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COLLECTIVE POTENTIAL FOR HEAVY ION NUCLEAR REACTIONS

C. SYROS
Laboratory of Nuclear Technology
University of Patras, GR-26110 Patras, Greece

Abstract

It is shown that the nuelear charge polarisation during heavy ion nu-
clear reactions enhances the secondary maximum of the collective energy
surface and produces a secondary minimum in the deformation energy near
R ~ Rin + 2fm. The potential energy and mass formulas are given as a
function of A and Z. It has been shown that charge polarisation without
shape deformation and indeed of the prolate type does not produce any sec-
ondary minimum. It is also seen that the relativity effect consists in shifting
the secondary minimum towards higher rest excentricities. For deformation
of the oblate type the collective potential has a similar form like that in the
spherical case. Entry and exit channel collective potentials are also given for
the case of strong nucleon transfer. The mass for the two-body interacting
system has been calculated and for large distances it tends to the corre-
sponding reduced mass. The present theory is based on a particular form of
the single particle potential following from the scalar w-meson classical field
theory.

1. Introduction

The precise determination of the nuclear collective potential energy for
heavy ions is one of the principal problems in the present day nuclear theory.
Many authors undertook recently various attempts to establish a viable the-
ory for the heavy ion nuclear interactions with considerable successes [1-7].

Despite the encouraging results the problem continues to be present in
the literature (8~14] not only regarding the new experimental results but
also the theoretical investigations [16, 17].

The present work is based on an early development [18] in connection
with the nuclear structure, radii and binding energies. That theory has
been used recently for calculations in fission theory and heavy ion nuclear
reactions (2, 15].
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The main purpose of the present paper is to generalise previous
results [18] and to proceed in deriving various consequences of the theory
towards nbtaining collective potentials for heavy ion nuclear reactions.
Many outstanding problems are still awaiting their solution, the chief
of them being the determination of the mass formula which has to be used
in solving the classical or the quantum mechanical equations describing
the motion of two fusing heavy ions. ‘'his problem may appear in a
number of different variances and in particular those concerning the
spallation, the nuclear fission, the nucleon ejection during fusion, etc.

In addition, as it will be seen later in the present work there is at
least one more aspect of an important phenomenon discovered almost
one and a half decade ago [19-20] in connection with the existence of
the secondary minimum of the poteutial energy barrier in the fission of
the heavy nuclei. It is related to the nuclear charge polarisation which
appears during the collision of heavy ions due to the strong Coulomb
repulsion in conjunction with the also very strong attraction between a
part of the neutrons. This line of thiaking might lend a new aspect to
the proximity theory of the cnllective interactions.

In Saction 2 the basic theoretical concepts of thie present work are
formulated in the simplest pissible form of a classical field theory. We
start with a non - quantised lagrangian density for the two interacting
fields of the nucleons and the n-mesons. The coupling term used here
is the scalar ote and thie n - meson field is, of course, the one component
scalar field. The result is a set of two second -order differential equa-
tions. The solution of them leads to a multiplicity of polypoles which
may successfully represent shape deformations of the interacting nuclei.
In the present work, liowever, only the monopole solution is discussed
as in Section 3. Of course, as it was expected, the result to the lowest

approximation is equivalent to folding the simpie Yukawa potential
—p.r
~e /r. However, the folding procedure does not lead to results beyond

spherical symmetry except in the case in which asymmetry is arbitrarily
introduced in the folding density distribution function for the nuclear
matter. In Section 4 the resuits for the collective nuclear potential are
given. They are referring to the centric collision of ions with given
excentricity and charge polarisation. T'he effect of the relativistic con-
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traction is also discussed. Extensive numerical calculations have been
made with a Hewlett - Packard 45b computer. The case of the collision
of prolate ellipsoids with non - zero impact parameter is investigated in
Section 5. In Section 6 the entrance and exit channel calculations of
V. are briefly discussed, while the ion mass for fusion reactions is
given in Section 7. Finally, some conclusions and the discussion of them
are given in Section 8.

As the principal resuit of the present work might be considered
the revelation of the double humped collective potential energy surface
as a consequence of the sh'ape deformation and the simultaneous nuclear
charge polarisation. Another important result is the fact that the shape
deformed nuclear potential can be obtained directly from the solution of
the resulting Kuler- Lagrange field equations [or higher order polypoles.
A number of useful generalisations of our approach is obvious.

2. THE FUNDAMFENTALS OF THE THEORY

Our contribution to the solution of the problem expounded in Sec-
tion 1 begins with a non - quantised Lagrangian density for the deriva-
tion of a single particle nuclear potential. This potential is subsequently
used as the basis for the deduction of a collective potential for heavy
ion nuclear reactions. Since we consider the heavy ion fusion as the
inverse process of the nuclear fission the potential we obtain expresses
the features of the shape deformation. The form of the Lagrangian
we use is preferable to us because it allows to use the nuclear density
matrix in the form of products of normalised Slater determinants,
S,(xy,...x,), where the elements of S, may be appropriate Schréd-
inger or Dirac single - particle wave functions. Using these Slater deter-

minants we write the Lagrangian density in the form [18]

9 ;
g(sm —8x, B, ‘é:‘b> = """.%‘S:[Z(Wj—a: + m!)]SA

ox; oxy ! ox;
1 24 é
—?("’¢’—27(b7¢) 2.1
¥ oax; ox;

— GSAirDS, ,
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. 0 . . .
where, e. g., lyj—_,—+m; is the Hamiltonian and
ox;

x={xgli=12..4}

the four-vector of the j-th nucleon. The parameter u = 1/ry, and r, is
the nucleon radius. The field D will obviously depend on all coordinates

{xg =(t,r )}

The form (2.1) of &£ is particularly suitable for the density
averaging procedure which we are intending to use subsequently in
solving the Euler-Lagrange equations. The variational principle

6[((:(: 5 p dx'A Q(SA. —g;'SA b, i__*l’) (2. 2)
ox; ox;
gives rise to the two coupled equations
] 0
Z(wj-—:-Fm,)SA = —Gros, (2.3)
4 oxj
and
S0 +u2d =—GSiTSa . (2. 4)
j

We are interested in solving eq. (2. 4) in the time-independent limit
and we put (J—= — 92
We consider also the simplest case '=1 (scalar coupling) and we

use the property

fS:' Sadrd ... drd =A™ go"" (ry), (2. 5)
where
0, (r) =i (ry) - W, (ry) (2. 6)

and n, is a set of one - nucleon quantum numbers.

Thus, we can consider the stationary problem and carry out the
reduction of the many-particle problem (2. 4) by means of the integration

f(b(r,,.,. ra)dr} ... dr} = op(r). (2.7
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Next, we exploit the fact that P is a fast decreasing function of

- -
all ry, ... ra and apply the Gauss theorem

fdivj' grad,f[)(r,, er Byya r,) dr? =

(2. 8)
=fgradJ(D(rl, cee Ty e 1,) - dAy =0
for j=2,3, ... A.
From (2.4-2.8) it fpllows that
- - e d
Vip(r) —uim(r) = 4ng?p(r;)i G = dng?, (2.9)

where 5 (r;) is the mean nuclear mass density defined through the

expression

2(r) = A7 So,, (). (2. 10)

A further simplification is concerning the volume, V, for which
the Gauss theorem has been applied in (2. 8). I'he nuciear mass density
being approximately constant inside V is put to a first approximation
equal to
A!

