HNPS Advances in Nuclear Physics

Vol 2 (1991)

HNPS1991

> 12 and 13 April 1901
> ATHENS, GREECE
Nrew Ta4 mokmiren
Nrew Ta4 mokmiren
mery
mery

AN APPLICATION OF THE DEMOCRATIC MAPPING IN REALISTIC SYSTEMS

Dennis Bonatsos, L. D. Skouras, P. Van Isacker, M. A. Nagarajan
doi: $10.12681 /$ hnps. 2845

To cite this article:

Bonatsos, D., Skouras, L. D., Van Isacker, P., \& Nagarajan, M. A. (2020). AN APPLICATION OF THE DEMOCRATIC MAPPING IN REALISTIC SYSTEMS. HNPS Advances in Nuclear Physics, 2, 99-116.
https://doi.org/10.12681/hnps. 2845

AN APPLICATION OF THE DEMOCRATIC MAPPING [N REALISTIC SYSTEMS*

Dennis BON.TTSOS and L.D. SKOURAS
Institute of . Yuclear Physics, N.C.S.R. "Demokritos"
GR-15310 Aghia Paraskevi, Attiki, Greece
P. V.A.V ISACIER and M.A. NAGARAJAN
SERC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England

Abstract

The democratic mapping is used for the calculation of low lying states of nuciei in the sd and fp shells. In addition to demonstrating the applicability of the method in realistic cases where many non-degenerate levels are present, the method allows for the ranking oi the various bosons according to their importance as building blocks of low lying states. It is proven that the s and d bosons are the most important building blocks, followed by the d^{\prime} and g bosons. Thus one of the basic essumptions of the Interacting Boson Model (IBM) is proven to be correct. Very good agreement between the boson calculation and the sheil model resuits is obtained for $A=20$ auciei when 12 bosons are taken into account, while an even larger number of bosons is required to reproduce the low-lying states of the $A=44$ nuciei. In order to obtain equally good results with a smaller number of bosons one needs to introduce effective boson hamiltonians which correspond to truncated fermion spaces.

1. Introduction

Since the introduction of the Interacting Boson Model (IBM) by Arima and lachello [1,2] (for recent overviews see [3.4]), many attempts have been made to eatablish a connection between this model and the shell model. A necessary step in this boson mapping

[^0] model to the coïective boson suospace. Since the number of bosons describing a particuiar collective nucleus in the IBM framewori is constant. only number conserving boson mappings are suitabie for this purpose. An approach widely used is the Otsuka-Arima-Iachello (OAI) mapping method [6]. It is a seniority-based state mapping, that is, the seniority [7] ciassiñcation oi sneii-modei states is carried over onto a similar ciassinfation of buson states. The boson images of fermion operators are determined by computing matrix elements between shell-model states with good seniority. It is required that the matrix elements of the boson images oi the various operators in the boson basis be equal to the matrix elements oi the corresponding fermion operators in the fermion basis. Thereiore the OAI mapping is a mapping oi the Manumori type [8]. A different approach, based on the requirement that the boson images of the various pair and muitipole operators satisfy the same commutation relations (i.e. a mapping of the Belyaev-Zelevinsky-Marshaiek (BZM) type (9.10]) is the Bonatsos. Illein and Li (BKL) method (11-13].

In a recent paper [14], to be hereaiter referred to as I , an alternative mapping method was proposed. winich is, as the OAI method, of the Marumori type [8]. This new method is, however. different from the OAI approach, since it treats on equal footing all shellmodel states which are mapped onto corresponding boson states, i.e without the hierarchy implicitly assumed in the OAI approaci. This is the reason why the method was named in I "democraric".

So far. the democratic method was only tested in the $f \pi / 2$ shell. This test proved succesful since the energy spectra obtained with this method for the $A=45-48$ nuclei were found [14 ! to be in satisfactory agreement with the shell-model results. However. as claimed in I. the real advantage of this new mapping method is that it can easily be applied to realistic sheil-model spaces where many single-particie orbitals are involved. This efficiency of the method is due to the flexible way in which the necessary coefficients of fractional parentage are calculated and stored for further use [15.16]. Such a realistic application is discussed in the present paper where the democratic mapping method is applied to the sd and fp shells.

It is customary in IBM calculations to consider only s and d bosons for the description of the basic features of the low-lying spectra of collective nuclei $[1-4]$. However, the boson
space tormed by , and dimsons only is cow suall and in order to give a better description of nuclear spectra it has been tound necessary to include additional bosons, like the g ooson [17-i9] and s^{\prime} and $d^{\prime \prime}$ bosons [20], as weil as proton-neutron bosons with $T=1$ [21] and $T=0$ (22). The s^{\prime} and d^{\prime} bosons are important for the description of intruder states [23], while the proton-neutron óosons with $T=1$ and $T=0$ have been found particularly useful in applications in the sd sheil $\{24.25]$. .:here the valence protons and neutrons occupy the same major sheil.

From the above. it becomes evident that to reproduce by a mapping procedure results obtained in large shell-model spaces it is necessary to consider boson spaces of correspondingly large dimensions. In the case of the O.AI mapping the g boson has been recently introduced [26]. while in the BKL method it appears as a consistency requirement in the next-to-lowest order approximation [11]. i^{\prime} and $d^{\prime \prime}$ bosons have also been considered in the BKL method. along with other bosons. like f and p bosons of negative parity [12]. which are useful for the description of low-iying octupole states [27]. Several non-degenerate leveis have been considered in both the O.AI [2S] and the BKL [12] approaches.

