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Abstract

The democratic mapping 1s used for the calculation of low lying states of nuclei in the
sd and fp shells. In addition to demonstrating the applicability of the method in realistic
cases where many non-degenerate levels are present. the method allows for the ranking of
the various bosons according to their importance as building blocks of low lying states. It
is proven that the s and d bosons are the most important building blocks, followed by the
d' and g bosons. Thus one of the basic assumptions of the Interacting Boson Model (IBM)
is proven to be correct. Very good agreement between the boson calculation and the shell
model results is obtained for 4 = 20 nuclei when 12 bosons are taken into account. while
an even larger number of bosons is required to reproduce the low-lying states of the A = 44
nuclei. In order to obtain equally good results with a smaller qumber of bosons one needs

to introduce effective boson hamiltonians which correspond to truncated fermion spaces.

1. Introduction
Since the introduction of the Interacting Boson Model (IBM) by Arima and lachello
(1,2] (for recent overviews see [3.4]). many attempts have been made to establish a con-

ection between this model and the shell model. A necessary step in this boson mapping

* Presented by L. D. Skouras
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process i see '3: and references rierein: is rhe transition from the fermion space of the sheil
model to the coiiective boson suospace. Since the number of bosons describing a particuiar
collective nucieus in the [BM framework is constant. only number conserving boson map-
pings are suitadie for this purpose. An approach widely used is the Otsuka~Arima-lachello
{OAD) mapping method [6]. [t is a seniority-based state mapping, that is, the seniority
(7] ciassification of sheii-modei states is carried over onto a similar ciassification of bo-
son states. The boson images of fermion operators are determined by computing matrix
elements between shell-model states with good seniority. It is required that the matrix
elements of the boson images of the various operators in the boson basis be equal to the
matrix elements of the corresponding fermion operators in the fermion basis. Theretore the
OAI mapping is a mapping of the Marumon type (8]. A different approach, based on the
requirement that the boson images of the various pair and multipole operators satisfy the
same commutation relations (i.e. a mapping of the Belyaev-Zelevinsky-Marshalek (BZM)
type (9.10]) is the Bonatsos. [Xlein and Li (BKL) method [11-13].

In a recent paper [14]. to be herearter referred to as I. an alternative mapping method
was proposed. wiich is, as the OAI method, of the Marumori type (8]. This new method
is, however. different from the OAI approach, since it treats on equal footing all shell-
model states which are mapped onto corresponding boson states, i.e without the hierarchy
implicitly assumed in the OAI approacn. This is the reason why the method was named
in I “democratic”.

So far. the democratic method was only tested in the f7/2 shell. This test proved
succesful since the energy spectra obtained with this method for the 4 = 45 — 48 nuclei
were found (14} to be in satisfactory agreement with the shell-model results. However.
as claimed in L the real advantage of this new mapping method is that it can easily be
applied to realistic shell-model spaces where many single-particle orbitals are involved.
This efficiency of the method is due to the flexible way in which the necessary coefficients
of fractional parentage are calculated and stored for further use {15.16]. Such a realistic
application is discussed in the present paper where the democratic mapping method is
applied to the sd and fp shells.

It is customary in IBM calculations to consider only s and d bosons for the description

of the basic features of the low-lying spectra of collective nuclei {1-4]. However, the boson
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space formed by » and ¢ bosons only is too swall and in order 0 give a better description of
nuclear spectra it has been tound necessarv to include additional bosons, like the g ooson
[17-19] and s’ and d' bosons i20). as weil as proton-neutron bosons with T' = 1 {21] and
T =0(22). The s' and d' bosons are important for the description of intruder states |23|,
while the proton-neutron bosons with T’ = 1 and T = 0 have been found particularly useful
in applications in the sd skell {24.25], where the valence protons and neutrons occupy the
same major sheil.

From the above. it becomes evident that to reproduce by a mapping procedure results
obtained in large shell-model spaces it is necessary to consider boson spaces of correspond-
ingly large dimensions. In the case of the OAl mapping the g boson has been recently
introduced [26]. while in the BKL method it appears as a consistency requirement in the
next-to-lowest order approximation [11]. s’ and d' bosons have also been considered in the
BKL method. along with other bosons. like f and p bosons of negative parity [12]. whick
are useful for the description of low-iving octupole states [27). Several non-degenerate
levels have been considered in both the OAI [28] and the BKL {12] approaches.

