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Abstract

We present a summary of on-going calculatons that address the static and dynamic
sttucture of nuclear marter. Specific projects include (i) evaluadon of the density-density
response function and corresponding dynamic structure factor, based on the correlated
random-phase approximation (CRPAp) and generalizations of this method, and (ii) low-order
variational calculation of the reduced two-body density matrix and corresponding generalized

momentum diswibution. The numerical applicatons involve the model interacdon V2.

1. Introduction
In this paper, we discuss ab inifio microscopic calculations of properties of nuclear
matter that are connected directly or indirectly with its dynamical behavior. We take into
consideration the strong short-range dynamical correladons induced by the nucleon-nucleon

*Presented by E. Mavrommatis
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interaction. Qur physical picture is the conventonal one, namely nonreladvistic point
nucleons interactng via two— or three-body potendals. The theoretcal approach is correlated
basis function theory (CBF) [1,2] or its approximation, the variational theory [3,4]. CBF was
originally introduced by the Washington University group in the late SO’s or early 60’s. It is
considered one of the most successful many-body theories for the treamment of stongly
co&clated systems and it has been applied to diverse systems: nuclear martter, quantum
liquids, mixrures, fluid surfaces, quantum solids, erc. The repertoire of many body theories of
strongly interacting systems involves, besides CBF, ordinary perturbative approaches (parquet
formalism, self-consistent Green's function approach), the coupled-cluster theory with
conceptual ties both to CBF and ordinary perturbation methods, and computationally intensive
stochasdc methods (Green's functon Monte Carlo and path-integral Monte Carlo).

In the case of Fermi systems, CBF theory is formulated by introducing a norforthogonal
basis of normalized correlated functions ly> = Fl¢><0,|F'Flo,>"%. The l¢,> are model
functions that embody the statistics, symmetries and possible long-range order of the system
(plane-wave Slater determinants in the case of infinite systems), while F is a symmetrical,
translationally invariant correlation operator which has the task of incorporatdng the essentdal
dynamical correlations generated by the stong interactons. Having decided upon a
correlation operator and model functions, one faces two technical problems [2].

1. Consuucton of physical quantities or approximations to these in terms of the matrix
elements H,p, N, of the given Hamiltonian and of the unit operator in the correlated basis.

2. Evaluation of the required matrix elements or the physically relevant combinatons of
them.

Optdons for (1) include (among many possibilites)

1.1 Variadonal treatment in terms of the ‘‘ground-state’’ base ket hy,> which is

determined by the static variatonal principle (variadonal method).

1.2 Correlated-basis perturbation theory.
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1.3 Correlated Haree-Fock theory.
1.4 Correlated random-phase approximation.
Opdons for (2) consist of
2.1 Cluster expansion in the number of mutually correlated bodies or in a dynamical
correiadon bond.
2.2 Diagrammatc analysis of cluster expansions and resummaton of classes of

diagrams via integral equations (notably, the Fermi-hypernetted chain equations).
2.3 Monte-Carlo or stochasuc integration.

CBF can be interpreted as a means for transforming the problem of bare particles in
strong interacdon to a problem of dressed particles interacting weakly through effective
potentials. The nonorthogonal CBF approach has been mainly used with correlation factors of

Jastrow type, F; = g f(rij) (wherein f(r) is a central, state independent two-body correlaton

function), and the effect of the other correlatons (three-body, spin-isospin dependent, ezc.) has
been taken into account by CBF perturbative corrections to the Jastrow variational result. An
orthogonalized version of CBF has also been formulated {S]. Inidally, CBF was developed
for calculating ground state propertes and especially for improving the results obtained from
the variatonal method. Subsequently it has been extended (through developments that
contnue) to describe excited states and dynamical behavior, as well as behavior at finite
temperatures and superfluid phases. CBF has been primarily applied to uniform infinite
systems, but there is a growing body of applications to nonuniform systems and to finite

systems.