The selection of the bosons to be included in the mapping procedure has been based so far either on experience. as in the OAI case. or on mathematical consistency requirements. as in the BKL case. The ilexibility of the democratic approach allows for a different kind of test to be periormed. One can start mith a relatively large number of bosons. In the case of the sd sheil. for exampie. one can consider out of the 2 S possible bosons the 12 bosons which lie lowest in energy. It is clear that with such a rich space one can reproduce the lowlying shell model results quite accurateiy. One can then periorm 12 different calculations. each involving 11 of the bosons previousiy considered and decide to permanently remove the boson which causes the least damage to the agreement with the shell model resuits. Then one is left with 11 bosons and can perform 11 different 10 -boson calcuiations, in order to decide which of the 11 bosons now in hand is the less important. Continuing this procedure, one can rank the bosons. in an impartial way, according to their importance. The results of this investigation for the $A=20$ nuclei are discussed in sect. 2.

The success of the IBM lies in the fact that with relatively few degrees of freedom one can account for many oi the properties of the low-lying spectra of nuclei. To accomplish
such a resuit nae needs io consider an effective boson hamiitonian. The manner in which such an effective hamiltonan can de obtained in the framework of the democratic mapping is discussed in sect. 3. where the method is applied to the sd shell. In sect. 4 a similar calculation for the ip sheii is periormed. while sect. \bar{j} contains the conclusions of this worix.

2. Relative importance of bosons in the sd shell

In this section we appiy ihe democratic mapping method, described in [14], to the sd shell. Our aim is to reproduce in the framework of IBM the shell model results for the low-lying spectra of the $A=20$ nuclei. These nuciei have four valence fermions outside the ${ }^{15} \mathrm{O}$ closed core and the full fermion space consists of 640 antisymmetric states. The number of states ior each set of (J, T) raiues is shown in table 1 . In this table N denotes the total number of states for a given (J.T) set of values, while n the number of low-lying states the energies of whicin we are interested in reproducing with our mapping method.

In our sheil-model calculation in the sd shell we have assumed full configuration mixing and placed the valence fermions in the $0 d 5 / 2,1 s 1 / 2$ and $0 d 3 / 2$ orbitals of a harmonic oscillator, with $\hbar_{\Delta}=14.4$ MeV. For the one-body part of the fermion hamiltonian we have used the experimental single-particle energies [20] of ${ }^{17} \mathrm{O}$:

$$
\begin{equation*}
\epsilon_{5 / 2}=0 . \quad \epsilon_{1 / 2}=0.57 \mathrm{MeV} . \quad \epsilon_{3 / 2}=5.08 \mathrm{MeV} \tag{1}
\end{equation*}
$$

while for the two-body part the matrix elements of Preedom and Wildenthal [30].
In the sd shell one can form 14 fermion pairs with $T=1$ and another 14 pairs with $T=0$. Thereiore. in the manner of ref. [14], one can associate 28 bosons with twofermion eigenstates. Including all 28 bosons is technically difficuit and, moreover. will most certainiy result in the linear dependence of the four-fermion states which will be associated with bosons in the manner of ref. [14]. Since we are interested in explaining the low-energy spectra of the $A=20$ nuclei only, it is reasonabie to assume that the bosons lying lowest in energy should be the most important ones. We have decided, therefore, to associate with bosons the 12 lowest two-fermion eigenstates. The 12 bosons selected from this procedure are listed in the first line of table 2. Following the usual notation, we use in table 2 and elsewhere the symbols $s, d . g$ for $T=1$ bosons with $J=0 . J=2$ and $J=4$, correspondingly. For $T=0$ bosons we use the notation $[31] \theta_{J}$. Unprimed bosons are the ones lying lowest in energy. while primed bosons are the next lowest lying ones.

Table 1
Niumber of four-iermion antisymmerric states in the sd shell

J	T	.V	n	J	T	N	n	J	T	N	n
0	0	21	3	0	1	16	1	0	2	9	2
1	0	31	1	1	1	54	3	1	2	12	1
2	0	50	5	2	1	66	4	2	2	21	3
3	0	40	2	3	1	69	5	3	2	21	1
4	0	4	5	4	1	50	3	4	2	15	2
5	0	24	1	5	1	34	1	5	2	6	1
6	0	\vdots	2	6	1	16	1	6	2	3	1
7	0	5	1	1	1	7	1				
8	0	3	1	9	1	1	1				

Table 2
Boson spaces considered in the calculation in the sd sheil

M_{1}	s	d	g	s^{\prime}	a^{\prime}	θ_{1}	θ_{2}	θ_{3}	θ_{4}	θ_{5}	θ_{1}^{\prime}	θ_{3}^{\prime}
M_{2}	s	d	g	s^{\prime}	a^{\prime}	θ_{1}	θ_{2}	θ_{3}	θ_{4}	θ_{5}		θ_{3}^{\prime}
M_{3}	s	d	g	s^{\prime}	d^{\prime}	θ_{1}	θ_{2}	θ_{3}	θ_{4}	θ_{5}		
M_{4}	s	d	g	s^{\prime}	d^{\prime}	θ_{1}	θ_{2}	θ_{3}		θ_{3}		
M_{3}	s	d	g	s^{\prime}	$d^{\prime \prime}$	θ_{1}		θ_{3}		θ_{3}		
M_{5}	s	d	g	s^{\prime}	d^{\prime}			θ_{3}		θ_{3}		
M_{7}	s	d	g		d^{\prime}			θ_{3}		θ_{3}		
M_{5}	s	d	g		$d^{\prime \prime}$					θ_{5}		
M_{9}	s	d	g		$d^{\prime \prime}$							
M_{10}	s	d			a^{\prime}							
M_{11}	s	d										