D=A—ts A a0 A _ A
g =ATZ 5 =AT = (2.11)

l','

From (2.9) and (2.11) we obtain the equations

v’rvi(?)—u’rv.(?)=4ng=-%; 0<r<a (2.12)
and
V’mo(:)—u’wo(r) =0; agr, (2.13)

where a is the radius of the nucleus.

3. THE SINGLE - PARTICLE INTERACTION

The single - particle potential used in the present paper is obtained
by solving eqs. (2.12), (2. 13) and by taking only the spherically symme-
tric solution.
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It was shown a long time ago that it is possible to derive a single
particle central potential [18] which exhibits a characteristic dependence
on the mass number, A, of the nucleus. To this purely nuclear potential
the Coulomb potential was added and it was, then, used for nuclear
structure calculations.

The resulting totai potentiai energy for the interior of the nucleus
is given by the simple closed expression

Vi(r) = —3g¥r, [l —(1+ All’) e_A‘l’(ro/r)siuh (r/r.,)] +

.y y (3.1)
+3Z- Y20 AP [L—(13)(r/reA )] 0<r<a
and for the outside of the nucleus by
Y -
Vo(r) = — 3g%rs [A'/.’eA 1+ A‘/’)sinh All°] (ro/r) e (rlre) 5.1
2

+Z eYr; r>a.

Equations (2.12) - (2. 13) may give as solutions all higher order
polypoles which are appropriate to the non-spherical nuclei. These,
however, are not considered in the present work.

The factor g* is the interaction constant of the scalar n- meson
and the nucleon fields. T'he boundary conditions for (2.12) and (2.13)
have been taken such that the condition V; = V, holds. The form of

the above potential is shown in fig. | for the nuclei
10 Son 7%

128 218
sBe aTer UL 200K 1 300X -

We use the above potential to calculate nuclear deformation energies
and collective potentials for interacting heavy ions.

The method used consists in folding the nuclear density of the
part of the one nucleus which is outside the rest of the other nucleus
with the potential valid for the exterior region, both nuclear and Cou-
lomb. Other authors have also used in connection with (3.1) various
folding procedures with great success.

This procedure does not produce a secondary minimum in the
potential energy barrier. The way of foldiug used in the present work
is given by

V (R) =fv.,(f{+?).g(?)-d?=, 3. 3)
VemD
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MeV

Vv

Fig. 1. Single particle potential curves for spherical nuclei
according to eqs (3.1) and (3. 2) as a function of the distance.
The various curves correspond to different mass and proton
numbers. The curves for protons intersect the r-axis. A certain
form similarity with the Woods-Saxon potential is obvious,
The principal characteristic of the present potential is the
slope change with the mass number. While the depth increases
for neutrons, {f the mass number, A, increases, it decreases
strongly for increasing proton number, Z. Another important
feature is the change of sign in the slope of V (r) in the neigh-
bourltood of r=0, if Z increases beyond a certain Z,(A). Also
the slope of V(r) at the boundary of the nucleus increases for
increasing mass number. The interaction constant, g, has been
given the value g=1,92, 107" The potential energy curves
intersect the axis of ordinates from top to bottom in the fol-

lowing order: 120X (protons), ;09X (protons), 23U (protons),
98 (protons), '§ N (ncutrons), '}3Te (protons), 'IATe (neutrons),

MU (neutrons), ;00X (neutrons) and }3IX (neutrons).
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where V, >V, are the initial volumes of the two nuclei, O is

the common volume of the interacting ions and Q(r-’; the nuclear matter
density distribution. Eq. (3. 3) yields effectively the potential energy of
a fraction of the one nucleus in the field of the other one. In doing the
integration in eq. (3. 3) we do not consider neither friction or change of
the density of the nuciear matter nor angular momentum effects or
transfer. T'his implies that the nucleons accommodate themselves in the
increasing volume of the bigger nucleus. The influence of the angular
momentum and of the spins of the interacting nuclei on the resulting

collective potential energy will be considered elsewhere. E is the posi-
tion vector having its origin at the centre of mass of the one nucleus
and pointing to the centre of mass of the other nucleus.

In studying heavy ion reactions one has to answer the question as
to the direction of the nucleon transfer. One also has to think about
parallel or antiparallel neutron and proton transfer. These questions
have been investigated in the present work. T'he resuit is summarized
in the Fig. 3c which gives the force exercised by each of the ions on
protons or neutrons in the critical region of the interaction volume. To
find the force on protons we take, as usual, the gradient of the poten-

tial energy and we find

t3g2- (1 +Al,’) : e—Al/-s [cosh (r/ro)/(r- to) —sinh (t/rg) / r2] —
F(r;A.Z)=, —Z-e’-r/(r:-A); r<ro-A1/”
—vvinl= | 0.4
l 3gt. [A".’eA'/’—(t +A Py sinb A e=Iro. (1)(r- 1)+ 1 /15—
1 —Z - e?/r?%; r>roA1/’.

[f we put Z=0 in eq. (3.4) we get the force acting on the neu-
trons when they are exactly on the nuclear surface. This force exhibits
a sharp maximum just on the nuclear surface (Fig. 2a, b).

From Fig. 2a, b it follows that in the neighbourhood of the nuclear
surface there is a shell around the nuclear surface of approximately 3fm
thickness, where the force acquires particularly high values (Fig. 2c).
In the interior of the nucleus and beyond the spherical shell the force



125

30 y ¥
I .
w | ! r,‘ T
1o t
S
201 A A I
Iy W ‘
The single particle nuclear force, - / '\ ! ’! \
F(r; A, Z), as a function of the /{ /./ \\ \
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which the FWHM s about 2 fm.
This implies that an exceedingly 30’-
strong force acts on the nucleons T B ) i 4
on the nuclear surface (c), whilst b [ n ‘
the rest of the nucleons are sl 1 ".' Iy "
quasi-free. This strong surface )
force gives rise to the formation \‘

of a shell of strongly attracted
nucleons which compress the
rest of the nucleons inside the
nucleus. Considering that the
ratio As/A is a rather small
number, where As the number
of the nucleons inside the strong
force shell, we see that it is
consistent with the independent
particle model. Using the sur-

tace force one easily calculates

the classical surface tension as
well as the pressure inside the 'é
nuclens. el
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on the nucleons is considerably weaker and tends exponentially to zero
wiht increasing distance from the surface.

The situation arising is reminiscent of a gas of almost free nuc-
leons which are compressed by a spherical layer of nucleons.

If the mass number, A, is very high, then the ratio A,/A,
where A, is the number of the nucleons on the surface, is very small.
This might give some explanation for the success of the independent
particle model. 'I'he majority of the nucleons are moving quasi- free in
the nucleus inside a nuclear ewall» kept by the strong central surface
force.

