 

The effect of the relativity factor ß=*u/c on the potential energy 
carves (a) appearing during the fusion process of the heavy 
ions ™U 

hottom) to the vnlues {1 - 0, 0.07, 0.14, 0.21 
detail that the potential energy curve is strongly suppressed 
towards more negative vnlues (b). This becomes clear by com­

paring the curves 13b with 12b, where β » 0. 

'P,jNd. The different curves correspond (from top to 

It is seen in the 
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Fig. lfia. 
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Potential energy for the 

ion pair 'g$Am - "jNp as 

function of the distance 

with parameter the relati­

vity factor β. The curves 

(from top to bottom) cor­

respond to the values β=0, 

0 07, 0.14,0.21. The curves 

for the first two ß-values 
coincide due to scale (a), 
whilst they are distinct 
in the detailed curves (b). 
The role of β is to deepen 

the potential curve for 

prolate ellipsoids of very 

high rest excentricity 

(e(o)-O.S43). On the con­

trary, if the rest excentri­

city is less than a certain 

value, then the effect of β 

is to flatten the potential 

curve. This demonstrates 

that the role of the rela­

tivity factor β is not uni­

que but it depends on the 

rest excentricity of the 

colliding nuclei. 

Fig. lr.b. 
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5. THE INFLUENCE OF THE IMPACT PARAMETER 

The results described in Section 4 arc valid for centric collisions, 

i.e., vanishing impact parameter. Since this case is not the most general 

one we derive here the formulas pertaining to non - zero impact para­

meter. For the sake of generality we consider from the beginning pro­

late ellipsoids. The reasons distinguishing the prolate from the oblate 

ellipsoids consist in that the latters do not lead to double humped poten­

tials. They can be considered separately. The next step is to find the 

common volume of the two ellipsoids and calculate the nucléon transfer. 

To this end the coordinates of the points A, Β are necessary. From 

Fig. 17 we find that the coordinates of these points. A(x A , yA) and 

B ( x n , y n ) , a r e given as solutions of the nuclear volume conservation 

n2x4-f 2στχ34-α>χ ΐ4-2ΐοχ-υ2 = 0 . (5. 1) 

The coefficients are functions of the centres' distance of the el­

lipsoids and the impact parameter, η, and have the expressions 

o = b 2 / c r -ß* /cr 

Γ = 2β*δ/α2 

ο = β*-ρ»δ/α 2-ον 
^ 2 b g 

and ο) = τ2 |- υ2/ α 2 + 2<ιο . 

The parameter δ is related to the distance of the centres and the 

impact parameter, q, through the relation 

δ = V R ' - q 2 . (5. 2) 

The common volume ö(R»q) of the ions I and 2 is the sum of 

Öi(R, q) and ö»(Ri θ) and they can be obtained from the integral 

Οι (R, Π) - b5 J ( l - x2/a :) | Φ ( Χ ) - 1/2 sin 2iP(x)| dx , (5. 3) 
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where tiie angle Φ(Χ) is given by 

V(x) = a rccos i iy A -f-(y A -y n )(x-x A )/(x B -x A )]/bVl-x 2 /a 2 }(5.4) 

and yn > 0. 

If y B <0, then the volume Oi(R.<l) increases by the volume 

Oi(R,n) which is calculated from the expression 

öi(R,q) - nb2[2/3a-xn+x3
rt/(3a2)]. (5.5) 

More precisely we have 

~ /n » I 8 i ( R , q ) i >'n>° 
Oi R.q - L / n n V / n , " (5.6) 

I Oi(R,n) + Oi(R, q); y B < 0 · 

The volume öi is included inside the surface of which a plane cut 
is denoted in Fig. 17 by CDBC. 

Similarly we find öa from (5.3) and (5.5) in the form 

„ / n v 10«(R,q) ; yA<q 
Of ( R . q ) - { s / n . , . . . | n , (5-7) 

l öt(R,q) + üi(R.q) ; yA>q-

In (5.7) the following definitions hold: 

*n 

8i(R, q) = β 8 /[φ(χ) -1/2 sin (2 Φ (χ)) | · [ 1 - (χ-δ) 2 /« 2 ] dx (5. 8) 

with 

Φ(χ)= « r c c o s | | y A - q - ( x - x J ( r A - y J / ( x , - x j ] / 3 V r = T 7 = ^ W ? } 

and 

Oi(R.q) = π β 2 ( χ Α - δ 4 - α - χ ν ( 3 α 2 ) + (δ-α) 3/(3α 2) | . 
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The volume ö i «s that contained inside the surface of which a 

plane cut is AFEA in Fig. 17. 