Table 3
Overail quaiity of resuits obtained by the various boson models in the sd sheil

		V	σ	N^{\prime}	σ
M_{2}		52	0.427	52	0.427
M_{2}	θ_{1}	52	0.526	50	0.443
M_{3}	θ_{3}	52	0.619	50	0.529
M_{4}	θ_{4}	52	0.780	49	0.611
M_{5}	θ_{2}	52	1.264	49	0.769
M_{8}	θ_{1}	52	1.482	47	0.984
M_{7}	s^{\prime}	52	1.831	47	1.251
M_{3}	θ_{3}	51	2.171	46	1.598
M_{9}	θ_{5}	50	2.465	45	1.946
M_{10}	g	33	3.609	30	3.124
M_{11}	d^{\prime}	13	4.566	13	4.566

After the seiection of the bosons. Hiscussed above, the matrix eiernents of the boson hamiitonian sere cietermined toilowing the procedure described in ref̂. [14]. Consequently we were able to obtain energy spectra for the $A=20$ nuciei by diagonalizing the boson hamiltonian in the basis of two-boson rectors. From the results of this IBM calculation, which we shail cail henceforth M_{1} calculation. we obtain a very good description of the 52 low lying states of table 1. The quality of the fit can be seen in table 3, which shows the rms deviation σ. This is defined as

$$
\begin{equation*}
\sigma=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(E_{i}(S M)-E_{i}(b)\right)^{2}} \tag{2}
\end{equation*}
$$

where.V is the number of states included in the calculation. $E_{i}(S M)$ are the energies resulting from the shell-model calculation and $E_{i}(b)$ are the corresponding energies resulting from the boson calculation.

As table 3 shows. the resuits obtained with the 12 bosons included in the M_{1} model are in very good agreement with the siell-model predictions. However, the large number of bosons inciuded' in the M_{1} calculation makes difficult the application of such a model to heavier auciei in the sd shell. We have examined. therefore, the possibility of reducing the number of bosons included in the model, making sure in parallel that we cause the least possible damage to the agreement between the resuits of the boson and shell-model calculations. This classification of the bosons according to their importance in the lowlying spectra of the $A=20$ nuclei has been obtained in the following manner. We have attempted 12 different calculations. each of them involving 11 of the bosons previously used. In each of these calculations we have followed exactly the same procedure with that adopted in the M_{1} calculation. i.e the democratic method was applied to produce the appropriate hamiltonian which. in turn. was diagonalized to produce the energy spectrum. Finally, for each set of results the rms deviation, defined in eq. (2), was computed. It turns out that the smailest σ is obtained when θ_{1}^{\prime} is removed. We conclude. therefore, that θ_{1}^{\prime} is the least important of the 12 bosons used in M_{1}. The best 11 -boson model we can have is then the model which contains all bosons used in M_{1} except θ_{1}^{\prime}. This new model we call henceforth M_{2}. The bosons used in M_{2} are shown in table 2, while the corresponding σ
is shown in :ajie 3. It shoud ne remarked at this point that the removai of the \dot{o}_{1}^{\prime} boson mainiy affects :wo of the states of tabie l. namely the first $J=1, T=0$ and the second $J=3 . T=0$. both of which lie relatively high in the fermion spectrum. Most of the increase of σ 두 0.427 for M_{1} to 0.526 in M_{2} is due to these two states. It is reasonable then to exclude such "pathoiogical" states from our procedure. When excluding these two states we see tiat σ for M_{2} is just $0 . i+3$. only slightly higher than the 0.427 value found for M_{1}.

We can now continue this ciassinication of boson states by starting from the 11 bosons of \sum_{2} and perioming 13 di:Eerent 10 -boson calculations. The least useful boson in this case is found to be θ_{3}^{\prime}. Thereiore M_{3} includes all bosons of M_{2} except θ_{3}^{\prime}. Continuing in this way we inai. as shown in tables 2 and 3 , that the next bosons to be removed are θ_{4}, $\theta_{2}, \theta_{1}, s^{\prime}, \theta_{3}$ and θ_{3}. One is then left with M_{9}, which contains only 4 bosons, the s, d, d^{\prime} and g ones. We remaris that by now all the $I=0$ bosons have been removed. The bosoa space is. dowever. still quite rich. so that 50 of the original 52 states of table 1 can be accounted ior and. as table 3 shows. the energies of 45 of the accounted states are in satisiactory agreement with the sheil-model values. The next "victim" is g, followed by d ". In the last two steps, as seen in table 3. one can account with the remaining bosons only a small fraction oi the originai $\mathbf{5 2}$ states of table 1 . One is finally left with M_{11}, which contains only tie last two josons. which curn out to be the most important building blocks of the low lying states, aameiy the s and d bosons. The bosons present in each step are shown in table 2 . while the quality of the results obtained with each model is shown in table 3. Througiout this procedure particular states were giving large contributions to σ. Therefore in table 3 we give two cases: by N and σ we describe the full number of states obtained with the bosons in hand as well as the corresponding mos deviation. while by V^{\prime} we indicate the number of "non-pathological" states and by σ^{\prime} the rms deviation corresponding to these N^{\prime} states. We remark that while N^{\prime} is only slightly smaller than N, σ^{\prime} is always significantily smaller than σ.