From eq. (3.4) we can gain still more information about the heavy
ion nuclear reactions. To this end let us take the derivative of F with
respect to the mass number in the neighbourhood of the nuclear surface.
The resuit is :

gt A e A (™). { (—A ") (cosh(A+A ) —
—sinh(A+AP) JA+A") (144" (sinh( +A"7)—
—2.cosh(A-A )0+ A"=)+2sinh(1+A"=)/(1+A"')')}

+Z.@r (@ AT 340 AT); a=ii A<O
(3.5)

3
il &, T = = ',
EY gt AT rem(A+A >/(r;.(1+A"’)).{A'(~sinix(A"’)+

r=r 4‘/’+1r
=Ty o

1 1
+ e (1A cosi (A + (A — A" eAMs —
— (14 A" cosh (A'*) +sinh (A )+ 2. A "sinh (A'7)/

i 1
AP+ (2. (1+A ™) sinh (A —2. 4B eA ™)

a+a"phr2ze A3 0+ATP); a=o; 20
In eq. (3. 5) A>0 (A<0) means that the derivative of the force is
taken outside (inside) the nucleus.

=0 gives the critical value of A.(Z) for pro-
Tl

Equating %‘j\;

tons (Z>0) and for neutrons (Z=20) for which the resultant force at the



The force acting on the nucleons
In the neighbourhood of the
nuclear surface as a function of
the mass number having as a
parameter the number of pro-
tons, Z. For neutrons (Z=0) (a)
the force is generally higher
than for protons (Z>0) (b). The
three curves a, f, v give the
force on three different surfaces:
(a) corresponds to r = a+ 2r,
(a = radius), (Bf) to r=a and
(y) to r=a—2r,. It is important
to note that the force exactly
on the nuclear surface is a mono-
tonically increasing function of
the mass number both for neu-
trons and protons. In the neigh-
bourhood of the nuclear surface
this ceases to be anymore the
case. This fact complicates the
determination of the direction
of the nucleon transfer during
the heavy ion nuclear reactions.
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Fig. 3c.
20}
w Z>0
10F
=
Qs 1
o | SRS DU R I | [ 1
u=(a,-A,)(A+A,) —
-5

Fig. 3d.

The nucleon transfer criterion (c) is shown also for protons (d) with
the detail (e) and for neutrons (f). It is seen that the force directing
the nucleon transfer becomes positive after a certain mass number,
Ac, or mass asymmetry (A, — A,) /(A, + A;). For larger values of the
mass number, A D Ac, the nucleon transfer force (f) is constantly —
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Fig. 31.

— directed towards the heavier ion. For A<Ac the force is very weak
and mainly directed towards the smaller ion with several exceptions
capable of causing nucleon oscillations. This curve corresponds to
stable nuclei. For non-stable nuclei the situation changes drastically.
In intervals of f =0 the nucleon transter may become stochastiec.
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Fig. 3c.
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Fig. 3d.

The nucleon transfer criterion (¢) is shown also for protons (d) with
the detail (e) and for neutrons (f). It is seen that the force directing
the nucleon transfer becomes positive after a certain mass number,
Ae, or mass asymmetry (A, — Ay) /(A + Ay). For larger values of the
mass number, AD Ac, the nucleon transfer force (f) is constantly -
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— directed towards the heavier ion. For A<Ac the force is very weak
and mainly directed towards the smaller ion with several exceptions
capable of causing nucleon oscillations. This curve corresponds to
stable nuclei. For non-stable nuclei the situation changes drastically.
In intervals of f =0 the nucleon transfer may become stochastic.
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! - . .
considered point (f=roA/’+lro) changes direction with increasing

mass number.
More precisely we have the following behaviour of the nuclear

force :
increasing function of A for
increasing A< A (Z) for all values of r.

F.(r; A, Z) = (3. 6)
decreasing function of A for

\ increasing A D> A.(Z) at points r F=a.

Considering eq. (3. 6) we construct tlie following nucleon transfer
criterion, f, [or determining towards which of the two ions is the motion
of the transferred nucleons during partial or complete fusion reactions.
It is defined by

£(Ay, Ay, 21, Z4) = [Fila; Ay, Z))— Fila, As, Zg)) + [Fola+2 - 10; Ay, Z)) —

(3.7)
—Fila—2-ry; Ay, Zo)] + [Fila—2- r; Ay, Z) — Fola+2- ro; Ay, Z4)] -

The expression for { gives the resultant of the forces acting on a
chain of three nucleons (Fig. 3c-f). These three nucleons occupy the
critical contact region of the ions where the nucleon transfer is initiated
(Table I).

The nucleon transfer criterion las been evaluated for the case of
Ay+ Ay = A const. and Z;+ 7, = Z constant. The result is shown in
Fig. 3d. In defining f the convention has been adopted that positive
values imply nucleon transfer from (A,, Z,) towards (A, , Z,) while nega-
tive values indicate the contrary (A;> Aq and Z;> Z,).

The change of sign of the nucleon transfer criterion implies the
existence of oscillations in the mass number space. The relationship
between the nucleon transfer and the mass number oscillations and their
physical significance will be discussed elsewhere.

Another factor causing deformation of the two interacting nuclei
is the differential action of the nuclear and the Coulomb forces. While
the protons belonging to the two nuclei repel each other and their
motion becomes decelerated when the repulsion becomes too strong, the
corresponding neutrons attract each other stronger and stronger and
their motion becomes accelerated. This leads to a pronounced deforma-
tion of the colliding nuclei which eventually take on an ellipsoidal form.
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TABLE I

Some extreme values of the force as function of the mass and atomic numbers,
A and Z. The force acting on the neutrons is constantly directed towards the
bigger nucleus for distances satisfying r> —0.5ry (r> 0 for the exterior, r <0
for the interior of the nuclear surface). For r <— 0.6 there exists a maximum of
the force at the indicated mass nummbers. For protons there exist also maxima at
the relevant distances from the nuclear surface for the indicated nuclides. The
existence of a maximum implies the change of force direction acting on the
nucleons in the neighbourhood of the nuclear surface hetween two interacting
ions (see also Fig. 2).

Distance . Normalised absolute| Absolute value of
Position of the )
from force maximum maximm the force for
nuclear ‘ value of the force | max{A} and max{z}
surface
in g3 = 55 s wm) e ————
rg - units A(Z=U)! A ' Z | Neutrons| Protons | Neutrons| Protons
l I | |
| ‘
+ 2.0 — 62 | 28 2.801 1.31d 2.801 1.025
4+ 1.5 — 1170 | 68 4944 ' 3.086 4.944 2.936
; .
+1.0 — 1170 | 68 8170 |  6.570 8.770 | 6.480
i .
+0.5 — 1248 | 96 | 15644 | 13.106 | 15.644 | 13.010
00| — 1170] 69| 28.090 | 25.200 | 28.090 | 25.027
— 0.5 — 62 | 28 18.194 T 16.960 18.194 15.370
| - !
—1.0 | us ! 62] 28 | 11.926 ' 10215 11.831 | 9.248

—-1.b 100 62 | 28 7.894 6 490 7.726 ©  5.383
—2.0 104 | 62| 28 523t . 4.064 h.o68 2.965
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Contrary to this deformation is acting the relativistic contraction. 1f no
nuclear charge polarisation is assumed, then the collective potential
shows only one singie minimum. However, while the ions proceed to
the collision, the protons of them show a certain cunwillingness» to
follow the neutrons. As a consequence, while the distance of the two
nuclear inatter centres hecomes smaller and smaller, the distance of
the two nuclear charge centres may decrease slower than the distance
of the mass centres until it suddenly becomes zero. At this point the
charge in the compound nucleus acquires again a more or less uniform
distribution.