The selection of the bosons to be included in the mapping procedure has been based so
far either on expertence. as in the QA case. or on mathematical consistency requirements.
as in the BICL case. The dexbility of the democratic approach allows for a different kind of
test to be performed. One can start with a relatively large number of bosons. In the case
of the sd sheil. for exampie. one can consider out of the 2§ possible bosons the 12 bosons
which lie lowest in energy. It is clear that with such a rich space one can reproduce the low-
lying shell model results quite accurateiy. One can then perform 12 different calculations.
each involving 11 of the bosons previously considered and decide to permanently remove
the boson which causes the least damage to the agreement with the sheil model results.
Then one is left with 11 bosons and can perform 11 different 10-boson calculations, in
order to decide which of the 11 bosons now in hand is the less important. Continuing this
procedure, one can rank the bosons. in an impartial way, according to their importance.
The resuits of this investigation for the 4 = 20 nuclei are discussed in sect. 2.

The success of the IBM lies in the fact that with relatively few degrees of freedom one

can account for many of the properties of the low-lying spectra of nuclei. To accomplish
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such a resuit one needs o consider an efective boson hamiitonian. The manner ia which
such an erfective namiltoruan can e obtained in the {ramework of the democratic mapping
is discussed in sect. 3. where the method is applied to the sd shell. In sect. 4 a similar
calculation for the Ip sheil is performed. while sect. 3 contains the conclusions of this work.
2. Relative importance of bosons in the sd shell

In this section we appiy the democratic mapping method, described in [14], to the sd
shell. Our aim is to reproduce in the framework of [BM the shell model results for the
low-lying spectra of the 4 = 20 nuclei. These nuclei have four valence fermions outside
the %0 closed core and the fuil fermion space consists of 640 antisymmetric states. The
number of states for each set of (.J, T) values is shown in table 1. In this table :V denotes
the total number of states for a given {J.T) set of values. while n the aumber of low-lying
states the energies of which we are interested in reproducing with our mapping method.

In our shell-model calculation in the sd shell we have assumed full configuration mixing
and placed the valence fermions in the 045/2, 131/2 and 043/2 orbitals of a harmonic
oscillator, with iz = 14.4 MeV'. For the one-body part of the fermion hamiltonian we have

used the experimental single-particle energies {29] of !7O :
€s/2 = 0. §1/2 = 0.8TMeV. €3/2 = 5.08MeV, (1)

while for the two-body part the matrix elements of Preedom and Wildenthal [30].

In the sd shell one can form 14 fermion pairs with T = 1 and another 14 pairs with
T = 0. Therefore. in the manner of ref. (14}, one can associate 28 bosons with two-
fermion eigenstates. Including all 28 bosons is technically difficult and, moreover. wiil
most certainly result in the linear dependence of the four-fermion states which will be
associated with bosons in the manner of ref. {14]. Since we are interested in explaining the
low-energy spectra of the 4 = 20 nuclei only, it is reasonable to assume that the bosons
lying lowest in energy shouid be the most important ones. We have decided, therefore, to
associate with bosons the 12 lowest two-fermion eigenstates. The 12 bosons selected from
this procedure are listed in the first line of table 2. Following the usual not;tion, we use in
table 2 and elsewhere the symbols s, d. g for T = 1 bosons with J =0. J =2 and J =4,
correspondingly. For T = 0 hosons we use the notation (31} ;. Unprimed bosons are the

ones lying lowest in energy. while primed bosons are the next lowest lying ones.
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Table 1
Number of four-fermion antisymmetric states in the sd shell
J T N niyJ T N nlJ T N n
0 021 30 1 16 l]0 2 9 2
1 03 1}J1 1 54 3|1 2 12 1
2 0 3% 3;2 1 66 412 2 21 3
3 045 2{3 1 69 3{3 2 21 1
4 0+ 3|4 1 50 3{4 2 15 2
3 024 1]35 1 34 1(5 2 61
6 0 v.2/6 1 16 1|6 2 3 1
7T 0 3 17 1 71
§ 0 3 1]8 1 11
Table 2