A more detailed presentation of the resuits obtained from the calculations, $M_{1} \ldots . M_{11}$, described above. is given in table 4. Table 4 lists the energy eigenvalues obtained from the IBM calculations and compares them with the sheil-model results. To avoid making table
\pm too lengtay ve only list the energes oi about half of the states which were used in the determination oi the rms deviation. The states listed in table 4 were the lowest in energy but representatives of all possiole J. T :alues have been included. Moreover, we restrict in table 4 the presentation of results only to those obtained from $M_{k}(k=1,3,5,7,9,10,11)$ calculations i.e we omit the :esults of the internediate M_{2}, M_{4} etc.

Table 4
Energies oi the low-iying states of ${ }^{20} \mathrm{Ne}(\mathrm{in} \mathrm{MeV})$ ootained from the sinell-modei and the various IBM calculations

T	J_{2}	SM	M_{1}	MH_{3}	M,	M	M9	M_{10}	M_{11}
0	O_{1}	-23.17	-23.12	-23.03	-22.96	-22.86	-21.29	-20.24	-17.11
	O_{2}	-17.64	-17.60	-17.26	-17.21	-14.17	-13.75	-13.19	-8.55
	O_{3}	-13.32	-13.29	-13.24	-13.22	-11.25	-10.60	-9.41	
	21	-21.11	-20.81	-20.63	-20.28	-20.24	-19.26	-17.11	-15.82
	2_{2}	-17.35	-17.04	-16.6i	-16.46	-16.05	-15.93	-15.51	-11.50
	23	-13.56	-13.33	-13.09	-12.94	-12.00	-11.55	-10.99	
	31	-13.64	-13.33	-13.11	-12.72	-12.68	-12.57	-11.73	
	h_{1}	-19.15	-18.37	-18.29	-17.66	-17.18	-16.67	. 12.99	12.96
	${ }_{4}$	-14.08	-14.03	-13.35	-13.68	-13.61	-13.50	-11.07	
	ts	-13.52	-13.45	-13.22	-12.76	-11.94	-11.65	-9.89	
	5_{1}	-13.09	-13.02	-12.96	-12.52	-12.52	-12.16		
	61	-14.44	-14.28	-14.04	-13.39	-13.39	-13.03		
1	11	-11.93	-11.08	-11.00	-10.94	-10.65	-9.44	-9.43	
	12	-10.75	-10.35	-10.03	-10.00	-9.63	-9.11	-i. 42	
	2	-13.54	-12.94	-12.S2	-12.40	-11.94	-11.43	-11.36	-10.58
	2_{2}	-11.20	-10.30	-10.08	-9.56	-9.41	-9.14	-8.32	
	31	-12.35	-11.99	. 11.15	-11.33	-11.23	-9.91	-9.21	-8.97
	32	-11.56	-10.94	-10.35	-10.12	-9.75	-9.11	-7.19	
	${ }_{1}$	-12.66	-12.09	-11.93	-11.70	-11.31	-10.70	-6.32	
	5_{1}	-11.81	-11.73	-11.68	-11.58	-11.48	-9.87	-	
2	O_{1}	-7.18	-7.18	-7.18	-7.18	-7.15	-7.15	-6.88	-6.82
	O_{2}	-2.46	-2.45	-2.45	-2.45	-1.98	-1.98	-1.96	0.61
	11	-2.65	-2.49	-2. 49	-2.49	-2.49	-2.49	-2. 49	
	21	-4.85	+.i4	4.14	-4.74	-4.73	-4.73	-4.40	-4.34
	2_{2}	-3.36	-3.25	-3.25	-3.25	-3.25	-3.25	-3.08	1.07
	2_{3}	-2.12	-2.03	-2.03	-2.03	-2.03	-2.03	-1.24	-
	H_{1}	-3.46	-3.39	-3.39	-3.39	-3.38	-3.38	-2.64	-2.3i

One may morre trom rain + that all states are very well reproduced by the M_{1} calculation , 12 bosons). However. this agreement with the shell-model resuits deteriorates as the nuraber oi bosons decreases. The rate of deterioration is slow while the number of bosons is still large (up to about M_{G}) but becomes very rapid for a small number oi bosons. There are some cases. mostily observed in $T=2$ states. winere there is no deterioration of the resuits dut the various doson caicuiations produce the same energies. Such a beciaviour occurs if the ooson space is :00 rich and the fermion images of the boson states are not linearly independent. One inceed observes that the constancy of the results disappears as soon as the number of bosons becomes too small. The fact that. despite the riciness of the boson space. the boson energies do not coincide with the shell-model reauts suggests that bosons other than the 12 considered in the present calculation influence the structure of these particuiar states.

Some of the results shown in table 4 are easy to explain. For example, the second $J=0 . T=0$ state is well reproduced up to M_{9} (see table 4), but in M_{7} it becomes displaced by ajour 3 MeV. The reason for this behaviour is that in M_{7} the s^{\prime} boson. which was present up to that point. is omitted. Similarly, the second $J=2 . T=0$ and the first $J=4, T=0$ states are dispiaced by about 4 MeV when the d^{\prime} boson and the g bosons are removed. respectively.