- -

This process may be described by a polarisation function, P (R),
for the nuclear charge which is calculated in the next section.

4. THE CHARGE POLARISATION IN CENTRIC COLLISION

The most important feature of the present theory is the introduc-
- -
tion of the polarisation function, P(R), in the collective potential. We

define the polarisation by the expression

P (R) =fr< ch(f) el —l—-fr - oc’(r) drd, (4. 1a)
V40 V240

— -
where ocl(r) and gc’(r) are the charge density distributions of the

two ions.
To clarify the physical conditions for which the charge polarisation
inside the interacting ions takes place the following different cases are

considered :

(i) If the heavy ions are in sufficient distance from each other and
thiey already interact through the Coulomb potential, the protons
show a tendency to occupy the farest parts of them. Therefore,
the average charge distance, R., entering the Coulomb potential
is bigger than the distances of the centres of the nuclear masses.
It is given by

Re = R+P(R), (4.1)

whese P(R) = [35618- (1 =)~ " (A + AV



(i1)

135

and ¢ is tlie excentricity of tlie heavy ions. The absolute value, P,
of the polarisation is used due to rotational symmetry. These equa-
tions result from the reasonable assumption that the protons occupy
the farest parts of the two ton volumes together with an adequate
number of neutrons. Tlhe excentricity used to express the form of
the interacting ions is for prolate ellipsoids defined as usual by
2 G .

3 =V1 -5 = \/l - and is in the present work assumed
to be the same [or both tons. However, there is no difficulty in
introducing two different cxcentricities or even completely differ-
cnt triaxial ellipsoids. Here and throughout this work we use the
notation {A, y 2y, Q, l)} and {A,, Zy, q, B} to express the mass num-
ber, the atornic number, the large semi - axis and the minor semi-
axis of the bigger and the smaller ellipsoids respectively.

If the nuclear iuteraction starts, nucleons pass from the smaller to
the bigger heavy ion with the conscquence that the half axes of
the Jatter increase. In this case the polarisation function is obtained

after some calculations and is given by
P(R) = [3ro /8] Ty (R) -+ {1 -e)7 A", (4.9)
The function a,(R) is a solution of the equation
x*Feg- X3 l-cpx?d-cp = 0. (4.3)

Eq. (4. 3) is a consequence of the nucleon number conservation
during fusion and the assumption that the nuclear matter density
remains essentially unchanged. The coefficients of the polynomial
are given functions of the distance, R, of the ion centres and are

given by the expressions

o= —(16/3t0)- Ay- R —(8/3r0) - Ag- R +-A," —
—(1/36) - R+ 2/r))- AS”- R? «
=0 by 4 (4.4)
ca =2 [(R/ea? — AY") (c)
cs = (8/3ry) - R . (d)
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If the nuclear interaction has advanced at a stage in which the
remainiog volume of the smaller heavy ion cannot accomnodate Z,
protons, charge transfer sets in from the smaller to the bigger
heavy ion. In this case the charge polarisation weakens, but the
proton charge centres change their positions during the f{usion
reaction in the same way as in case (ii) above.
If the fusion process of the heavy ion has arrived at a stage in
which the remaining volume of the smaller ion is too small to
contain any protons, tlie polarisation disappears suddenly. The
polarisation function equals zero and the distance of the nuclear
matter centres is given by

R. = R+Q(R), (4. 6)

where

Q(R) = dy (R1+dq(R). (4. 6)
If it happens that the inequality is satisfied

R*—a!(R) +a?>0,

then d,(R) and ds;(R) are given by

dy(R)=(A+B)/C and dq(R) = (D-+E)/F, (4.7)

where the quantities A, B, C, D, K, §¥ are also functions of the distance R

and are given by

A=(R—={3/8R) (2a R+R*—a!(R)+a?)'/(4aR+R:—c(R)+a?)) -

(234 (a? (R) a?— «! — a? RY)/2R+(R?*—a? (R)+ a?)*/ 24-R?), (4. 8)

B = (3/8R)- (2R - ¢y (R)+ o} (R) — u?*+ R?)*/ (40, (R) R+a?(R)—

C

—atkRY) - (2a(R)/B+(at(R) - u? — ! (R)— R «?(R))/(2R) +
+(a2(R)— a2+ R/ 24 - R?), (4. 9)

4 @R/ 3—(2- (a(R)+a")/3-+(2 & (R)—2  «(R)- R® —
—2a*- R?— «! (R)—a')/4R+R?/ 12), (4. 10)

D = (3(1—¢)/8-R) - (a®+2a R+ R?— a(R))*/(a?-+ 4a- R+R?*—a?(R)) -

(2- a3+ (u?. a?(R)—a'—a?R?)/2- R+(R*—a2(R)+a?)’/ 24-R®), (4. 11)
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= (=) (R—(3BR) (2 R a(R)+ a?(R) — a?+ R?)"/(4ay(R) - R+
+a2(R)—a+R?)) - (2 a)(R)/3+(a? - n(R) —a}(R)—R? «}(R))/ +
+(r?(R) —nt--R2)'[24 - RY), (4.12)

Fo=(4r2 A)/3—(1—¢9) (20 (R) 4+ o)/3+(2- o?- @(R) =2 a}(R) —
— 2R @} (R)—20% RP— ' (R)-— ') /4R + R/ 12). (4.13)

On the contrary, if the inequality is valid
w(R) —a®— R2>0, (4. 14)
then eqs. (4. 7) change and become
d;(RY=(A—=1B)/C and ds(R)=(D—E)/F. (4. 15)

In this case the guantities A, B, C, D, E, F are given by the

expressions

A = (3/8R) (2R - ay(R)+ «?(R) — a?+ R?)*/ (4R - o,(R)+ a}(R) —
—a*+R?). (203(R) /3+(a* ?(R) — a!(R) — a?(R) - R?)/2R +
+(a}{R)— a®+R?)°/ 24 RY), (4. 16)

B = (3/8R)(2R - a+ R*—a?(R)+0*)*/(4a - R+R?—a?(R)+a?)-
(2 @B+ (a @2 (R)—a'—a®- R2)/2R -+ (R—a?(R)+ a?)/24 R?), (4.17)

C = (4 a(R)/3) — (2 («®+a?(R))/3+(2a% - «}(R) —2R?- a?(R) — u —
— 2% R*—a!(R))/4R+ RY12), (4.18)

D = (3(1 —¢)/8R) (2n- R+ R?*—a?(R)+ «?)}/(4a - R-+- R?— «}(R) +a?) -
(2- 03+ (a? @ (R)—u® R—n')/2R 4- (R*+ a?—2(R))*/24- R?), (4.19)

E = (1 —6'1)(3/3}{ (2R - 0 (R) -+ «?(R) — «*-} R2)?/(4R - ay (R) 4-
‘4'(!?(R)—(l=+ RZ) —_ R) (2“1(R)/3 +(u2 i “'E(R)-—- Rg . ﬂf(R) _
—-a}(R))/2R + (a?(R) — «* +R?)"/ 24 . R?), (4.20)