Boson spaces considered in the calculation in the sd sheil

~

a 6 6 6y 8, 9s ¢ &

My s d g s

.\I') s d q s d 9] 6) 03 04 95 93

.\13 s d q § d 91 92 93 34 95

My s d g & d 6 6 4 Os

My s d g ¢ d 6 b3 0s

Mg s d g ¢ d 64 Os

My s d g d 83 95

Mg 3 d g d s

:‘-[g 5 d g d

Mg s d d

My s d

Table 3
Overail quaiity of results obtained by the various boson models in the sd shell
N ¢ |N ¢

M, 32 0.427| 52 0.427
‘M, 8132 0.526 |30 0.443
Ms 641352 0.619|30 0.529
M, 6,|32 0.780 | 49 0.611
Ms 6,52 1.264|49 0.769
Ms 6|32 1.482] 47 0.984
M. ¢ |52 1.831147 1.251
My 6,51 217146 1.598
Mo 65|30 2.465|45 1.946
Mo g |33 3.609|30 3.124
My & 113 4.566 | 13 4.566
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After the seiection of the hosons. discussed above. the matrix eiements of the boson
hamiitonian were determined foilowing the procedure described in ref. {14]. Consequently
we were able to obtain energy spectra for the 4 = 20 nuclei by diagonalizing the boson
hamiitonian in the basis of two-boson vectors. From the results of this IBM calculation.
which we shall cail henceforth )/, calculation. we obtain a very good description of the 32
low lying states of table 1. The quality of the fit can be seen in table 3, which shows the

rms deviation ¢. This is defined as

}: W(SM) = Ei(b))?, (2)
=l
where .V is the number of states included in the calculation. E;(SM) are the energies re-
sulting from the shell-model calculation and E,(b) are the corresponding energies resulting
from the boson calculation.

As table 3 shows. the results obtained with the 12 bosons included in the M) model
are in very good agreement with the shell-model predictions. However, the large number
of bosons inciudedin the M, calculation makes difficult the application of such a model
to heavier nuclei in the sd shell. We have examined. therefore, the possibility of reducing
the number of bosons included in the model, making sure in parallel that we cause the
least possible damage to the agreement between the resuits of the boson and shell-model
calculations. This classification of the bosons according to their importance in the low-
lying spectra of the 4 = 20 nuclei has been obtained in the following manner. We have
attempted 12 different calculations. each of them involving 11 of the bosons previously
used. In each of these calculations we have followed exactly the same procedure with that
adopted in the .1f; calculation. i.e the democratic method was applied to produce the
appropriate hamiltonian which. in turn. was diagonalized to produce the energy spectrum.
Finally, for each set of results the rms deviation, defined in eq. (2), was computed. It turns
out that the smailest o is obtained when 6} is removed. Ve conclude. therefore, that ) is
the least important of the 12 bosons used in A{;. The best 11-boson model we can have is
then the model which contains all bosons used in 1/, except ¢{. This new model we call

henceforth /2. The bosons used in 1/, are shown in table 2, while the corresponding o
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1s shown in tanie 3. [t shouid he remarked at this point that the removai of the ¢] boson
mainiy a.ﬁ'ecr.s =wo of the states of tabie i. namely the first / = 1, T = 0 and the second
J = 3. T = 0. both of which lie relatively high in the fermion spectrum. Most of the
increase of ¢ Tom 0.427 for )| to 0.326 in M3 is due to these two states. [t is reasonable
then 10 exclude such “pathoiogical” states from our procedure. When excluding these two
states we see that o for /s is just 0.443. only slightly higher than the 0.427 value found
for M.