The main conclusions of this section are then summarized as follows:
i) One can :eproduce quite accurately the shell-model results for low-lying states of the $A=20$ system by using out of the $2 S$ possible bosons the 12 ones lying lowest in energy.
ii) Througi a completely impartial method one can arrange these bosons in order of importance as building blocks of the low-lying states. It turns out that the s and d bosons are the most important building blocis. follorved by d^{\prime} and g. Notice that the fundamental role of the s and d bosons is bere proven. not assumed.
iii) It is clear that certain bosons influence strongly particular states. For example, the s^{\prime} boson influnces strongi! the second $(J, T)=(0,0)$ state, while the $d^{\prime \prime}$ and g bosons affect mainly the second (2.0) and the first (4,0) states, respectively.
iv) It is clear that the agreement of the results of the boson calculation to the shell model resuits is reduced as the number of bosons used in the model is decreased.

3. Effective boson Hamiltonian for the sd shell

The resuits of the previous section indicate that to reproduce satisfactorily the owlying states of a muiti-orbital shell-model calculation one needs to consider a large boson space. However. in this section we discuss a modification to the democratic mapping method by which an IB.M caiculation. in a small boson space, can account satisfactorily for the low-lying shell-model states. This new approach is applied in this section to the sd shell while in the aext section we discuss an application of the method to the fp shell.

As discussed in sect. 2. the four-termion space, in the case of the sd shell. contains 640 states. It shouid be reaiised from the description of the method. given in ref. [1t]. that the democratic mapping considers the effects of all these states. This happens because in order to obtain matrix elements between the fermion images $\left|F_{i}\right\rangle$ of the boson states $\left|B_{\mathbf{i}}\right\rangle$ one considers a summation over a complete set of fermion states. Thus the iniormation passed througn the mapping method irom the fermion to the boson space is an average one and not the one speciaily needed for the reproduction oi the low-lying states. (See [14] for a discussion on this subject.)

There are tro ways to obtain a satisfactory agreement between shell-model and IBM results. The Arst. already applied in sect. 2, is to use a large boson space so that to bring the boson vectors as ciose as possible to one-to-one correspondence with the fermion states. The other is to appiy the mapping method only to a subspace of the fermion states. nameiy the space formed by the low-iving eigenstates of the shell-model hamiltonian. The advantage oi the first approach is that it produces a boson hamiltonian which is equally suitable for the description of all states irrespective of their position in the energy spectrum. On the other band. with the second approach one will obtain an "effective" boson hamiltonian which will reflect the properties of the low-lying states only.

As an application of the second method we have considered a boson space consisting of the s, d, g and $d^{\prime \prime}$ bosons (. $1 / 9$ mode!). As shown in table 3, in this boson space one can account for 30 out of the 32 low lying states of the $A=20$ nuclei, but with a large rms deviation of $\mathbf{2 . 4 6 5}$. Table j shows how chis large rms value can be reduced by truncations in the space of the fermion eigenstates. Thus for each combination of J and T we can keep, instead of the fuil number of states, only the 80% of them lying lowest in energy, or. to be

Table 5
Dependence oi the resuits obtained by the.M_{9} calculation on the number oi fermon states included in the mapping

	1.0	0.8	0.6	0.4	0.2	0.1
N	50	50	30	50	43	39
0	2.465	2.420	2.233	1.745	1.048	0.403

Table 6
Energies oi the low-iying states of ${ }^{20} \mathrm{Ne}$ (in MeV)
as a function of the number oi iermion states included in the mapping

T	J_{3}	1.0	0.8	0.6	0.4	0.2	0.1	SM
0	O_{1}	-21.29	-21.37	-21.40	-21.59	-23.17	-23.17	-23.17
	O_{2}	-13.75	-13.91	-14.04	-15.98	-17.64	-17.64	-17.64
	O_{3}	-10.60	-10.61	-10.84	-11.72	-13.32		-13.32
	21	-19.26	-19.30	-i9.37	-19.5i	-20.22	-21.11	. 21.11
	2_{2}	-15.93	-15.95	-16.01	-16.61	-17.27	-17.35	-17.35
	23	-11.55	-11.57	-11.63	-12.24	-13.14	-13.56	-13.56
	31	-12.57	-12.59	-12.64	-12.97	-13.32	-13.54	-13.64
	t_{1}	-16.67	-16.73	-16.83	-17.04	-17.86	-19.15	-19.15
	t_{2}	-13.50	-13.52	-13.62	-13.74	-13.82	-14.08	-14.08
	t_{3}	-11.65	-11.68	-11.91	-12.48	-13.29	-13.52	-13.52
	j_{1}	-12.16	-12.21	-12.29	-12.57	-13.04	-13.09	-13.09
	61	-13.03	-13.14	-13.26	-13.76	-	-	-14.44
1	l_{1}	-9.44	-9.47	-9.55	-10.06	-10.82	-11.79	-11.93
	l_{2}	-9.11	-9.18	-9.45	-9.71	-10.25	-10.58	-10.75
	$-_{1}$	-11.43	-11.45	-11.51	-11.89	-12.27	-3.50	-13.54
	2_{2}	-9.14	-9.17	-9.25	-9.68	-10.53	-11.11	-11.20
	31	-9.91	-9.96	-10.11	-10.58	-11.35	-11.97	-12.35
	32	-9.11	-9.16	-9.41	-9.86	-10.31	- 11.10	-11.56
	H_{1}	-10.70	-10.71	-10.83	-10.99	-11.41	- 12.56	-12.66
	5_{1}	-9.87	-9.96	-10.37	-10.78	-11.11	-11.81	-11.81
2	0_{1}	-7.15	-7.18	-i. 18	-7.18	-7.18	-7.18	-7.18
	O_{2}	-1.98	-2.03	-2.46	-2.46	-2.46	-	-3.46
	12	-2.49	-2.49	-2.50	-2.54	-2.64	-2.65	-2.65
	$-_{1}$	4.73	4.74	+.77	-4.85	-4.85	-4.85	-4.85
	2_{2}	-3.25	-3.26	-3.27	-3.36	-3.36	-3.36	-3.36
	3_{3}	-2.03	-2.05	-2.06	-2.12	-2.12	-	-2.12
	4	-3.38	-3.39	. 3.41	-3.46	-3.46	-3.46	-3.46