F =4 A,/a-(l—52)_(2(u1(1<)+a3)/3+(-zu=- a?(R)—2R? - o?(R) —
—a'—2a?. R'—a!(R))/4R + R%/12). (4.21)



138

T'he relations (4. 6) - (4. 21) follow from geometrical considerations
on the basis of Fig. 4 and from the fact that complete fusion of the ions
takes place with nucleon transfer from the small to the big ion. This is
not an assumption but the resuit of the calculation of the force respon-
sible for the nucleon transfer. It is evident that the nucleons likely to be

transferred from one to the other ion must necessarily be on the nuclear

Fig. 4. Collision of twwo deformed heavy ions with impact
parameter equal to zero. The initial values of the semi-
axes fulfill the conditions a>a, b>B. The fact that
nucleons move from the smaller to the bigger ion is used
to calculate the increasing axes 2a(R), 2h(R) with dimin-
ishing R. The initial volumes of the ions are V, and V,,
Vy> V,. The common volume is AERBC. The volume of
the smaller ellipsoid AEBC determines the transfer of
nucleons which are distribuled uniformly inside the bigger
cllipsoid (shaded volume). The shaded volume increases
with decreasing centre distance, R. D and d are the cen-
tres of the nuclear masses.

surface. But exactly on the nuclear surface the force is a strictly increas-
ing function of the mass number. The effcctive force responsible for
the actual nucleon transfer equals the difference of the forces by the two

interacting ions on their common surface.

The polarisation function P(l-{) as defined here represents a length
which is added to the distance of tlie nuclear inass centres, R, to give
the average distance of the proton charge centres entering the Coulomb
potential. It is illustrated in Fig.5 for a pair of ions ff,; No — z;i Am.
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In calculating the collective potential energy, Veou (R), the poten-
tial energy of each of the ions in the field of the other ion should be
determined. In doing so one is tempted to take the half of the sum for
reason of symmetrisation. However, the argumentation just given above
shows that this should not he done due to the inequality (Fig. 3a,b(p)).

lgrad Vi () l,—. > |grad Violr) lc=a (4. 22)

It is, therefore, seen that nucleon transfer takes place generally
easier from the nucleus with smaller A, to the nucleus with larger A,
than conversely (A; > A,). This happens because the nucleon attraction
is stronger towards the surface of the heavier ion as imequality (4.22)
shows. If tlie mass gumbers A, and A, of the ions before the interaction
are different, then, of course, it is not allowed to symmetrize the collec-
tive potential energy because of the effect just inentiomed. In this case
the half axes of the bigger nucleus increase. For spherical nuclei the

radius, Ry, will take the final value R, =(A,+ Az)'x{:,, if no nucleon
emission accompanies the fusion process. In any other case, e.g., of
scattering, nuclear reaction or spallation, the final value of the radius,
R;, will be smaller than R, associated with no nucleon emission.

The collective potential energy obtained in the above way has the
following forms corresponding to the clarifications given in the equa-
tions (4. 1) - (4. ). Thus, we have: '

1,

(i) : V’ccvll = (—' 3g2 A‘l)/ro(A:/SeAl —(1 + A:/") Siﬂh Ai/:) C—ero/(R/fo)

+(Zy- Zo- €%/ (R+Re) (4. 23)

S §
(ii): Veon = (_3gz (Ag—-Aé))/ro ((Al‘*"Ai)l/a e(‘\”' Ay') /3_
l/:
(L4 (A +AD Ysinh (A, +A5)") -
e~ (R¥d(RN/fo ) (R +dg (R)); o) +(Zy- Zy- 2/ (R+RJ), (4. 24)

where the nucleon transfer from A, to A, at each distance is given as a

function of this distance by

i =G0 —ee) (2(@2(R)+a?)/3+(2. @ w?(R)— 2R (R)
—2d®. R=—a;(R)—a4)/4R+R°/12). (4. 25)
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Fig. Ha.

Nuclear charge polarisation as a function of the distance of the ion
centres. It is defined as the distance of the charge centres of the
fusing fons. The axis of abscissae gives the difference R :Rain,
where Rmin is the value of R for which the one {on is absorbed by
the other. In the last stage of the fusion the charge distance remains
almost constant until it vanishes suddenly. As it Is expected the
charge polarisation implies the slower decrease of the distance of -



141

Re—™ tm
|
|
1
|
|
|
|
|

13F

12}

Fig. 5b.

— the two charge centres with decreasing R. At very small distances
the charge transfer sets in, but the distance of the charge centres
remains almost constant until finally it vanishes completely. The cur-
ves are for the pair Bi1No - “*Am, and 1.8 correspond to the
excentricities ¢ =0.876, 08, 07, 06, 05, 04, 0.2, 0.0 (a).
In (b) the curves represent a detail of (a). It is seen that
there is a small variation in ltorizontal part wilh varying R.
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Fig 6. Collective potential energy of the fusing heavy ion
system [iNo - WAm as function of the centre of masses
distance, R. The ions are considered as spherical (e =0) but
the nuclear charge distribution densities in their interiors are
not uniform (P 5£0). Under the conditions stated the potential
energy surface exhibits a single minimum due to the nuclear
attraction and a single maximum due to the Coulomb repulision.
After the bheginning of the fusion the distance is measured
between the centre of the higger sphere and the centre of that
part of the smaller sphere which is still in the exterior of
the other sphere.
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Collective potential energy of the fusing heavy ion system ,”,,;No -BPAm as a
function of the centre-of-masses distance, R. The curves (a) show Vcoir. for various
excentricities ¢=0.0, 0.2, 0.4, 0.5, 0.6 and 0.8 with no charge polarisation, P=0.
The charge of the excentricity has as a consequence a tremendous change in the
depth of the nuclear attractive potential from ahout —1100 MeV to 0 MeV (a). This
change is not very simple in structure. As it is seen in the detail (b) there appears
a weak structure of a double humped potential in the neighbourhood of e = 0.600.
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The secondary maximum which appears at R =Rmin+ 6 to 8fm is of
about 10 MeV, when the secondary minimum is (c) also situated at
about + 10 MeV. If P=£0 and e=0, then the minimum of Veou. is
of ahout — 900 MeV. The structure of the collective potential in the
upper neighbourhood of e=05 is also shown (d). Comparing the
curves in the parts (b) and (d) of the above figures it is seen that
the charge polarisation strongly enhances the appearance of the
secondary minimum in the collective potential energy surfaces. Since
the polarisation shifts the Coulomb maximmum towards smaller values —
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- of R the consequence is that the depth of the minimum is diminished
as compared to the corresponding minimum without polarisation. For
spherical jons and P 5£0 the minima differ due just to the mentioned
etfect (see Fig. 6). The small energy barrier is of the order of
about 10 (b) resp. 20 MeV (d), while the big one is of 650 MeV.
The virtual equilibrivm deformation corresponds to R=a—a 4 2fm,
where a and @ are the two large semi-axes. This equilibrium could
only be realised in the process of fusion if the nucleon kinetic

energics were removed by y- emission.
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! £ !/s
(i) and {iv): Veor=(—3%- (Ag— Ad)ro- (Ar A et Mt AY)

(L (Ay A sinh (A AR e (RED R (R dy(R)) 1)
+ (74 7Z3) - (Zyg—Z3) - )/ (R-F R). (4. 26)
Again, the charge transfer from A, to A, is given by

Zi= =23+ (3 Zy- (1 —)/(e2 - Ag) - (2(a}(R)+0?)/3+(2a? - al(R)

—a'—2. «}(R)- R'—2a?- R*—a(R))/4R + RY/12). (4. 27)
o1
=
] 0 )] ] ) ! x... 1 ] ! i ] ] |
5 10
- R-nmin-——)’m
>8 i

- 8ok

Fig. 8. Potential energy curve for the fon pair gNe- 'gC
with excentricity e = 0 and polarisation .P=0. In this
case fo secondary minimmn appears.

