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FRACTAL GEOMETRY AND QUARK-GLUON PLASMA PHYSICS 

N.G.ANTONIOU 

Department of Physics, University of Athens 

GR-15771 Athens, Greece 

Abstract 

Incorporating fractal geometry in the Regge-Mueller approach to strong interaction 

dynamics one may formulate a model for the one-dimensional critical sector of the hadronic 

5-matrix in a high energy collision. A non conventional component of the correlation 

functions in rapidity space is obtained, the phenomenological implications of which are 

related with the intermittency effects in quark-gluon plasma physics. 

1. Introduction 

Recent developments in strong interaction dynamics suggest that the S- matrix of the 

hadronic system in a high-energy collision is likely to have a non conventional component 

when the energy deposited during the development of the collision has a sufficiently high 

density [1]. This component describes a critical system in a quark-hadron phase transition 

process (at Γ = Tc) and gives rise to intermittency effects in multihadron configurations 

in rapidity space [2]. Physically one may consider the totality of the hadronic events as 

a superposition of two components : (a) the normal hadronic fluid with short range cor

relations in rapidity, originated by conventional excitations of the initial hadrons through 
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the exchange of standard Regge singularities and (b) the critical hadronic fluid (critical 

Feynman-Wilson (FW) fluidi which is generated by hadronization in a quark-hadron phase 

transition process and is characterized by long range correlations (infinite range at Γ = Tc) 

in rapidity space. 

Phenomenologically. this picture resembles the two-component model for superfluidity 

which was advocated during the early studies of this phenomenon and was based on the 

assumption that the density of a fluid ρ is the superposition of a normal component p n 

and a supernuid one ρ, ίρ = ρ„ + ρ, j which is related with new microscopic processes 

[3]. Similarly, the critical component of the hadronic fluid is expected to have a direct 

connection with non perturbative QCD phenomena at the quark level ( microscopic level) 

leading to specific signatures for the quark-hadron phase transition at the level of the 

hadronic 5-matrix (FW fluid). 

In order to specify this complementarity and quantify the connection of the critical 

5-matrix in rapidity space with the non perturbative sector of QCD near the critical tem

perature, we propose to explore the consequences of the fractal structure found recently in 

a study of a simplified gauge theory on a lattice, in the deconfinement region and near the 

transition temperature. In fact it was shown in a Monte Carlo calculation of the SU(2) 

gauge model [4] that the dominant configurations in the three dimensional space of the 

deconfinement region, near Γ = Tc, form a fractal structure with DF — 2 (fractal dimen

sion). Although a confirmation of this result for a realistic QCD on a lattice is still missing, 

we consider this structure as a fundamental property of the non perturbative QCD sector 

relying upon the fact that such a geometry is expected to be develoved in the interface of 

any critical system as a universal property [5]. Quantitatively, one expects a strong depen

dence of the fractal dimension Df on the detailed structure of the underlying gauge theory 

and for the realistic case (QCD with SU(Z) gauge group combined with correctly flavoured 

quarks) we make the crucial assumption of maximal fractality, 0 < DF < 1, which may 

have severe phenomenological implications. Geometrically this assumption implies that 

the projection of the fractal structure under consideration onto any one-dimensional Eu

clidean space is a Cantor like set with the same fractal dimension DF [6]. In what follows 

we argue that this remarkable behaviour at the quark level of the strongly interacting 
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system, near the transition temperature, may have important consquences for the critical 

component of the S-matrix in the hadronic phase (T = Tc) leading to measurable effects. 

For this purpose we consider a high-energy density collision along the ζ axis in which a 

quark-gluon plasma state is generated through the excitation of the vacuum. This system 

expands along the space-time hyperbolas 

ζ - rcsinhy 
(1.1) 

t = r cosh y 

and for a typical hadronization time-scale τ\ ~ 10 fms, a rapidity domain, Sy — 1, covers 

the range 6z ~ 10 fms of the ordinary one-dimensional z-space. For this rapidity interval 

the mapping y —* ζ is approximately linear, ζ = cr^y (\y\ < 0.5), and therefore the as

sumed fractal structure in the three-dimensional space, near the transition temperature, 

inducing a Cantor like set in the one-dimensional z-space, leads to a fractal geometry in the 

rapidity space with fractal dimension DF (0 < Dp· < 1). This geometrical structure may 

be considered as a characteristic property of the critical S-matrix. imposing, together with 

analyticity and unitarity, the constraint of self-similarity in rapidity space which coincides 

with the longitudinal phase space of the collision. This last property distinguishes the crit

ical sector of the 5-matrix from the conventional component with standard singularities in 

the angular momentum plane. In the following sections we study a simple one-dimensional 

model for the critical S-matrix introducing a fractal measure in the rapidity space. In 

Section 2 we review the theory of the bare pomeron within the Regge-Mueller approach. 