Fip. 17. Collision of two deformed nuclei with semi-axes (a, b) 
and (α, 0) (a>a nnd b>ß) and with non-vanishing impact para­
meter, q. The points Λ(χ Λ , yA) and B(x B , y„) are the top 

and the bottom, respectively, of a plane cut of the two ellipsoid«. 

The distance of the two centres R =»\^δ»Τη*· T » e point Κ is 

the centre of mass of the part of the small ellipsoids remaining 

still outside the hip ellipsoid. The illustrated situation of the 

colliding heavy tons corresponds to the case q<ß. The neck is 
an ellipse containing the points A and Π. According to otir model 

the volume delimited by ΛΠΠΡ.ΡΛ lias contributed to the increase 

of the big ellipsoid indicated by the shaded area. The charge 

polarisation is indicated qualitatively. Meforo complete fusion 

the proton charge density in the central volume of the system 

is considerably diminished due to the polarisation phenomenon. 

Using the above results one fiuds for the distance K„ , where χ is 

the centre of the volume AGHBA, the expression 

M R . ^ - K + y»,)7' (π. Π) 

with 

xM-(i;+i:+i; ,+!: ,)/(v i-öi-8i-ö!-öi)+» (&ιο) 

and 

y M -(i; + i ; ) / ( v , - 8 i - 5 i - ö ! - f ^ ) + q . (*.u) 
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Fig. ISa. 

-400 

| J.200 

Fig. 18h. 

Potential energy curves for interacting heavy ions with various impact parame­
ters durin? fusion or fission processes. In part (a) of the figure the potential 
energy curves correspond to the case in which only neutrons are transferred from 
the smaller to the bigger ion. It is seen that the main change in the curves 
appears in the region of nuclear attraction dominance, while in the Coulomb 
dominance region the potential energy is almost unchanged. If protons are also 
transferred from the smaller to the bigger ion then the change is extended to a 
greater region of distances as is seen in part (b) of the figure. In this particular 
case the two ions are mutually exchanging equal numbers of neutrons and pro­
tons, while due to the partial fusion a number of neutrons corresponding to the 
value of the impact parameter, η, is transferred from Uie smaller to the bigger 
nucleus. The depth of the potential curves decreases for increasing impact parameter. 
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The symbols in (5. 10) and (5. 11) are defined by 

I« = ( V b*J x(l - x 2 / a 2 ) [rp(x) - 1/2 sin 2cp(x)| dx , (5. 12) 

* A 

i;-ör,btJ[yA-(x-xA)(yA-yBi/(x11-xA)lMx)-l/2«n(2V(x))ldxf (5.13) 

ΐ;-δΓΙβΙ/ΐφ(χ)-ν ,2«η(2φ(χ))1 [l~(x-5)2/a2](x-ô)dx, (5.14) 
* Α 

Ιν = 0 2 " " 1 β 2 | [ φ ( χ ) - 1 / 2 5 ΐ η ( 2 φ ( χ ) ) ] [ ΐ _ ( χ _ δ ) » / α 2 ) · 

. [ y A ~ q - ( x - x A ) ( y A - y B ) / ( x B - x A ) j d x . (5.15) 

With the data obtained in the present section the collective poten­

tial according- to (4. 23), (4. 24) and (4. 26) has the form »iven in Fig. 18 

for spherical nuclei. 

R. KNTRANCK AND F.X1T CHANNEL KNF.ROIKS 

In the case of elastic scattering the collective potential energy in 

the entry as well as in the exit channels is the same. If the scattering 

is inelastic the collective potential energy of the two colliding ions is, 

in general, different in the two channels due to the change of the 

nucléon states. Despite this change the error resulting from neglect­

ing it in the collective potential energy is of minor significance. 

However, when both matter and energy arc transferred from the 

one to the other heavy ion, the difference of the collective potential 

energies in the entry and exit channels is so large that it cannot be 

ignored. In order to take it into account properly one has to make sepa­

rate calculations of the collective potential energy for each channel. 
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This lias been donc in the present section. The method used consists in 

the following : 

(i) The impact parameter, η, and the distance of closest approach, 

R, are fixed in advance. Wc select two ions identified by (A l t Zt) 

and (Aj, Zt) as well as by the excentricités ^ , F l t which for 

simplicity we assume to be equal, Fj = F, . We let these ions collide 

with Riven relative energy E rH . By the procedure described in the 

previous sections the collective potential energy is calculated as a 

function of the distance, R, until this intercentre distance becomes 

equal to R (Fig. 17). While R > R the collective potential is a 

sum of the nuclear and the Coulomb parts of the energy. The dis­

tance R = R defines the last point of the entry channel collective 

potential which is represented by the curve on the left of the axis 

of the ordinates in Fig. 18a, b. 