It follows from the above expressions that the nuciear charge polar-
isation enhances the secondary minimum in the collective energy sur-
face. Also the charge polarisation together with the neutron attraction
may be considered as responsible for the ellipsoidal form of the colli-
ding nuclei. Charge polarisation alone does not produce any secondary
minimum in spherical nuclei. The results of the above equations are
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The same as in Fig. 8 with P=0 and £=0.841, 0.838, 0.834, 0.831,

0.837 correaponding to the curves 1.0,

Agnin in these cnaen

no secondary minimum appears due to absence of polarisation.



148

shown in the Figs. 6 - 14b, where no relativity effects are counsidered. If
the relative velocities of the two approaching ions are high, then the
relativistic contraction results in a reduction of the large semi-axes
of the two prolate ellipsoids. If the initial form of the nuclei is spher-
ical, then, of course, the relativity effect consists in giving them the

s}

TR SRS B |

R =Rmijn ——>Im

Veolf — MeV
o

~40

-80K

¥ig. 10, The same as in Fig. 6 for the ion pair IJNe.'lC.
No secondary minimum appears due to the conditions e=0
despite the non-vanishing charge polarisation (P 5=0).

form of the oblate ellipsoids. For prolate ellipsoids the excentricity has
the expression

e =V1—(bja)? (13", (4. 28)
where as usual (*)
B=(1—(E/ M 2+ 1)")" (4. 29)

c is the speed of light in vacuum, E. is the kinetic energy and M is the
mass of the ion. Secondary minimum in the collective interaction ap-
pears only for particular values of the excentricity, e(B), and it disappe-
ars completely for oblate ellipsoids as illustrated in Figs. 15a - 16b.

(*) This B should not be confused with the minor semi - axis of the el-
lipsoids,



Potential energy (a)
as function of the
centres distance of
the fusing ion system
,’gNe .12¢. In con-
trast to the case of
Fig. 7 now the ions
are hoth deformed
(e 5= 0) and have
non-uniform charge
density distribntions
(P3£0). The effect
of this combination
of parameters (e =<0,
P s<0) is that the
potential surface ex-
hibits now two ma-
xima (Counlomb) and
two minima (nuclear).
Due to the low num-
bers (A,, Z,) and
(As, Z4) the barrier
heights are very
small (~ keV). This
appears clearly in the
detailed (b) curves.
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The curves show the potential energy of the fusing system
MU - 'Nd for the excentricities (from bottom to top) e=0.475,
0.486, 0.490, 0.495, 0.5 and for charge polarisation (P s=0).
The doubly humped structure of the energy surface is now
clear. The barrier heights now are of the order of magnitude of
a few MeV as it can be seen from the detailed (b) curves.
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The doubly humped character of the energy surface becomes
accentuated with increasing mass and atomic numbers, A, Z.
In the case of the ion system *3Am - ! Np the barrier heights
are approx. 20 MeV (b) and 650 MeV (a). This behaviour of the
energy surface is a consequence of the combination of the
parameters e 0 and P=£0. The values of the excentricity
are e=0.517, 0.523, 0.630, 0.536, 0.698. There is no ditficulty

in taking different excentricities for the two ions.
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Fig. 14b.

The same (a) as in
Fig. 12 for the ion
system 'g:Sm - Z,gzu
for P50 and e=0.513,
0.520, 0.527, 0.534,
0.541. It is seen from
the detailed curves
(b)that there is an ex-
centricity for which
the nucleus 31U can
undergo a transition
from the spherical
to the deformed (b)
state with R=1,5fin
almost without any
energy consnmption
and indeed with the
emission of about
0 MeV.
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The effect of the relativity factor B=v/jc on the potential energy

curves (a) appearing during the fusion process of the heavy

ions ':’,';U - 'ﬁ,’,Nd. The different curves correspond (from top to

hottom) to the values f =0, 0.07, 0.14, 0.21. [t i{s seen in the

detail that the potential energy curve is strongly suppressed

towards more ncgative values (b). This becomes clear by com-
paring the curves 13b with 12b, where = 0.
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Ieoo~
=
57600} T~
B Potential cnergy for the
- . i 248 24t
400k ion pair ‘3, Am - " Np as
- function of the distance
. with parameter the relati-
2001 vity factor . The curves
- (from top to bottom) cor-
O_‘*' i £ U1 o1 respond to the values =0,
LN/ S 10 " 0.07, 0.14, 0.21. The curves
I R~Rmin — "
for the first two P-values
-200L coincide due to scale (a),
Fig. 16a. whilst they are distinct

in the detailed curves (b).
The role of B is to deepen
the potential curve for
prolate ellipsoids of very
high rest excentricity
MeV (e (o) = 0.543). On the con-

‘mot trary, if the rest excentri-

= Is city is less than a certain

S r value, then the effect of

= 50: is to flatten the potential

- curve. This demonstrates

N that the role of the rela-

- tivity factor g is not uni-

0_ que but it depends on the

- rest excentricity of the

N colliding nuclei,

_.501_
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-100;

Fig. 16h,



155

"

5 THE INFLUENCE OF THE IMPACT PARAMETER

The resuits described in Section 4 are valid for centric collisions,
i.e., vanishing impact parameter. Since this case is not the most general
one we derive here the formulas pertaining to non-zero impact para-
meter. For the sake of generality we consider from the beginning pro-
late ellipsoids. The reasons distinguishing the prolate from the oblate
ellipsoids consist in that the latters do not lead to double humped poten-
tials. They can be cousidered separately. The next step is to find the
common voiutne of the two ellipsoids and calculate the nucieon transfer.
To this end the coordinates of the points A, B are necessary. From
Fig. 17 we find that the coordinates of these points. A(x,,y,) and
B(xp, yq) . are given as solutions of the nuclear volume conservation

o x4+ 20t x4+ 2ox — 02 =0 . (6. 1)

The coefficients are fuoctions of the centres’ distance of the el-
lipsoids and the impact parameter, q, and have the expressions

0 =b?/a*—f?/al

t=2p%8/a?
0=p2—B0/a? —h?g?
v=2bg

and o = *Fv?/a?4 200 .

The parameter § is related to the distance of the centres and the
impact parameter, q, through the relation

5= V= q. (5. 2)
The common volume (R, q) of the ions | and 2 is the sum of
O1(R, q) and 0:(R, q) and they can be obtained from the integral

<n

51 (R, ) = »ffu —x/a) o) = 12 sin2o(x)] dx,  (5.3)

XA
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where the angle p(x) is given by

@ (x) = arccos {[y, +(y, —v,) (x—x,) /(x,—x,)] /b VI=xFa*} (5. 4)

and y, > 0.