We can now continue this ciassification of boson states by starting from the 11 bosons
of 3[> and performing i1 ciferent 10-boson calculations. The least useful boson in this
case is found to be §;. Therefore )/; includes all bosons of M, except §;. Continuing in
this way we fnad. as shown in tables 2 and 3, that the next bosons to be removed are 4,
62, 6), s', 83 and fs. One is then left with My, which contains only 4 bosons, the s, d,
d’ and g ones. Ve remark that by now all the T = 0 bosons have been removed. The
boson space is. however. still quite rich. so that 30 of the original 32 states of table 1 can
be accounted for and. as table 3 shows. the energies of 45 of the accounted states are in
satisfactory agreement with the shell-model values. The next “victim” is ¢, followed by d’.
[n the last two steps, as seen in table 3. one can account with the remaining bosons only
a small fraction of the original 32 states of table 1. One is finally left with M;,, which
contains only the last two bosons. which turn out to be the most important building blocks
of the low lying states. namely the s and d bosons. The bosons present in each step are
shown in table 2. while the quality of the resuits obtained with each model is shown in
table 3. Throughout this procedure particular states were giving large contributions to
o. Therefore in table 3 we give two cases: by N and ¢ we describe the full aumber of
states obtained with the bosons in hand as well as the corresponding rms deviation. while
by V' we indicate the. number of “non-pathological™ states and by o' the rms deviation
corresponding to these V' states. We remark that while ¥V’ is only slightly smaller than
¥, o' is always significantly smaller than o.

A more detailed presentation of the resuits obtained from the calculations, M, ... M,
described above. is given in table 4. Table 4 lists the energy eigenvalues obtained from the

IBM calculations and compares them with the shell-model results. To avoid making table
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4 too lengthy we only list the energies of about half of the states which were used in the
determination of the rms deviacion. Tae states listed in table 4 were the lowest in energy
but representatives of all possiole J. T alues have been included. Moreover, we restrict in
table 4 the presentation of results only to those obtained from M (k¥ =1,3,35,7,9.10,11)

calculations i.e we omit the results of the intermediate M,, M, etc.

Table ¢
Energies of the low-iying states of ®Ne (in MeV)
ootained from tze shell-model and the various [BM calculations

T Js SM M, M, M, My My My My
0 0, -23.17 -23.12 -23.03 -22.96 -22.86 -21.29 -20.24 -17.71
0, -17.64 -17.60 -17.26 -17.21 -14.17 -13.75 -13.19 -855
0; -13.32 -13.29 -13.2¢ -13.22 -11.25 -10.60 -9.41 —_-
2, -21.11 -20.81 -20.63 -20.28 -20.24 -19.26 -17.41 -13.82°
2, -17.35 -17.04 -16.67 -16.46 -16.05 -15.93 -13.51 -11.30
2; -13.36 -13.33 -13.09 -12.94 -12.00 -11.55 -10.99 =
3 -13.64 -13.33 -13.11 -12.72 -12.68 -12.57 -11.73 -
4 -19.15 -18.87 -18.29 -17.66 -17.18 -16.67 -12.99 -12.96
+ -14.08 -1403 -13.85 -13.68 -13.61 -13.50 -11.07 —_
4 -13.52 1346 -13.22 -12.76 -11.94 -11.65 -9.89 -
3 -13.09 -13.02 -12.36 -12.32 -12.52 -12.16 - —
6, "-14.44 -14.28 -14.04 -13.39 -13.39 -13.03 —
1 1, -11.93 -11.08 -11.00 -10.94 -10.65 -9.44 -9.43 —
1; -10.75 -10.35 -10.03 -10.00 -9.63 -9.11 -7.42 —
2, -13.54 -12.34¢ -12.82 -12.40 -11.94 -11.43 -11.36 -10.58
2, -11.20 -10.30 -10.08 -9.56 -9.41 -9.14 -8.32 -
 -12.35 -11.89 -11.75 -11.33 -11.23 -9.91 -9.21 -8.97
-11.56 -10.94 -10.33 -10.12 -9.75 -9.11 .T.19 —_
-12.66 -1209 -11.95 -11.70 -11.31 -10.70 -6.52 —
-11.81 -11.73 -11.68 -11.58 -11.48 -9.87 - -
-7.18 -718 -7.18 -7.18 -7.18 -7.15 -6.88 -6.82
246 245 245 245 -1.98 -1.98 -196 061
-2.65 249 2,49 -249 249 -249 -2.49 -
485 474 404 474 473 473 440 434
-3.36 -325  -3.25 -3.28 -3.25 -3.25 -3.08 107
2,12 203 -2.03 -2.03 -2.03 -203 -1.2¢4 -
346 339 339 -3.39 -3.38 -3.38 -264 -2.37