In Section 3 the analogue model of the bare pomeron is constructed in the fractal rapidity 

space preserving the factorizability and the uniformity of the Mueller propagator (fractal 

pomeron). The properties of this model are investigated and the intermittent behaviour 

of the produced hadronic system is especially discussed. In Section 4 the two-component 

model is reviewed and its phenomenological implications are presented. Finally, our con

clusions and remarks are given in Section 5. 

2. The bare pomeron 

We consider multiparticle production in rapidity space generated by a factorizable 

simple pole in the angular momentum plane exchanged in the Regge-Mueller diagrams 
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(inclusive pomeron). For the inclusive rapidity distributions we have : 

Mn = 9a9bg;Pin(yi - {/.)#«(y* - yi)-P,n(yb - y*){dy} (2.1) 

(ya < v\ < y2 < - < y« < y») 

where ga,gb a^e the couplings of the inclusive pomeron with the initial hadrons (a.ò), gp 

is the internal coupling in the Regge-Mueller diagrams and {dy} the integration measure 

in the ordinary rapidity space, {dy} = dy\dy2...dyK. The propagator Ptn{y\ — y\-\) of the 

inclusive pomeron is 

P,n(yx - ifc-i) = exp[^;n(yA - yA-i)] (2.2) 

where ξρ

η = αψ — 1 (aj," is the position of the singularity in the angular momentum plane). 

From eqs.(2.1) and (2.2) we finally obtain : 

M? = gam; expKn(y» - ya)]{<M 
(2.3) 

«Tao = gagbexp[Cpn(yb - Va)} 

where σαι, is the total cross section of the collision a + b. The hadronic fluid generated 

by the bare pomeron has the behaviour of an ideal system without correlations and. in 

particular, it has the following properties which are easily extracted from eqs.(2.3) : 

(1) The densities p(yi,j/2,...,y«) are constant and their level is fixed by the internal 

coupling gp as follows : 

(2) The average multiplicity < JV > is proportional to the 3ize Δ of the system 

(A = y 4 - y e ) : 

<N>= f p(y)dy=g,A (2.5) 

Jù. 

(3) The multiplicity moments CK = < N* > / < Ν >* are equal to unity, CK = 1, 

corresponding to a totaly uncorrelated system with a Poisson multiplicity distribution : 

Ρ ( ] ν , Δ ) - ί ^ ί ί 1 β - » Δ (2.6) 
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(4) The generating function φ(ζ,Λ). which defines also the grand partition function 

of the FW fluid, has the following form : 

Q(C, A) = ΣΡ(Ν,Δ)ζΝ = exp[?„A(C - 1)] (2.7) 

Equation (2.7) corresponds to a perfect thermodynamic system with a normal analogue 

pressure p(Ç) = ρρ(ζ - 1). 

(δ) The exclusive pomeron propagator Ρ(χ{ξ) in the ξ-plane (ξ - J - 1) is given by 

the equation, 

ΡΜ=9ρίζ-ξίΤ+9ρΓ1 (2-3) 

which is a particular form of the unitarity constraint. Equation (2.8) gives the position 

J = α*Γ of the singularity (pole) of Pex($) in the /-plane (angular momentum plane) in 

terms of the position aj,n of the inclusive singularity in the same plane and the coupling 

<7p as follows : 

«ï-a;* = gp (2.9) 

Equation (2.9) raises the question of self-consistency for the pomeron singularity which 

would require af — a " . This defect of the one-dimensional bare pomeron model may be 

eliminated by taking into account higher order corrections, within the framework of the 

standard Reggeon Field Theory, leading to more complicated solutions for the pomeron 

singularity. Nevertheless, the simplicity of the above model [7] combined with the phe-

nomenological evidence that the conventional (non critical) hadronic system behaves like 

a normal fluid with short range correlations, qualify the bare pomeron as the archetype 

of the non critical FW fluid. In the next section the construction of the fractal analogue 

of the bare pomeron is presented considering again a simple, factorizable singularity as 

the leading Regge-Mueller propagator and imposing self-similarity by introducing the ap

propriate fractal measure in the rapidity space. Our conjecture is that this new system is 

the archetype of a critical hadronic system generated in a quark-hadron phase transition 

process. 