If y,<0, then the volume (), (R, q) increases by the volume

(“);(R,q) which is calculated from the expression
01 (R, q) = ab?[2/3a—x,+ x3 / (3a)]. (5. 5)
More precisely we have

6! (RVQ) ) )',,)0

= g (5. 6)
O1(R,a)+01(R,a) i y,<0.

Ol (Rv Q) =

The volume {j; is included inside the surface of which a plane cut
is denoted in Fig. 17 by CDBC.

Similarly we find O, from (5. 3) and (5. 5) in the form

O2(R, q) ;Y%

= o (5.7)
0:(R,q)+ O:(R,q) :  y,>q.

0:(R.q) = {

In (5.7) the following definitions hold:

0s(R, q) = ﬂ*flm(x) —1/2 - sin (20 (x))] - [1 = (x—8Ya?]dx (5. 8)

T\

with
(%) = arccos {[y,—q —(x —=x,) (s,— v, ) [(x,— x,) | /B V= (x =3) [ o*}

and

D:(R, q) = nB?[x, —d+a—x3/(3a®)+ (3 —a)*/ (3a?)] -
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plane cut is AFEA in Fig. 17.

Fig. 17. Collision of two deformed nuclei with semi-axes (a, b)
and (a, B) (a>a and b>f) and with non-vanishing impact para-
meter, q. The points A(x,, y,) and B(x,, y,) are the top
and the bottom, respectively, of a plane cut of the two ellipsoids.
The distance of the two centres R =y 3 +q*. The point K is
the centre of mass of the part of the small ellipsoids remaining
still outside the bhig ellipsoid. The illustrated situation of the
colliding lieavy ions corresponds to the case q<B. The neck is
an ellipse containing the points A and B. According to our model
the volume delimited hy ADBEFA has contributed to the increase
of the big ellipsoid indicated by the shaded area. The charge
polarisation is indicated qualitatively. Before complete fusion
the proton charge density in the central volume of the system
is considerably diminished due to the polarisation phenomenon.

the centre of the voluine AGHBA, the expression

with

and

Kv (R, q) =[x} ~l->'§,l‘/’
Ny = (T GHEH1)(Vo= Oy =0 — 1 — 03) + 6

v = (B+1)/ (V=3 — D — O — 0s) +4.

The volume Q) is that contained inside the surface of which a

Using the above results one finds for the distance K., where « is

(5. 0)

(5. 10)

(5. 11)
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Potential energy curves for interacting heavy ions with various impact parame-
ters during fusion or fission processes. In part (a) of the figure the potential
energy curves correspond to the case in which only neutrons are transferred from
the smaller to the bigger ion. It is seen that the main change in the curves
appears in the region of nuclear attraction dominance, while in the Coulomb
dominance region the potential energy is almost unchanged. If protons are also
transferred from the smaller to the bigger ion then the change is extended to a
greater region of distances as is seen in part (h) of the figure. In this parﬁc‘ﬂaf
case the two ions are mutually exchanging equal numbers of neutrons and pro-
tons, while due to the partial fusion a aumber of neutrons corresponding to the
value of the impact parameter, q. is transferred from the smaller to the bigger
nucleus. The depth of the potential curves decreases for incrensing tmpact parameter.
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The symbols in (5. 10) and (3. 11) are defined by

~

2=l

; sz g1 =x%a% [wix) = 1)2 - sin 2 {x)] dx, (5. 12)

—
n
If
-
s

Xs

Iy=0, bzf[y (x—x My ,— v /(x,—x )] [o(x)—1/2sin(20(x))]dx, (5.13)

12 =58 [ [ 00— 1/2sin (20 (0)] (1= (b /] =9 dx,  (5.19)
Xa

15 = 6‘,"02f[rp(x)~—I/zsin(-ztp(xn] [1—(x—dp}/a?] -
" Jya—a—(x—x,) (y,—va)/ (xy—x,)}dx.  {5.15)

With the data obtained in the present section the collective poten-
tial according to (4. 23), (4. 24) and (4. 26) has the form g¢iven in Fig. 18
for spherical nuclei.

f. ENTRANCE AND EXIT CHANNET ENERGIES

In the case of elastic scattering the collective potential energy in
the entry as well as in the exit channels is the same. If the scattering
is inelastic the collective potential energy of the two colliding ions is,
in general, different in the two channels due to the change of the
nucleon states. Despite this change the error resulting from neglect-
ing it in the collective potential energy is of minor significance.

However, when both matter and energy arc transierred from the
one to the other heavy ion, the difference of the collective potential
cnergies in the entry and exit channels is so large that it cannot be
ignored. In order to take it into account properly one has to make sepa-
rate calculations of the collective potential energy for each channel.
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This has been donc in the present section. The method used consists in

the following :

(i)

(ii)

The tmpact parameter, q, and the distance of closest approach,
R, are fixed in advance. We select two ions identified by (A, Z,)
and (As, Z,) as well as by the excentricities &, fs, which for
simplicity we assumie to be equal, £, =¢,. We let these ions collide
with given relative encrgy E , . By the procedure described in the
previous sections the collective potential energy is calculated as a
function of the distance, R, until this intercentre distance becomes
cqual to R (Fig. 17). While R > R the collective potential is a
sum of the nuclear and the Conlomb parts of the energy. The dis-
tance R=R delines the last point of the entry channel collective
potential which is represented by the curve on the left of the axis
of the ordinates in Fig. 18a, bh.

In the exit channel the ions do not approach each other any more
but instead they recede. In the exit channel again the collective
potential is the sum of the two terms as in the entry channel.
However, an important difference exists now in the process of
calculating it. While nucleon transfer takes place in the entry
chaunel due to the gradually proceeding partial fusion, there is no
nucleon transfer in the exit channel. Consequently, the neutron
and proton nummbers of the two fons are equal to those at the last
stage of the fusioning system in the entry channel. ‘I'he numerical
calculations showed that the depth and the width of the curves
depend for constant A,, \,, Z,, Z, on R, P, ¢ and on the impact
parameter, q, of the colliding system. According to the usual con-
vention the distance of the two centres has been given negative

values.

After the above preliminary explicativns we procced to a formal

definition of the entrance and exit channel of the collective potentials.
\We consider the two tnteracting jous ((A,,Z)0= (,2). Let the wave
function of the i-th ion be approximately given by a Slater deter-

-
minant, $'® as defined in Section 2. let {falle=1,... A} be the
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coordinates of the nucleons. «, is a set of quantum numbers including
A,. Zo. We write for the coordinates of the sccond ion nucleons

—»2’ — —»2’ - -»2
rj, = R+1j, where R = Smj,. rj,/ I m;,

the CM coordinate of the second ion with respect to the CM of the first

-
one. The expectation value (R is obtained from the expression

= . @ 7 | i@

SR (], M, @y, a, By Eg)> = VLIRS (6.1)

The wave functions| W3 > are defined as follows [21]:

Let Is, ia; (0=1, 2) be the spin and its projection of the ions. The
- - -

total spin and its projection of the ion pair are s=1,+1, and i, +i;=v,

where | — LI <s< ;+1,. If,Sf:;’:); a = 1,2 are the internal
wave functions of the ioms, then the total intermal wave function is

given by
(l, - - - - —
\pgv (l'", o Trags Togy o o0 F2a2, R) =
= S (L i Do, dels) S S0

s Iyiy “M2i
iT+i2z=v ' Lk

where {(Il yip; T, g sv)= are the Clebsch - Gordan cocificients and
as determines A,, Z, and all otlier quantum numbers of the o-th fon.