FPRR PPNt
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One may n~erve o ranie + that all states are very well reproduced by che M,
calcuiation 1 12 bosons). However. tiis agreement with the shell-model results deteniorates
as the number of bosons decreases. The rate of deterioration is slow while the qumber of
bosons is still large (up to adout \s) but becomes very rapid for a small aumber of bosons.
There are some cases. mostly observed in T = 2 states. wiere there is no deterioration of
the resuits but the various boson calcuiations produce the same energies. Such a benaviour
occurs if the ooson space is :0o rich and the fermion images of the boson states are not
linearly independent. One indeed observes that the constancy of the results disappears as
soon as the number of bosons becomes too small. The fact that. despite the richness of
the boson space. the boson egergies do not coincide with the shell-model results suggests
that bosons other than the 12 considered in the present calculation influence the structure
of these particuiar states. '

Some of the results shown in table 4 are easy to explain. For example, the second
J = 0. T = 0 state is well reproduced up to My (see table 4), but in M7 it becomes
displaced by about 3 MeV. The reason for this behaviour is that in My the s’ boson. which
was present up to chat point. is omitted. Similarly. the second J = 2. T = 0 and the first
J =4, T = 0 states are dispiaced by about 4 MeV when the d' boson and the g bosons
are removed. respectively.

The main conclusions of this section are then summarized as follows:

i) One can reproduce guite accurately the shell-model results for low-lying states of
the 4 = 20 system by using out of the 2§ possible bosons the 12 ones lying lowest in
energy.

ii) Through a completely impartial method one can arrange these bosons in order of
importance as building blocks of the low-lying states. It turns out that the s and d bosons
are the most important building blocks. followed by 4’ and g. Notice that the fundamental
role of the 3 and d bosons is here proven. not assumed.

iii) It is clear that certain bosons influence strongly particular states. For example,
the s’ boson infunces strongiy the second (J, T) = (0,0) state, while the &' and g bosons
affect mainly the second (2.0 and che first (4, 0) states, respectively.

iv) It is clear that the agreement of the results of the boson calculation to the shell

model results is reduced as the number of bosons used in the model is decreased.
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3. Effective boson Hamiltonian for the sd shell

The resuits of the previous section indicate that to reproduce satisfactorily the iow-
lying states of a muiti-orbital shell-model calculation one need; to consider a large boson
space. However. in this section we discuss a modification to the democratic mapping
method by which an [BM caiculation. in a small boson space, can account satisfactorily
for the low-lying shell-model states. This new approach is applied in this section to the sd
shell while in tne next section we discuss an application of the method to the fp shell.

As discussed in sect. 2. the four-fermion space, in the case of the sd shell. contains
640 states. [t shouid be reaiised from the description of the method. given in ref. {14]. that
the democratic mapping considers the efects of all these states. This happens because in
order to obtain matrix elements between the fermion images | F;) of the boson states |B;)
one considers a summation over a compiete set of fermion states. Thus the information
passed througn the mapping method from the fermion to the boson space is an average
one and not the one speciaily needed for che reproduction of the low-lying states. (See [14]
for a discussion on this subject.)

There are two ways to obtain a satisfactory agreement between shell-model and [BM
results. The frst. already applied in sect. 2, is to use a large boson space so that to
bring the boson vectors as close as possible to one-to-one correspondence with the fermion
states. The other is to apply the mapping method only to a subspace of the fermion
states. namely the space formed by the low-lying eigenstates of the shell-model hamiltonian.
The advantage of the first approach is that it produces a boson hamiltonian which is
equally suitable for the description of all states irrespective of their position in the energy
spectrum. On the other hand. with the second approach one will obtain an “effective”
boson hamiltonian which will reflect the properties of the low-lying states only.