6 

3. T h e fractal p o m e r o n 

In this section we attempt to study the properties of the 5-matrix generated by a 

self-consistent singularity in the ξ-plane. introducing a fractal measure, Spy ~ y°F~ldy, 

in the rapidity space. The integral transform which relates the fractal y-space with the 

ξ-plane is written as follows : 

Ιϊ(ξ)= Γ'e-'*K(y)6Fy (3.1) 
Jo 

where K(y) is a typical propagator in the y-space (rapidity space). Equation (3.1) shows 

that the fractal analogue K(F\y) of the propagator K(y) has the form, K^FHy) = 

yDr~l K(y) and therefore in the analogue bare pomeron model one obtains the corre

sponding inclusive propagators as follows : 

Piniyx - y\-i) = exp(£o(iA - y\-i)\ » (3.2) 

PlPiyx - yx-i) = G(DF,6o)\yx - Σ/λ- ιΙ 0 ' - 1 expfaiyx - y^)} (3.3) 

{\v\-y\-i\ ><5o) 

where G is a constant and δ0 a characteristic scale in the rapidity space. One notices 

that the fractal dimension Dp (0 < Dp < 1) introduces a power law in the propagator 

Pin (i/A - yx-i ) tf the singularity lies at the point ξο —0 (pomeron singularity at J = 1). 

Combined with the factorization property, the above singularity at J — 1 leads to the 

following inclusive distributions : 

*>\t = d W ' f a + % ) D ' - 1 ( T - y*)D'-1 Π>λ - yx-i)D'~l 

^ = ^ c ) A f ' - 1 (3.4) 

(A c >δ0 , y< - yi_i » 60 , i - 2,3, ...κ) 

The corresponding correlation functions of the FW fluid satisfy the power laws : 

< Pc(yi)Pc(>j2)...Pc(y«) >= gm
rùi'°'{yi + ^ ) D ' - l ( ^ î - yK)D'-1 f[(y, - yA-1)°'"1 

1 λ-2 
(3.5) 
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where Ac denotes the size of the hadronic system in rapidity space. In particular the two 

particle correlation function satisfies the self-similarity condition : 

< Pc(Vi)Pe(ya) > - Ivi - yd0''1 (Ivi - y2| » *o) (3.6) 

in the limit ilr —» oc where the end effects of the system are negligible. Equation (3.6) 

specifies the fractal nature of the hadronic distribution (random fractal) for <5o < Sy < Ac 

and it is of interest to note that the hadronic fluid defined by eqs.(3.5) is also a critical 

system with the following distinct properties : 

(1) The average multiplicity grows according to a power law < jV > — A ^ ' 

(2) The scaled factorial moments [8] 

FMA.)-<™-»"?->+»>' (3.7, 

have an intermittent behaviour in the region SQ < δ < Δ ε as follows : 

W ^ ' - r p + ßHP-DlUJ ( 3 · 3 ) 

(3) The multiplicity distribution P(N,&C) satisfies KNO scaling, 

< -V > P(JV, Δβ) = Φ(ίν/ < iV >) 

Ψ(χ) - χ1/2" exp( -αχ1/η) (η = DF - 1) 

wherea = ( l - D F ) ^ ^ ^ ] l / l - D ' . 

(4) The constraint of self-consistency for the fractal pomeron, specifies the internal 

coupling gp in the Regge-Mueller diagrams (eqs.3.3) as follows [2] : 

»-**$Γ)(ΕΙ£Γ ( 3 · 1 0 ) 

(5) The fractal Pomeron propagators (exclusive and inclusive) have the following struc

ture in the ξ-plane : 

P(eP(0 « exp(-6i D ' ) ΡΐΡ(ξ) = [exp(6^') - 1 ] " 1 (3.11) 

(3-9) 
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where b = 6J?FD}1(2 - DF)
1~DF(2 - 2DF)D*~1. We notice that both propagators have 

a leading singularity at ξ = 0 indicating a stability property for the fractal pomeron at 

J = 1 in contrast to the intercept gap problem of the ordinary bare pomeron (eq.2.9). 

(6) The contribution of the fractal pomeron to the total cross section has the following 

structure : 

+00 

2~] v~*î exp / (r ). n^\-m 
\r\yjir 

1 + 7 J- asi 
1/ ir ι 

2 ( l - 7 ) 

(3.12) 

where v/5ö is the energy threshold for producing a critical system in the collision a + b. 