The complete wave function is obtained by taking into account
the relative motion of the ions by means of the corresponding set of

. { o o
relative wave functions yo, (R, Q).
Tle total wave function of the two ions is

L =2 (v lm| JM) e, 'S . (6. 3)

Since according to eq. (2.5) the matter density distribution is

determined by Sf:“.’: in each ion and consequently its shape (g) is also

-
determined, <R fixes alrecady whether or not the two interacting ions
overiap and, given their shapes, which is the volume of the overlap. If
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it is assumed that the density relaxation time practically vanislies, then
-

{R> determines for increasing volume but constant shape (¢ = constant)
of the first ton the number of nucleons already transferred to it from
the second iom.

In practice, of course, the opposite way is used : [For each given

-

pair of overlapping ions with known internal wave functions, <R) can

be calculated.
The matter density can be written with the help of egs. (2. b) and
)

2

. (my
the wave function Sy,

92(-;; Iz, i‘lv Ua, EZ) = <S(u’)‘s(a:)>r1 (6 4)

122 l2i2

where the subscript r in <[>r means omission of integration with

respect to r.
Next, suppose that there takes place continuous nucleons transfer

i

from the ion «2» to the ion «l» with diminishing {(RD>. It is obvious
—

that in this case, A, and Z, become functions of {R>. Cousequently we

-
shall write for as = «, ((RD). With these preliminarities we define

the channel collective potential energy by the following expression:

\”coll(<f€>; J. A\l, 01(<H>), (Le(<}-{’>); Elv Eg) =

3‘1 V<l(<f€>+?. Il. i]. Cl|(< E)), Eg)'@._,(:; fg. iz; 09(<E>). Eg) dr. (‘5. 5)

Va--O
In eq. (6.D) the spins Is; a=1,2 are so added that the total

spin J and projection M are as required by the expression for <-l{‘) in
eq. (6. 1).

From eq. (6. 3) one cau obtain both the entrance or the exit chan-
nel collective potential provided one uses the entrance resp. the exit
channel wave function for the relative motion of the ions in eq. (6. 3).

The actual calculations in the present work have been obtained
with a number of approximations to the above eq. (6.5). They are:
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1) Neglect of the spins I.;0 = 1,2 in eq. (6. 1) and (6. 2). 2) The inter-

nal ion wave functions have been approximated by unit step functions.
-

In this way <R)> reduces to the CM position vector of the second ion

with respect to the CM of the first one.

7. THE MASS FORMULA

The procedure developed in the previous sections allows us to
determine the mass of each ion in the process of fusion. In what follows
we give an explicit formula for the mass which can be used in solving
the equations of motion for two interacting heavy ions.

For nuclear forces of the type considered here this mass is given

in proton mass units (A = m,/mp) by the expression

VR, q)= ath Azl (Zoh (Ao [1+ G(R)].[l_O(R)Jl -

Z]“t‘Z;‘*‘)\'(A]‘}‘Ag'—Zl*Zg V, v:

V, and V, are the initial volumes of the interacting ious. O (R) is

glven by

OR)=n (L—e) [2/3 (al(R)+ o)+ 1/4R - (2a? a?(R) —

(1. 2)
—2 a(R)- R*—2u?- R?*— a!(R) —a') + R¥/12].

The form of u (R, q) is given in Fig. 19.

8. CONCLUSIONS AND DISCUSSION

The resuits presented in the foregoing sections are based mainly on
the single - particle potential derived from the scalar = - meson field
theory. The tnost striking feature of this potential is its structure as
function of A and Z. It is noted that for increasing Z there does not
only decrease the depth for protons but also the slope of the curve V(r)
in the neighbourhood of r =0 changes sign for values of the proton
number larger than a certain value Z,. The collective potential energy
surface shows a behaviour which strongly depends on the shape defor-
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mation of the interacting lieavy tons. Also the charge polarisation plays
a primordial role in the enhancement of the secondary minimum in the
neighbourhood of vanishing deformation. For spherically symmetric
nuclei the charge polarisation is not sufficient to produce the secondary
minimum. Similarly, the shape deformation without charge polarisation
does not lead to a secondary mininum in nuclei with medium mass

..__.
bx]
<]
T

10
R -Rmin— Im

Fig. 1a.

Change of mass for the collective motion during fusion or fis.
sion processes. In the part (a) of the fignre the curves show
the variation of the mass with the distance of the mass centres
for the case of the complete fusion or fission in a form corres-
ponding to zero impuct parnmeter, q=0, for various ion pairs.

number. The depth of the secondary mimimum is a function of the
excentricity the maximum being of the order of 10 MeV in heavy
nuclei, a value strongly depending on the coupling constant g. One of
the most important results is the prediction that certain spherical
nuclei may undergo radiative transitions (~5MeV) to shape deformed
and charge polarised states. Another intercsting fcature of the collective
potential is that for highly relativistic energies there does not show



In the second part (b) of the
figure the mass is. given for
various values of the
parameter in the case of the ion
pair 'Ba-}{Kr for hoth neu-
tron (b) and proton (c) transfer.
The left-hand side of the curve
gives the variation of the mass
in the entrance channel while the
right-hand side gives the mass
In the exit channel. In the exit
channel the mass is almost con-
stant due to the detachment of
the lons. The mass variation be-
comes stronger for decreasing
impact parameter. The negative
values of R correspond to the
entrance channel of the reaction.

impact
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any secondary mininum. ‘I'lle reason for this fact is that the combina-
tion of excentricity and charge polarisation which seem to be physically
mutually inclusive, is spoiled. It is also noted that the mass of the inter-
acting heavy ion system shows the expected behaviour. At very large
distances it takes the value of the reduced mass of a two particle system
whilst at very small distances it vanishes completely. Concerning the
accuracy of the theory we point out that two kinds of approximations
have been adopted : In the place of the nuciear radius we have used the
approximate expression n=r,,A'/’, where for ry the value rg=1.2 fm
has been used. We have done no attempt to optimise the value of ro.
However, there are indications that the dependence on ro tnay become
crucial insome cascs concerning the nucleon transfer criterion. The eval-
‘uation of this critcrion shows that nucleon transfer proceeds from
lighter to lieavier nuclci, if the mass number is bigger than a critical
value. We took the point of view that the nucleons outside the bigger
ion interact collectively with the nucleons inside of it from the effec-
tive distance of their centre of mass. A similar point of view has been
taken also in the calculation of the nuclear charge polarisation.

We have tried to keep the calculations analytical as far as pos-
sible. If use of the computer is made for the calculation of certain mul-
tiple integrals, an increase of the accuracy may appear but as we believe
it will not change substantially the shape of the obtained curves.
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