As an application of the second method we have considered a boson space consisting
of the s, d, g and d' bosons ( My model). As shown ia table 3, in this boson space one can
account for 30 out of the 32 low lying states of the A = 20 nuclei, but with a large rms
dewviation of 2.463. Table 3 shows how this large rms value can be reduced by truncations
in the space of the fermion eigenstates. Thus for each combination of J and T we can keep,

instead of the full aumber of states, only the §0% of them lying lowest in energy, or. to be
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Table 5
Dependence of the resuits obtained by the My calculation
on the aumber of fermion states included in the mapping

1.0 08 06 04 02 01
N 30 30 30 50 43 39
o 2465 2.420 2233 1.745 1.048 0.403

Table 8
Energies of the low-iying states of *Ne (in MeV)
as a function of the number of fermion states included in the mapping

T J, 1.0 0.8 0.6 0.4 0.2 0.1 SM
0 0, -2129 -21.37 -21.40 -21.59 -23.17 -23.17 -23.17
0, -13.75 -13.81 -14.04 -15.98 -17.64 -17.64 -17.64
0, -10.60 -10.61 -10.84 -11.72 -13.32 - -13.32
2, -19.26 -19.30 -i9.37 -19.57 -20.22- -21.11 -2L.11
2, -15.93 -1595 -16.01 -16.61 -17.27 -17.35 -17.35
2, -11.35 -11.87 -11.63 -12.24¢ -13.14 -13.56 -13.56
3, -12.37 -12.59 -12.64 -12.97 -13.32 -13.54 -13.64
4 -16.67 -16.73 -16.83 -17.04 -17.86 -19.15 -19.15
4+ -13.30 -13.52 -13.62 -13.74 -13.82 -14.08 -14.08
4, -11.65 -11.68 -11.91 -12.48 -13.29 -13.52 -13.52
3, -12.16 -12.21 -12.29 -12.57 -13.04 -13.09 -13.09
6; -13.03 -13.14 -13.26 -13.76 -— — 144
1 1, 94 -947 -955 -10.06 -10.82 -11.79 -11.93
1, 911 -918 -945 -9.71 -10.25 -10.58 -10.75
2, -11.43 -11.45 -11.31 -11.89 -12.27 -3.50 -13.54
2, -9.14 917 -9.25 -9.68 -10.53 -11.11 -11.20
3, -991 996 -10.11 -10.58 -11.38 -11.97 -12.35
3 911 916 -941 -9.86 -10.31 -11.10 -11.56
4 -10.70 -10.71 -10.83 -10.99 -11.41 -12.56 -12.66
5 -987 -9.96 -1037 -10.78 -11.11 -11.81 -11.81
-1 -r18 718 -718 -7.18 -7.18 -T.18
0, -1.98 203 -246 -246 -2.46 — -2486
L, -249 -249 -250 -2.54 -2.64 -2685 -2.65
2, 473 474 477 485 485 485 485
2, 325 -326 -327 -3.36 -3.36 -3.36 -3.36
2, 203 205 206 -212 -2.12 - 212
4 -338 -339 341 -3.46 -3.48 -346 -3.46

"~
(=]
-
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precise. the nearest integer o that vaiue. [n the next step we can keep only 60% of the
states. again the ones lying lowest in energy, and so on. It should be emphasized that this
particular way of truncating the fermion space has only been considered because of the
simplicity of its description: one may consider other more elaborate schemes. The purpose
of this schematic calculation is made clear by the results shown in table 5. By reducing
the size of the fermion space down to 40% we remark that we can still build the 30 out of
the 32 states given in table 1. but the rms deviation, although it falls from 2.465 for 100%
of the space to 1.745 for 40% of the space. still remains quite sizeable. However, in the
next two steps, the rms deviation is decreased quite drastically, although most of the 52
states under consideration can still be built. As seen in table 5, with 20% of the fermion
space under consideration one can build 43 out of the 32 states with an rms deviation of
1.048. while with 10% of the space one can build 39 states with an rms deviation of 0.403.

The drastic improvement of the results obtained with the 4 bosons under consideration
(s, d. d'. g) through the truncation of the fermion space is clearly seen in table 6, which
shows the dependence of the low-lying eigenvalues of the boson hamiltonian on the number
of fermion states considered in the mapping method. We remark that the results obtained
from the boson calculation when only 10% of the fermion space is taken into account are
very close to the shell model results.

The main conclusion of this section is: With few bosons one can build most of the low-
lying states, but when the fuil fermion space is taken into account, the agreement between
the results of the boson calculation and the shell model calculation is poor. However,
one can drastically improve this agreement by appropriately truncating the fermion space,
keeping only the few lowest lying states for each combination of J and T.