precise: the nearest integer :o that mive. In the next step we can keep only 60% of the states. again the ones lying lowest in energy, and so on. It should be emphasized that this particular way oi truncating the fermion space has only been considered because of the simplicity of its description: one may consider other more elaborate schemes. The purpose of this schematic calculation is made clear by the results shown in table 5. By reducing the size of the fermion space down to 40% we remark that we can still build the 50 out of the 52 states given in table 1 . but the rms deviation, although it falls from 2.465 for 100% of the space to $1 . i 45$ for 40% of the space. still remains quite sizeable. However, in the next two steps, the rms deviation is decreased quite drastically, although most of the 52 states under consideration can still be built. As seen in table 5, with 20% of the fermion space under consideration one can build 43 out of the 52 states with an rms deviation of 1.048. while with 10% of the space one can build 39 states with an rms deviation of 0.403 .

The drastic improvement of the resuits obtained with the 4 bosons under consideration ($s, d . d^{f} . g$) through the cruncation of the fermion space is clearly seen in table 6 , which shows the dependence of the low-lying eigenvalues of the boson hamiltonian on the number of fermion states considered in the mapping method. We remark that the results obtained from the boson calculation when only 10% of the fermion space is taken into account are very close to the sheil model results.

The main conclusion of this section is: With few bosons one can buiid most of the lowlying states, but when the fuil fermion space is taken into account, the agreement between the results of the boson calculation and the shell model calculation is poor. However, one can drastically improve this agreement by appropriately truncating the fermion space, keeping only the few lowest lying states for each combination of J and T.

4. The fp shell

In sect. 2 we used the resuits of a shell model calcuiation in the sd shell to order the bosons according to their importance in the description of the low-lying states of the $A=20$ nuciei. A repecition of this procedure to the fp shell, although straightforward, is very tedious due to the large dimensions of the shell-model matrices. Thus, as shown in table \bar{i}. there are altogether 4000 four-fermion states in the fp shell compared to the 640 states encountered in the sd shell. Furthermore, in the fp shell one can have 60 different
fermion pairs. and thus 60 difierent bosons ($30 T=1$ and $30 T=0$ bosons), in comparison to the 28 bosons present in the sd shell. To reproduce, therefore, the low-lying states of the $A=44$ nuciei using the procedure oi sect. 2 one needs to consider a larger number of bosons than the 12 considered in the sd case. Thus to account satisfactorily for the energies of the lowest 3 of the $(J, T)=(0,0)$ states of ${ }^{44} \mathrm{Ti}$ we found necessary to consider a boson space consisting of 17 bosons. Obviously, it is very difficult to study the other (J,T) states of the $A=44$ nuciei in such a large boson space and, therefore, in the following we report only results obtained by simpler-models and using the procedure of sect. 3.

In our shell-model calculation in the fp shell we have assumed full configuration mixing and placed the valence fermions in the $0 f 7 / 2,1 p 3 / 2,1 p 1 / 2$ and $0 f 5 / 2$ orbitals of the harmonic oscillator potential. The energy matrices have been constructed using the renormalized two-body marrix elements of Kuo and Brown [32] together with the following empirical set of single particle energies:

Table 7
Siumber of four-iermion antisymmetric states in the fp shell

J	T	N	J	T	N	J	T	N
0	0	66	0	1	64	0	2	28
1	0	126	1	1	206	1	2	54
2	0	217	2	1	285	2	2	94
3	0	223	3	1	337	3	2	91
4	0	240	1	1	316	4	2	99
5	0	188	5	1	278	5	2	75
6	0	161	6	1	205	6	2	59
7	0	100	7	1	143	7	2	33
8	0	69	3	1	81	8	2	22
9	0	33	9	1	44	9	2	7
10	0	19	10	1	18	10	2	3
11	0	5	11	1	7			
12	0	3	12	1	1			

Table 8
Overall quaiity of resuits obtained by the boson calculations in the fp sheil

	1.0	0.5	0.2	0.1	0.05	EM
N	52	52	52	52	51	52
σ	1.687	1.621	1.411	1.115	0.497	0.962

$$
\begin{equation*}
\epsilon_{-/ 2}=0, \epsilon_{3 / 2}=3.07 \mathrm{MeV}, \epsilon_{1 / 2}=4.07 \mathrm{MeV} \epsilon_{5 / 2}=6.0 \mathrm{MeV} \tag{3}
\end{equation*}
$$

Our aim zas been to reproduce as accurately as possible the sheil-model resuits for the same 52 low-lying states considered in the sd shell (see table 1), using some boson models containing only the most important (and low-lying) of the 60 possible bosons of the fp shell. Thus, in our main calculation, to be hereafter described as BM, we consider a boson space consisting of the s. $d . g, i$ and d^{\prime} bosons. The s, d, g and $d^{\prime \prime}$ have been selected since they were found in the sd calcuiation. described in sect. 2, to be the four most important bosons for the description of low-lying states of the $A=20$ nuclei. Therefore they are expected to play an important role in the fp shell as well. In addition the $i(J=6)$ boson, which is not present in the sd shell. has been included since it helps to account for states with reiatively high spin. As shown in table 8, with these building blocks one can reproduce all of the 52 low lying states of table 1 with an rms deviation of 1.687 .