Regarding the nuclear problems that have been swdied, variational-CBF calculations
have been carried out mainly for the ground state properties of (infinite) nuclear matter
including the ground state energy per particle and the equation of state at zero temperature,
the radial disoibudon functon g(r;;) and the static structure factor S(q), the average
momenmum distribution n(p), etc. However, serious efforts are now being devoted to the

description of elementary excitations and dynamical behavior. Some results are also available
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for the stanc and dynamic properdes of finite nuclei based on a number of restricave

approximatons. Rigorous CBF calculadons in finite nuclei are sall at an early stage [6,7].

In Sect I, we discuss CBF calculadons of the density-density response functon.
Section III takes up the variadonal calculadon of the two-body density mawrix of nuclear
matter. [n Sec. [V, we make some general observadons on these caiculadons and indicate

further invesdgadons.

2. Density-Density Response Function and Dynamic Structure Factor:

Calculations with CRPA[ and Beyond

In this secdon we briefly survey our calculations of the density-density response funcdon
[1(q,w) and corresponding dynamic suucfure factor S(q,w) (8] of nuclear matter with the
correlated random-phase approximation (CRPA;) and generalizations of it (see a.lso Ref. [9]).
CRPAy is the extension of the usual 1p—lh random-phase approximarion (RPA;) within the
context of CBF theory [6,10].

Such calculatdons are interesing mainly for the following two reasons. First. a
microscopic evaluadon of [1(q,w) for nuclear manter, together with a consistent evaluation of
the self-energy Z(p,E), furnishes important informaton about the elementary excitations of
nuclear systems. The namre of single-partcle excitations is revealed by Z(p,E), from which
one may derive an energy-dependent effective mass m*. The propertdes of collective modes,
typified by the zero sound dispersion relatdon, may be extracted from [1(q,w). En route, one
gets valuable information about the particle-hole interacdon. Second, the quanddes [1(q,w)
and S(q,w) of extended nuclear maner are related to the longitudinal response funcdon of
medium and heavy nuclei, Ri(q,w), which is measured in inclusive (e,e”) scanering
experiments in the quasielasdc energy regime (11,9]. The data obtained so far show a
quenching with respect to values derived by mean-field calculations. It is evident that before
one can definitely conclude that effects beyond those implied by the conventional nuclear
picqne (e.g., meson currents, swelling of nucleons, ezc.) have come into play, one must

perform the conventional calculadon as completely as possible by including many-body
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effects of increasing complexity. Our calculatdons supplement the other microscopic
calculations of S(q,w) [12-14] by providing informadon on the conaibuton to the response
from RPA-type excitadons of the correlated medium.
The CRPA; equadons [6,10] have been derived by applying the Kerman-Koonin least-
acton principle [15]
| 2

8=0, S= jL[\y(t),w'(r)]dt ,  L=<y@®lin % - Hly(t)> (1)

4

on the set of correlated basis funcdons

hy())> = Fla()><o() IFTFlg(r)>~" @)

In these expressions F is a suitable correlation operator, ¢.g., of Feenberg or Jaswow type, and

. . . . prINGTIFN . _
lo()> is a Slater determinant of single particle states (= e™* 19>, where lo> is the

ground-state Slater determinant). The operator F is kept independent of dme and equal to that
determined for the ground state. By linearizing the equations for cyy(t) and cpu(t) resuiting
from the least-acdon  principle and assuming periodic  soludons (e.g.,

Conl() = Xgp €7 + y; €'%), one obtains the CRPA; equations

A B M o]x
B* A+ =hol 5 _ms |y 3)

Here, X and Y are column matrices and A, B and M are square matrices whose elements

X
Y

carry particle-hole(p-h) labels (e.g., X =(xph) and A = (A'ph;p'h'))' The mamices A and B
(respectively Hermitan and symmemic) are constructed in terms of the CBF effectve
interaction vertex V(12) and CBF singie-particle energies e(p) and e(h) assigned to particles
and holes, while the mewic mamrix M (Hermitan), which appears due to the nonorthogonality
of the correlated basis, is constructed in terms of the nonorthogonality vertex N(12) (2].