4. The fp shell

In sect. 2 we used the resuts of a shell model calculation in the sd shell to order
the bosons according to their importance in the description of the low-lying states of the
A = 20 nuclei. A repetition of this procedure to the fp shell, although straightforward, is
very tedious due to the large dimensions of the shell-model macrices. Thus, as shown in
table 7. there are altogether 4000 four-fermion states in the fp shell compafed to the 640

states encountered in the sd shell. Furthermore, in the fp shell one can have 60 different
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fermion pairs. and thus 60 different bosons (30 T = 1 and 30 T = 0 bosons), in comparison
to the 28 bosons present in the sd shell. To reproduce, therefore, the low-lying states of
the 4 = 44 nucle! using the procedure of sect. 2 one needs to consider a larger number of
bosons than the 12 considered in the sd case. Thus to account satisfactorily for the energies
of the lowest 3 of the (J,T) = (0,0) states of **Ti we found necessary to consider a boson
space consisting of 17 bosons. Obviously, it is very difficult to study the other (J, T) states
of the 4 = 44 nuclei in such a large boson space and, therefore, in the following we report
only resuits obtained by simpler-models and using the procedure of sect. 3.

In our shell-model calculation in the fp shell we have assumed full configuration mix-
ing and placed the valence fermions in the 0f7/2, 1p3/2, 1p4/2 and 0f5/2 orbitals of
the harmonic oscillator potential. The energy matrices have been constructed using the
renormalized two-body matrix elements of Kuo and Brown {32] together with the following

empirical set of single particle energies:

Table 7
Number of four-fermion antisymmetric states in the fp shell
J T NVJ T N|J TN
0 0 66f0 1 64| 0 2 28
1 0126/ 1 1 206| 1 2 54
2 0 21742 1 28 2 2 %4
3 0 223! 3 1 337| 3 2 9
4 0 2401 4+ 1 316 4 2 99
3 0 188} 5 1 278| 5 2 75
6 0 161, 6 1 205( 6 2 359
7 0 100/ 7 1 143} 7 -2 33
8 0 69| 8 1 818 2 22
9 0 33,9 1 4|9 2 7
160 0 19|10 1 18|10 2 3
11 0 3|11 1 7
12 0 3112 1 1
Table 8

Overall quality of resuits obtained by the boson calculations in the fp shell

10 05 02 01 005 EM
N 52 52 32 52 51 52
o 1687 1.621 1411 1115 0497 0.962
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ezy2 =0, €372 =2.0TMeV, €;/2 = 4.0TMeV &5/2 = 6.0MeV. (3)

Our aim nas been to reproduce as accurately as possible the shell-model results for
the same 52 low-lying states considered in the sd shell (see table 1), using some boson
models containing only the most important (and low-lying) of the 60 possible bosons of
the fp shell. Thus, in our main calculation. to be hereafter described as BM, we consider a
boson space consisting of the s. d. g, t and d’ bosons. The s, d, g and d’ have been selected
since they were found in the sd calculation, described in sect. 2, to be the four most
important bosons for the description of low-lying states of the 4 = 20 nuclei. Therefore
they are expected to play an important role in the fp shell as well. In addition the i (J = 6)
boson, which is not present in the sd shell. has been included since it helps to account for
states with reiatively high spin. As shown in table 8, with these building blocks one can
reproduce all of the 52 low lying states of table 1 with an rms deviation of 1.687.

There are two ways to improve this result. One way is to incluae more bosons in
the model. To demonstrate the validity of this statement, we have attempted an IBM
calculation, to be denoted by EM in the following, in a larger space than that used to
obtain the BM results. Thus the space of the EM calculation contains, in addition to the
s, d, g, ¢ and d' bosons of BM. the s' boson, as well as the ¢ T = 0 bosons lying lowest in
energy, nameiy ¢;. 83, s and 6;. As seen in table 8, the EM calculation reproduces the
52 low lying states of the 4 = 44 nuclei with a largely reduced rms deviation of 0.962.