There are two ways to improve this result. One way is to include more bosons in the model. To demonstrate the validity of this statement, we have attempted an IBM calculation, to be denoted by EM in the following, in a larger space than that used to obtain the BM results. Thus the space of the EM calculation contains, in addition to the s, d, g, i and a^{\prime} bosons of BM. the s^{\prime} boson, as well as the $4 T=0$ bosons lying lowest in energy, nameiy $\theta_{1}, \theta_{3}, \theta_{3}$ and θ_{7}. As seen in table 8 , the EM calculation reproduces the 52 low lying states of the $A=44$ nuciei with a largely reduced rms deviation of 0.962 .

Another way of improving the boson results, is the one described in sect. 3, i.e. by reducing the part of the fermion space taken into account. Considering the BM model space, we have repeated the calculation by taking into account for each (J, T) combination only the $50 \% .20 \% .10 \%$ and 3% of the low-lying fermion states of table 7 . We observe in table 8 that the 50% reduction of the fermion space does not help much, but when we consider only the 10% or the 5% of the fermion space the resuits improve dramatically. A more detailed presentation of the resuits obtained by the BM calculation for the various truncations schemes of the fermion space is presented in table 9. For comparison we include in table 9 the sheil-model and EM results.

Table 9
Energies oi the low-iying states of ${ }^{44} \mathrm{Ti}$ (in MeV) as a function of the number of fermion states included in the mapping

T	J_{2}	1.0	0.5	0.2	0.1	0.05	SM	EM
0	0_{1}	-11.21	-11.25	-11.40	-12.88	-12.88	-12.88	-12.59
	O_{2}	-5.57	-5. 62	-6.27	-7.77	-8.38	-8.38	-7.00
	21	-10.06	-10.11	-10.27	-10.63	-11.37	-11.61	-10.79
	I_{2}	-7.99	-8.01	-8.18	-8.52	-8.89	-9.15	-8.26
	2_{3}	4.19	+. 23	-4.55	-4.75	-5.94	-6.54	-4.59
	31	-5.60	-5. 63	-3.77	-6.01	-6.50	-7.26	-6.05
	t_{1}	-8.74	-8.78	-8.93	-9.31	-10.36	-10.56	-9.44
	42	-6.23	-6.26	-6.48	-6.99	-7.71	-7.96	-6.87
	61	-7.78	-7.84	-8.07	-8.27	-9.08	-9.62	-8.47
	81	-6.36	-6.42	-7.23	-7.23	-7.23	-7.23	-6.75
1	l_{1}	-5.04	-5.12	-5.34	-5.59	-5.91	-6.45	-5.87
	2_{1}	-6.10	-6.13	-6.23	-6.44	-6.66	-7.26	-6.75
	m_{2}	-3.85	-3.88	-4.03	-4.24	-5.16	-5.45	-4.48
	31	-5.33	-5.38	-3.59	-5.82	-6.14	-6.51	-6.10
	32	-4.44	4.59	4.81	-5.03	-5.42	-5.97	-5.24
	t_{1}	-5.71	-5.74	-3.88	-5.95	-6.19	-6.88	-6.39
	4_{2}	4.28	4.31	-4.40	-4.60	-4.96	-5.31	-4.78
	5_{1}	-4.97	-5.07	-5.24	-5.42	-5.52	-6.26	-5.88
	61	-6.05	-6.09	-6.21	-6.36	-6.61	-6.94	-6.59
	i_{1}	-5.31	-5.55	-5.80	-5.88	-6.12	-6.27	-6.13
2	01	-4.53	4.56	-4.64	-4.64	-4.64	-4.64	-4.55
	2	-3.02	-3.06	-3.13	-3.15	-3.15	-3.15	-3.03
	P_{2}	-1.41	-1.51	-1.56	-1.60	-1.61	-1.61	-1.46
	2_{3}	-1.22	-1.23	-1.32	-1.38	-1.38	-1.38	-1.25
	4	-2.19	-2.22	-2.27	-2.33	-2.33	-2.33	-2.19
	42	-1.93	-1.96	-1.99	-2.01	-2.01	-2.01	-1.93
	5_{1}	-1.07	-1.10	-1.14	-1.17	-1.19	-1.19	-1.07
	61	-1.67	-1.70	-1.72	-1.78	-1.78	-1.78	-1.67

5. Conclusions

In this paper we have attempted an application of the democratic mapping in the case of the sd and fp shells. This application demonstrated the applicability of the method in realistic cases of several non-degenerate orbitals. The main conclusions of this work are summarized here:
i) We have demonstrated in a completely impartial way that the s and d bosons are the most essential building blocks of the low lying states in sd shell nuciei. Thus, one of the main assumptions of IBM is proven to be correct. The $d^{\prime \prime}$ and g bosons have been found to be the next most important ones. according to expectations [17-20].
ii) Very accurate resuits have been obtained in the sd shell by considering the 12 lowest lying bosons out of the 28 possible ones. However, to obtain an equally good agreement in the fp shell one needs to enlarge considerably the dimension of the boson space. This result is a consequence of the democratic mapping method which treats all fermion states which are mapped onto boson states on equal footing.
iii) One way to obtain boson results in good agreement with the shell model calculation using relatively few bosons it bosons in the sd shell, 5 bosons in the fp shell) is to map only the fermion subspace which contains the states of interest. Although the results of this approacn resemble those obtained by the OAI mapping method, still one is not required to make any assumptions about the shell-model states to be mapped. Thus the only requirement considered in sections 3 and 4 was that the fermion states to be mapped are the low-lying ones. Equally well one could have applied the mapping procedure to reproduce the energies of shell-model states selected in some other fashion.