Explicidy,

Aphpr = [e(p)—e(h)]8 Sy + <ph’IV(12)Ihp™>, ,
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Bohpw = <pp’IV(12)Ihh">,
M?h:‘p'h’ = Sppshh- + <phI|N’(12)“‘lp’>.I . 4)

where V(12) is in turn determined by W(12) (the CBF interaction vertex), N(12), and e(k).
At nuclear densides these CBF ingredients may be calculated rather accurately by Fermi-
hypernetted chain (FHNC) procedures in the case of the Jastrow choice Fy. By solving eq. (3)
one obtains the excitadon energies hw, and the amplitudes xég)', yp?'. One can then

construct [1(q,w) and S(q,w) [10]. For example, the latter is given by

1 . () .2
Saw = £ T IZ®lan + Trqw! S0y ®)
o> b
where
T =3 M e XL (6)
h+q.h 4. h+q,h;h’+q.h'Xh'+q,h
'Y .

and similarly for Y&L_h. It is important to note that the particle-hole interaction U that is

generated by the formalism is energy dependent.

The CRPAj egs. (3)-(4) as formulated in Ref. [10] differ from those of ordinary RPA;
because of the energy dependence that has been introduced by the nonorthogonaliry of the
correlated basis. Krotscheck [16] has derived CRPA; equations in a form similar to the usual
RPA; equations by rewriting the theory in terms of a p—h irreducible p—h interacdon U that
shows only a slight energy dependence. Due to the difficulty involved in complete numerical
solution of the CRPA; equations (in either formulation), Krotscheck also proposed a simple
approximation (the local correlated random-phase approximation, denoted LCRPA) in which a
local particle-hole interacion U(q) (function of the momentum transfer q = Ip-hl) is
constructed from CBF matrix elements and is used to express [1(q,w) and S(q,w) by formulas
identical to those of ordinary RPA;. LCRPA has been used for the approximate calculaton of
[1(q,w) and S(q,w) of nuclear matter based on hard-sphere and V2 model potendals (17,18].
LCRPA has the advantage of easy application and it correctly reproduces some qualitative

rends. However, it has shortcomings, mainly at low q, due to the omission of nonlocalities.
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Therefore we have returned to the problem of numerical solution of the CRPA| equadons
(3), exploitng the method which has been developed by Kwong (19,20]. First, the method
has been developed to solve the HF/RPA; equations for the infinitely extended nuclear
medium using schematc finite-range, density dependent and simplified meson-exchange
varieties of nuclear interaction. Due to the existing symmetries in the system, one can define
q = p~h = h’-p” and a, = cosy  and express x, efc. in terms of q and a,. For a given q, this
reduces the original paired six-dimensional integral equations to two-dimensional ones. The
solution then proceeds by pardal-waving the various Fourier transforms involved and
imposing Legendre-Gaussian quadrature on the double mesh. At a given kg, for each q
considered, diagonalizatdon of a 2N x 2N matrix yields N distinct eigenvalues @, n = 1,...,N
and the associate amplitudes X™ and Y®. The dynamic structure factor is then calculated by
eq. (5). However, due to the discretzation imposed in solving the relevant integral gquations,
the measure of the smooth part of the dynamic form factor is drawn into artificial poles. A
smoothing procedure is followed, after removing possible collective modes present, to recover
the continuum of S(q,w). This strategy seeks the best compromise between reliability and
computing tme. The fact that M # 1 in CRPA[ leads to an additional diagonalization. The
different mamix elements invoived in egs. (3) and (4) can be evaluated to two levels of

accuracy, namely (i) two-body cluster order and (ii) FHNC resummation.

This method has been previously employed in a calculaton of S(q,®) of nuclear marter
at low values of the momentum transfer g, based on the OMY-6 test potendal [20]. With a
view towards more realistic NN interacdons, our present calculations have begun with the
model potendal V2 [21], which consists of the central part of the >S,=’D, component of the
Reid soft-core interaction, assumed to act in all partial waves. The momentum transfer q
ranges from 0 to about 4 fm™! and the density considered is near saturation (p = 0.182 fm™).
For the correlaton function in the Jastow pair product assumed for F, we use the

parametrized form

(r) = exp[-C,e ¥ (1" )
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with paramerers determined by Ceperiey er al. [22]. Our aim is to explore and improve the
method of soluton before applying it to more realistc interacdons, and also to compare with

the results of the corresponding LCRPA calculaton [18].