Another way of improving the boson results, is the one described in sect. 3, i.e. by
reducing the part of the fermion space taken into account. Considering the BM model
space, we have repeated the calculation by taking into account for each (J, T') combination
only the 50%. 20%. 10% and 3% of the low-lying fermion states of table 7. We observe
in table 8 that the 50% reduction of the fermion space does not help much, but when we
consider only the 10% or the 5% of the fermion space the results improve dramatically. A
more detailed presentation of the resuits obtained by the BM calculation for the various
truncations schemes of the fermion space is presented in table 9. For comparison we include
in table 9 the shell-model and EM results.
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Table 9
Energies of the low-lying states of “Ti (in MeV)
as a fuaction of the number of fermion states included in the masping

T J, 1.0 0.5 0.2 0.1 0.08 SM EM
0 0, -11.21 -11.25 -11.40 -12.88 -12.88 -12.88 -12.59
0, -3.57 -3.62 -627 -7.77 -838 -838 -7.00
2; -10.06 -10.11 -10.27 -10.63 -11.37 -11.61 -10.79
2, -799 -801 -818 -852 -88 -9.15 -826
2; 419 423 435 4.7 -5.4 -6.54 4.59
3 -360 -563 -3.77 -6.01 -630 -7.26 -6.05
4, 874 878 -893 -9.31 -10.36 -10.56 -9.44
4 623 626 -648 -699 -7.T1 -T96 -6.87
6 -7.78 -784 -807 -827 -9.08 -9.62 -847
8 636 -642 -723 -7.23 -7.23 -723 -6.75
11 -504 -312 -5.34 -5.59 -591 -645 -5.87
2, 610 613 6283 64 -666 -726 -6.75
2; -385 -3.88 403 424 -516 -545 448
3 -5.33 -3.38 -3.59 -5.82 -6.14 651 -6.10
3 44 4359 481 -503 -542 -597 -5.2¢4
4 571 574 -588 -3.95 -6.19 -6.88 -6.39
4&; 428 431 440 -460 496 531 -4.78
5 497 -507 -52¢ -542 -5.52 -6.26 -3.88
6 -605 -609 -621 -636 -661 -6.94 -6.59
no -831 555 -380 -588 -612 -6.27 -6.13
2 0 453 456 464 -464 464 -464 455
2, 302 306 -313 -318 -318 -3.15 -3.03
2 -141 -1581 -156 -1.60 -1.61 -1.61 -146
2 -122 -123 -132 -1.38 -1.38 -138 -1.25
4 219 222 227 233 233 238 -219
4 -1.93 -196 -199 -201 -201 -201 -1.93
5 -.07 -1.10 -114 -1.17 -L19 -119 -1.07
6, -167 170 -1.72 -1.78 -1.78 -1.78 -1.67

5. Conclusions
In this paper we have attempted an application of the democratic mapping in the case
of the sd and fp shells. This application demonstrated the applicability of the method in
realistic cases of several non-degenerate orbitals. The main conclusions of this work are

summarized here:
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i) We have demonstrated in a completely impartial way that the s and d bosons are
the most essential building blocks of the low lying states in sd shell nuclei. Thus, one of
the main assumptions of IBM is proven to be correct. The d’ and g bosons have been
found to be the next most important ones. according to expectations {17-20].

ii) Very accurate resuits have been obtained in the sd shell by considering the 12 lowest
lying bosons out of the 28 possible ones. However, to obtain an equally good agreement
in the fp shell one needs to enlarge considerably the dimension of the boson space. This
result is a consequence of the democratic mapping method which treats all fermion states
which are mapped onto boson states on equal footing.

iii) One way to obtain boson results in good agreement with the shell model calculation
using relatively few bosons {4 bosons in the sd shell, 5 bosons in the fp shell) is to map
only the fermion subspace which contains the states of interest. Although the results
of this approach resemble those obtained by the OAI mapping method, still one is not
required to make any assumptions about the shell-model states to be mapped. Thus the
only requirement considered in sections 3 and 4 was that the fermion states to be mapped
are the low-lying ones. Equally well one could have applied the mapping procedure to
reproduce the energies of shell-model states selected in some other fashion.

Councerning plans for future work along these lines, it should be noticed that the
importance of higher order terms has been recently realized in both the algebraic [33-35)
and the shell model [36.37] framework. An effort is therefore under way to include such
higher order terms in the framework of the democratic approach.
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