Concerning plans for future work along these lines, it should be noticed that the importance of higher order terms has been recently reaized in both the algebraic [33-35] and the sheil model [36.37] framework. An effort is therefore under way to include such higher order terms in the framework of the democratic approach.

References

[1] A. Arima and F. Iachello. Phys. Rev. Lett. 35 (1975) 1069
[2] A. Arima and F. Iachello, Ann. Phys. 99 (1976) 253; 111 (1978) 201; 123 (1979) 468
[3] F. Iachello and A. Arima. The Interecting Boson Model (Cambridge University Press, Cambridge, 1987)
[4] D. Bonatsos. Interacting Boson Models of Nuclear Structure (Clarendon, Oxford, 1988)
[5] A. Klein and E. R. Marshalek, Rev. Mod. Phys. 63 (1991) 375
[6] T. Otsuika A. Arima and F. Iachello. Nucl. Phys. A. 309 (1978) 1
[r] A. de Shalit and I. Talmi. .'uclear Shell Theory (Academic Press. New York. 1963)
[8] T. Marumori. ..I. Yamamura and A. Tokunaga, Progr. Theor. Phys. 31 (1964) 1009
T. Marumori. M. Yamamura, A. Tokunaga and T. Takada, Progr. Theor. Phys. 32 (1964) 726
[9] S. T. Belyaev and V. G. Zelevinsky. Nucl. Phys. 39 (1962) 582
[10] E. R. Marsnaiek. Nuci. Phys. A224 (1974) 221, 245
[11] D. Bonatsos. A. Klein and C. T. Li. Nucl. Phys. A425 (1984) 521
D. Bonatsos and A. Klein, Nucl. Phys. A469 (1987) 253
[12] D. P. Menezes. D. Bonatsos and A. Klein, Nucl. Phys. A474 (1987) 381
D. Bonatsos. D. P. Menezes and A. Klein. J. Phys. G 14 (1988) L45
D. P. Menezes. D. Phil. thesis (Oxford, 1989)
[13] D. P. Menezes. N. Yoshinaga and D. Bonatsos, Phys. Lett. 221B (1989) 103
D. P. Menezes and N. Yoshinaga. Nucl. Phys. A517 (1990) 264
D. P. Menezes, Rev. Bras. Fis. 20 (1990) 336
[14] L.D. Skouras. P. Van Isacier and M.A.A. Nagarajan, Nucl. Phys. A516 (1990) 255
[15] L.D. Skouras and S. Kossionides. Comp. Phys. Comm. 39 (1986) 197
[16] S. Kossionides and L.D. Skouras. Comp. Phys. Comm. 39 (1986) 213
[17] H. C. Wu, Phys. Lett. 110B (1982) 1
[18] Y. Abiyama. Aiuc. Phys. A433 (1985) 369
[19] N. Yoshinaga. Y. Ahiyama and A. Arima, Phys. Rev. Lett. 56 (1986) 1116
[20] P. Van Isacker. K. Heyde. M. Waroquier and G. Wenes, Nucl. Phys. A380 (1982) 383
[21] J. P. Elliott and A. P. White, Phys. Lett. 97 B (1980) 169
[22] J. P. Elliott and J. A. Evans. Phys. Lett. 101B (1981) 216
[23] K. Heyde. Int. J. Mod. Phys. A4 (1989) 2063
[24] P. Halse. J. P. Elliott and J. A. Erans. Nucl. Phys. A417 (1984) 301
[25] P. Halse. Nucl. Phys. A445 (1085) 93
[26] N. Yoshinaga. Nuci. Phys. A493 (1980) 323
[27] J. Engel and F. Iacheilo. Phys. Rev. Lett. 54 (1985) 1126; Nucl. Phys. A472 (1987) 61
[28] N. Yoshinaga and D. M. Brink, Nuci. Phys. A515 (1990) 1
[29] F. Ajzenbery-Selove. Nucl. Phys. A460 (1986) 1
(30] B.M. Preedom and B.H. Wildenthal, Phys. Rev. C6 (1972) 1633
[31] M. Abdelaziz. J.P. Elliott. M.J. Thompson and J.A. Evans, Nucl. Phys. A503 (1989) 452
[32] T.T.S. Kuo and G.E. Brown, Nucl. Phys. A114 (1968) 241
[33] G. Vanden Berghe, H. E. De Meyer and P. Van Isacker, Phys. Rev. C32 (1985) 1049
[34] D. Bonatsos. Phys. Lett. 200B (1988) 1
[35] J. Vanthournout, Phys. Rev. C41 (1990) 2380
[36] L.D. Skouras and J.C. Varvitsiotis. Nucl. Phys. A513 (1990) 264
[37] A. G. M. van Hees. J. G. L. Booten and P. W. M. Glaudemans; Nucl. Phys. A507 (1990) 55c

[^0]: * Presented by L. D. Skouras