In addidon to the refinement of methods for the numerical solutdon of CRPA;, we are
investigating a number of possibilities for generalizations of CRPA; that incorporate correlated
multipair effects in the descripdon of elementary excitations and dynamical response. In.
CRPA; the correladon factor is kept tme independent, and is taken the same as that
determined (e.g., variatonally) for the ground state. This approximaton is expected to be
valid when the wavelength of the excitations is long compared to the range of the
correlations. In our ‘‘CFRPA’’ treamment we generalize CRPA; by considering a time-
dependent correladon factor F(t). Pursuing this generalization, it will be interestng to see
how the short-range correlations in the excited states differ from those of the ground state,
and whether the high-momentum excitations involved in F are ‘‘orthogonal’’ to the low
momentum excitadons introduced by CRPA;. Time-dependent correladon factors have been
considered by Saarela and Suominen (23] in a study of elementary excitations of liquid *He.
Also Madler [24] has considered time and angular momentum-dependent two-body,
correladon functons in a low cluster order applicaton in finite nuclei. It would be

worthwhile to implement the latter approach for the simpler case of nuclear matter.

The derivadon of the CFRPA equations is similar to the derivation of the CRPA;
equations, again being based on the least-acton principle (1). The variaton of the Slater-
determinant part ¢(t) is treated exactly in the same way. If, in addition, one assumes that the
correlation factor F(t) is Hermitian and that [F(t).?(t)] =0 (as is the case for example of Fy)
one ends up with a set of coupled nonlinear equations (the CFRPA equatons). The equations
resulting from variation of the model function ¢(t) have the same form as CRPA[ (eq. (3)) but
F is dme dependent. The remaining equatons amount to Euler-Lagrange equations for the
time-dependent correlations in F(t). We are currently examining different optons for

explication of the latter equations and for solving the full set of CFRPA equations.
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An alternadve approach to a CFRPA treatment specializes to time-dependent Jastrow-

type excitadons at the outset, expressed in terms of density-fluctuation operators.

3. Variational Calculation of the Reduced Two-Body Density Matrix

and Corresponding Generalized Momentum Distribution

In this section we describe our calculation of the reduced two-body density marrix (and
the corresponding generalized momentum disaibution) of the ground state of nuclear matter.

The complete two-body density matrix of a system of A partcles is defined by [1]
pz(rl,rz,r'l,r'z) = A(A“l) I\V.(rl,rz,r3...)W(r'l,rlz,r3...)dr3 wals drA " (8)
while the half-diagonal version is given by

Pa(rryr’y) = pa(rprafr) ; )

Here y is the normalized wave function of the ground state. The corresponding generalized
momentum distribudons n(p,q,Q) and n(p,Q) are defined as Fourier transforms of these

quantities:
2, . . Oy ,
n(p,q.Q) = % JPz(l'l,l'z.l"l,r'z)c_‘p'(n—(l) c—m-(r:—!’:) oIt dr dr,dr’ dr’s (10)

and
n(p,Q) =n(p,q=0.Q) . (11)

A microscopic calculation of the propertdes (8)-(11) in nuclear matter will provide us
with far more complete informaton on the correlation structure of the nuclear medium than
that already extracted from the calculadon of the diagonal part of the two-body density matrix
(which gives the radial distribution function g(rj;)). In addition, one can obtain informaton
on multipartdcle-multihole excitations through the w’-sum rule [1,25]. Moreover, P, is an
essentdal input of theories of final-state interactions in quasi-elastic electron nucleus
scattering [26]. Final-state interactions are known to persist even to high momentum transfer

q, and the impulse approximadon [27] is only approximately valid. In order to extract
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reliable informaoon on the momentum dismributdon of the nucleons n(p) from data in the high
q quasielasdc regime, one has to calculate corrections to the impulse approximadon. It is in
these correctons that P, appears in one way or another. This can be shown schematically if

we write n(p,Q) as

npQ =Y <\u|ac.;'+Q a;_Q 3,3, ly> (12)
q

(where {)—Q = (p—Q,0) and c“;+Q = (q+Q,0’) and the sum is over all momenta hq and spin
projections ¢ of orbital §) and insert the density fluctuation operator p o = ;athaq Q=0
q

n(P.Q) = <Vlp .2l 4alv> = n(p) . (13)