(ii) In the exit channel the ions do not approach each other any more 

but instead they recede. In the exit channel again the collective 

potential is the sum of the two terms as in the entry channel. 

However, an important difference exists now in the process of 

calculating it. While nucléon transfer takes place in the entry 

channel due to the gradually proceeding partial fusion, there is no 

nucléon transfer in the exit channel. Consequently, the neutron 

and proton numbers of the two ions are equal to those at the last 

stage of the fusioning system in the entry channel. The numerical 

calculations showed that the depth and the width of the curves 

depend for constant A l t . \ t , Zy, Za on R, Ρ, ε and on the impact 

parameter, q, of the colliding system. According to the usual con­

vention the distance of the two centres has been given negative 

values. 

After the above preliminary explications wc proceed to a formal 

definition of the entrance and exit channel of the collective potentials. 

We consider the two interacting ions ((A f t, Z„);<t= 1,2). Let the wave 

function of the i - t h ion be approximately given by a Slater deter-

minant, S ° as defined in Section 2. Let {rj e | j e « 1 , . . . Ae} be the 
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coordinates of the nucléons. ua is a set of quantum numbers including 

A, . Z„ . We write for the coordinates of the second ion nucléons 

r?2 = R + r-2 where R = 2 nija. r*t/ Σ mj t 

the CM coordinate of the second ion with respect to the CM of the first 

one. The expectation value "(R) is obtained from the expression 

<R (J, Μ, α„ a,, K„ E2)> = <M'j;| | R | ¥£>. (ti. D 

The wave functions! Ψ*"') are defined as follows [21] : 

Let I«,, i0 ; (ff = 1 , 2 ) be the spin and its projection of the ions. The 

total spin and its projection of the ion pair are s = Ij-f· Ij and ii + i 2 = ν , 

where | I r l , | < s < It-f I | . H U [ " ? J > ; a = I, 2 are the internal 

wave functions of the ions, then the total internal wave function is 

given by 
( i t ) ~* - * -*• -¥ - * 

r sv U n , . . . Γι Αι ; Γ2ι, . . . ΓΪΑ» J R ) — 

-?(i,.i.;i«,i,i»v)s;:;: s;:;;, 
H+n=rv 

where I (li , ii ; I2, I21 sv) j are the Clebsch - Gordan coefficients and 

a0 determines A0 , Z0 and all other quantum numbers of the σ - th ion. 

The complete wave functiou is obtained by taking into account 

the relative motion of the ions by means of the corresponding set of 

( "* ~* 1 relative wave functions <plra(R, Ω) | . 

The total wave function of the two ions is 

vI'(;;; = I ( s v ; l m | J M ) r P t r a φ ? ί . (6.3) 

Since according to eq. (2. 5) the matter density distribution is 

determined by S|e? in each ion and consequently its shape (ε) is also 

determined, <R"> fixes already whether or not the two interacting ions 

overlap and, given their shapes, which is the volume of the overlap. If 
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it is assumed that the density relaxation time practically vanishes, then 

<R> determines for increasing volume but constant shape (ε = constant) 

of the first ion the number of nucléons already transferred to it from 

the second ion. 

In practice, of course, the opposite way is used : For each given 

pair of overlapping ions with known internal wave functions, <R,> can 

be calculated. 

The matter density can be written with the help of eqs. (2. 5) and 

the wave function ST j , 

o 2 (7 ; I 2 ) i 2 l u 2 ,E 2 ) = <S (
t ^ |S ( , ^> r , (6.4) 

where the subscript r in < | \ means omission of integration with 

respect to r. 

Next, suppose that there takes place continuous nucléons transfer 

from the ion «2» to the ion «I» with diminishing <R>. It is obvious 

that in this case, A2 and Z2 become functions of <RX Consequently we 

shall write for a„ = a„ (<R>). With these preliminarities we define 

the channel collective potential energy by the following expression: 

Vcoii(<R>; J, M, c^KÎO), a 2 (<R»; Ei, E f) = 

= J \\.,(<R> + 7; I„ i„ a,«R», E,)-o,( r, I2, i2; a2«R», E2) dr3. (0. 5) 
v t - η 

In eq. (<>. 5) the s p i n s i « ; a =»1,2 are so added that the total 

spin J and projection M are as required by the expression for <R^ in 

eq. (»). 1). 

From eq. (6. r>) one cau obtain both the entrance or the exit chan­

nel collective potential provided one uses the entrance resp. the exit 

channel wave function for the relative motion of the ions in eq. (6. 3). 

The actual calculations in the present work have been obtained 

with a number of approximations to the above eq. (6. 5). They are : 
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I) Neglect of the spins I„ ; a - 1, 2 in eq. (6. t) and ((>. 2). 2) The inter­

nal ion wave functions have been approximated by unit step functions. 

In this way <R> reduces to the CM position vector of the second ion 

with respect to the CM of the first one. 

7. THE MASS FORMULA 

The procedure developed in the previous sections allows us to 

determine the mass of each ion in the process of fusion. In what follows 

we give an explicit formula for the mass which can be used in solving 

the equations of motion for two interacting heavy ions. 

For nuclear forces of the type considered here this mass is given 

in proton mass units (λ = mm/mp) by the expression 

l-Sffi>].<7.1) 

Vx and V2 are the initial volumes of the interacting ions, ö (R.) is 

given by 

Ö(R) = π (Ι - ε 2 ) [2/3 (aMR)+a 3 ) + 1/4R · (2a2 a;(R) -

Ί ( 7 2 ) 

- 2 . a;(R)- R 2 - 2 a 2 R 2 - a | ( R ) - a 1 ) 4-R3/12J . 

The form of n(R,q) is given in Fig. 19. 

vS. CONCLUSIONS AND DISCUSSION 

The results presented in the foregoing sections are based mainly on 

the single - particle potential derived from the scalar π - meson field 

theory. The most striking feature of this potential is its structure as 

function of A and Z. It is noted that for increasing Ζ there does not 

only decrease the depth for protons but also the slope of the curve V(r) 

in the neighbourhood of r = 0 changes sign for values of the proton 

number larger than a certain value Z 0 . The collective potential energy 

surface shows a behaviour which strongly depends on the shape defor-

μ(β,ς) = 
[Ζ, + λ-ίΑ,-Ζ,)] [Z2-fX.(A2-Z2)J f, , Ö(R) 

Ζ,-ί-Ζ,+ λ (Α, + Α , - Ζ , - Ζ , 
1 + · 

ν, 
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luation of the interacting heavy ions. Also the charge polarisation plays 

a primordial role in the enhancement of the secondary minimum in the 

neighbourhood of vanishing deformation. For spherically symmetric 

nuclei the charge polarisation is not sufficient to produce the secondary 

minimum. Similarly, the shape deformation without charge polarisation 

does not lead to a secondary mininum in nuclei with medium mass 
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Change of mass for the collective motion during fusion or fis­

sion processes. In the part (a) of the figure the carves shov? 

the variation of the mass with the distance of the mass centres 

for the case of the complete fusion or fission in a form corres­

ponding to zero impact parameter, η-^0, for various ion pairs. 

number. The depth of the secondary minimum is a function of the 

excentricity the maximum being of the order of 10 MeV in heavy 

nuclei, a value strongly depending on the coupling constant g. One of 

the most important results is the prediction that certain spherical 

nuclei may undergo radiative transitions (^-5MeV) to shape deformed 

and charge polarised states. Another interesting feature of the collective 

potential is that for highly relativistic energies there does not show 



In the second part (b) of the 
figure the mass is. given for 
various values of the impact 
parameter in the case of the ion 
pair " { B a - j K r for both neu­
tron (b) and proton (c) transfer. 
The left-hand side of the curve 
gives the variation of the mass 
in the entrance channel while the 
righthnnd side gives the mass 
in the exit channel. Iu the exit 
channel the mass is almost con­
stant due to the detachment of 
the ions. The mass variation be­
comes stronger for decreasing 
Impact parameter. The negative 
values of R correspond to the 
entrance channel of the reaction. 
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any secondary mininum. The reason for this fact is that the combina­

tion of excentricity and charge polarisation which seem to be physically 

mutually inclusive, is spoiled. It is also noted that the mass of the inter­

acting heavy ion system shows the expected behaviour. At very large 

distances it takes the value of the reduced mass of a two particle system 

whilst at very small distances it vanishes completely. Concerning the 

accuracy of the theory we point out that two kinds of approximations 

have been adopted : In the place of the nuclear radius we have used the 

approximate expression a = r„A , where for r„ the value re = 1.2 fm 

has been used. We have done no attempt to optimise the value of re. 

However, there are indications that the dependence on re may become 

crucial in some cases concerning the nucléon transfer criterion. The eval­

uation of this criterion shows that nucléon transfer proceeds from 

lighter to heavier nuclei, if the mass number is bigger than a critical 

value. We took the point of view that the nucléons outside the bigger 

ion interact collectively with the nucléons inside of it from the effec­

tive distance of their centre of mass. Λ similar point of view has been 

taken also in the calculation of the nuclear charge polarisation. 

We have tried to keep the calculations analytical as far as pos­

sible. If use of the computer is made for the calculation of certain mul­

tiple integrals, an increase of the accuracy may appear but as we believe 

it will not change substantially the shape of the obtained curves. 
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