The expectaton value in (13) can be interpreted as a transition matrix element for scattering
of a particle out of orbital § to another orbital p-Q (without spin-flip), the process being
mediated by a (spin-independent) density fluctuadon (phonon). This transition co;;'csponds to
the final-state scattering process that occurs at the right-most vertex of Fig. 1. The latter is
one of the many scattering processes that are expected to contribute to final-state effects in

quasi-elastic electron-nucleus scattering.

Fig. 1. Inelastic scattering process involving final-state interactions mediated by a density

fluctuadon (a phonon of wave vector Q).

The one-body density matrix p(r;,r’,) and its Fourier transform, the momentum
distribution n(p), have been studied extensively [28-30]. Recently, microscopic analyses of
the two-body density matrices of Bose [31] and Fermi [32] systems (aimed respectvely at

liquid *He and liquid 3He) have been carried out within the variational method. We use the
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same formalism for our calculaton of P, and n(p,Q) for the ground state of nuclear
matter [33]. Assuming a Jasrow wavefuncdon Wy (=Fj0q), implemendng a suitable cluster
expansion of n(p,Q) and going to the thermodynamic limit (A — o=, p finite), one obtains an

infinite series of cluster terms

n(p.Q) = ny(p.Q) + (184 [n2(P.Q + n(3(P,Q) +..] . (14)

The leading term ny(p,Q), given by
10(P.Q) = Sqo(A-Dn(p) (15)

refers to uncorrelated bosons (eéxcept that the momentum distribution n(p) must be calculated
for the correlated Fermi system). In our calculaton, which is carried out in lowest cluster

order, we approximate n(p,Q) by
n(p,Q) = ng(p.Q) + (1-8go)n2)(P.Q . d (16)

where n5)(p,Q) is expressed as a sum of seven two-body cluster terms of the form
g1 1 i s \amipAr=F i ,
n2(PQ) = %- =X "-pz(?z) (P rpr e PO QW Tdgr dp e, a7
i=1

(here v is the spin degeneracy of each single particle state, equal to 4 in the case of nuclear
matter). The factor in the integrand, pé?z,, is given by one of the following expressions:
(172) 1 (keryy)8(ry2)s (17b) I (kgry))S(ry2)s (17c) I (keryy)8ri2)8(ry);
(17d) A Gkerl(keryg) (17€) (ke )Q(rpl kerp)i (17D~ (keryl (Ker)G(r12);
(17g)  ~ (ker)G(r! (kerG(ry2)
where [(x) is the Slater function 3j;(x)/x and {(ry) = f(r;~1. The seven two-body cluster
contributions are represented graphically in Fig. 2 by Ursell-Mayer diagrams. (For the precise
diagrammatic rules, see in the Appendix of Ref. [32].)

One can amribute a physical significance to these terms by observing that they coincide
with the lowest-order terms of some of the quantites that enter the FHNC expression of

n(p,Q) [32]. The latter expression achieves a separadon of contributions from various
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scattering processes that conmribute to the generalized momenwtum distribution n(p,Q). In
particular, the term n,(p,Q) comes from the scattering of dynamically and kinematically
uncorrelated nucleons. The terms (17a) and (17b) describe, in lowest order, the scattering of
a nucleon from orbital p to another orbital $—Q with the intervention of a phonon to conserve
momentum, and the corresponding time-reversed process. The terms ((17d)-(17g)) describe
the scattering of kinemadcally correlated nucleons, which, due to their dynamical correladons,
can populate states even above the Fermi sea. Finally, the term (17¢) is the leading example
of “‘higher order’’ terms that are supposed to correct the various processes just considered

(¢f. Ref. [32]).

n(p,Q) =

1>t 1 1 1>t v
1 L‘ 1 |1‘ 1 Il‘
Fig. 2. Diagrammatc representaton of the two-body cluster conuibutions

to the generalized momentum distribution function n(p,Q).

In our calculation, which is in progress, we are again using (as in Sec. 2) the model

interacdon V2 [21] and the correlation function (7) for p = 0.182 fm™.

4. Discussion-Outlook

In the above, we have reported on calculations being undertaken for the density-density
response funcdon [1(q,w) and the corresponding dynamic structure factor S(q,w), using
CRPA; and CFRPA approaches. We have also discussed a calculation of the reduced two-
body density matrix P,(r.,r,,r’;) and cormresponding generalized momenmum dismibution
functon n(p,Q), based on a lowest-order variational method. Both investigatdons are carried

out for the limiting case of infinite nuclear matter. The numerical calculations are performed
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with the model interacdon V2 as input.

CRPA; and CFRPA techniques for the evaluation of the response functions have the
arractive feature of incorporating long-range as well as short-range correlations. Accordingly
they provide informaton that complements results from other methods [12-14]. The lowest-
order variational calculadon of P,(r,r,,r’;) and n(p,Q) is of special interest in that no
quandtative treamment of these quantdes exists for the nuclear case, to the best of our
knowledge. There are only approximate expressions in the literature, which have not been
evaluated for nuclear maner {26,32].

We plan to extend our calculatons in the directons of (i) improved techniques,
(ii) improved interactons and correlaton functions, (iii) finite nuclei and (iv) other quantides

characterizing nuclear response.

Regarding the improvement of the techniques, the calculaton of [(q,w) and S(q,w)
using CFRPA-type equadons can evidently be approached by several different paths,
depending on how the equation for the time-dependent correladon functdon f(r,t) (or radial
disribution functon g(r,t)) is formulated and solved. One has to investigate these paths and
find the most efficient one. In evaluatng p,(r,r,,r’;) and n(p,Q), the obvious next step is a
numerical FHNC calculation [32]. If it proves necessary, one can also proceed to a CBF
perurbative treatment of these quantdtes, as has been done in the case of p(r,r’;) and

n(p) {29,34,35].

Regarding the introduction of more realistic interactions and correlations, we make the
following comments. The V2 potendal is a simple model interaction that has been used by
numerous authors, mainly for the purpose of comparing different many-body methods.
However, a realistic deséription of nuclear matter requires the use of interacdons of at least
V6 type with spin-isospin and tensor parts, in conjunction with suitable state-dependent
correlation functons [4]. We plan first to use the CRPA[ code with V4 interactions (as was
done for few cases in Ref. [20]), and then proceed to the V6 case. A similar generalizaton of
the calculation of P,(ry,r,,r’;) and n(p,Q) is planned.
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The calculadons discussed so far refer to nuclear matter. A crude estimaton of the
corresponding properdes of finite nuclei can be obtained by simply identfying the nuclear
matter quangdes with those of medium-to-heavy nuclei. However, one can proceed and
calculate relevant quantiies of finite nuclei (for example the particle-hole interaction and the
generalized momentum distribution n(p,Q)) by inserting the nuclear marter results in a kind of
a local density approximation. Such an approach has been followed, for example, in
calculations of the odd parity states of 'O and *°Ca (Ref. [36]) and in estimatng the
momentum distributon n(p) of finite nuclei (Ref. [37]). It may even be possible, albeir with
enormous efforts, to extend the formalism to allow rigorous (@b inirio) calculations of the
aforemendoned quanddes for finite nuclei.

Finally, we should menton that the procedures we follow in the calculation of I1(q,),
S(q.w) and of P,(r,ryr’), n(p,Q) may be generalized for the calculation of other response
functdons and dynamical structure functions (longitudinal, spin-isospin) and of the full two-
body density matrix p,(ry,r5.F';,r’y) and corresponding generalized momentum distribution

n(p.q.Q).
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