The scaling function /( r) has a non conventional threshold behaviour at r = 0 (essential 

singularity) with a pronounced maximum at τ ÄS 1 and a power law behaviour f(r) ~ τ~η 

for r > l , reflecting the fractal geometry in rapidity space. 

(7) The effective two-particle potential in the critical hadronic system has the following 

form in rapidity space : 

2 - OF 

"<»-»>-irsi1» 
y% - V ; 

So 
+ (l-DF)Dl

F 

&, yi - y> - l i f e 
(3.13) 

The long range effect of this potential is a necessary mechanism for the criticality of the 

FW fluid since short range forces cannot generate a phase transition in a one-dimensional 

system. 

(8) The grand partition function Qc(Ç,àe) of the critical system under consideration 

has the following structure in the £-plane 

Qc(C,Ac) = [ e x p ( ^ D ' ) - C ] 
- I 

(3.14) 

Taking the contribution of the leading singularity for ζ > 1 we obtain in the limit A c -+· oo 

(thermodynamic limit) 

l n Q c ( C , A c ) - ^ ( l n 0 1 / D ' p ( C ) ~ ( l n O l / D ' (3.15) 

Equation (3.15) gives the analogue pressure of the FW fluid, specifies its critical behaviour 

for C —• 1 and shows that, in the same limit, Kadanoff scaling is fulfilled, as expected, due 

to the constraint of self-similarity in rapidity space. 
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We have listed the characteristic properties of a hadronic system generated by a fac-

torizable Regge-Mueller singularity at the position / = 1 and corresponding to a uniform 

fractal in rapidity space (fractal pomeron). Our model describes a critical system [2] in one 

dimension and the corresponding critical index T7 = 1 — Z?F (0 < 7 < 1) has its geometrical 

origin in the fractal dimension Dp of the rapidity space. The other fundamental parameter 

which, together with the critical index η, completely specifies the system, is the minimal 

scale <50 which introduces a lower limit to the fractal structure leading to a violation of 

self-similarity in the domains 6y ss 0(èo) of the rapidity space. 

From the point of view of the S-matrix approach, our one-dimensional solution in 

rapidity space incorporates unitarity, maximal analyticity ( leading singularity at J = 1), 

self-similarity (fractal measure in y-space) and maximal simplicity (factorizability and 

uniformity of the propagator in the fractal y-space) as the basic ingredients leading to 

a unique, self-consistent and non trivial component of the S-matrix associated with a 

number of new, non conventional and measurable effects (intennittency, new threshold in 

high-energy diffraction, intennittency breaking). 

The physical origin of the hadronic system corresponding to our solution (critical 

FW fluid) may be consistently identified with the hadronization process, at the transition 

temperature Γ = Tc, of a quark-gluon system generated during the development of the 

collision. The strong density fluctuations in the critical FW fluid, found in our model as a 

result of the fractal geometry in the rapidity space, reflect at the level of the S- matrix, the 

non perturbative aspects of QCD and especially the fractal structure of the ordinary space 

in the deconfinement region [4], We therefore propose to consider our solution as a model 

for the critical component of the S-matrix (describing a newly hadronized system) which 

may be combined with an ordinary component for normal events in a two-fluid treatment 

of multiparticle production in a high-energy collision. 

4. The two-component model 

In this model we consider the fluid of hadrons produced in a high-energy collision 

as the mixture of a normal component corresponding to the ordinary hadronic system 

with short range correlations in rapidity and a critical component generated in a second 
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order phase transition process during the development of the hadronization. The inclusive 

rapidity densities of hadrons in this model are written as follows : 

p(yi,y2,~iy«) = Pe(yi.V2»».y«) +Pn{yi,y2,-,y») (4.1) 

where, 

(4.2) 
Pc{yi,y2,->y*) = Ac <Pe(yi)Pe(ya)-Pc(y«) > 

Pn(yi»y2,--.y«) = (i -A e ) < Pn(yi)Pn(y2)--Pn(y«) > 

The normal component < Pn{yi)---Pn{y*) > lies in the physical sector of the 5-matrix 

generated by the bare pomeron dynamics, enlarged with secondary Regge trajectories and 

properly modified by higher order corrections. The component < pc(yi)—Pe(y*) > on 

the other hand, belongs to the critical sector of the 5-matrix (critical FW fluid ) and 

is identified with the solution (3.5) generated by the fractal pomeron dynamics [2]. The 

factor Ac in eqs.(4.2) is an energy dependent mixing parameter which gives the probability 

for producing a critical system in the collision a + b, Ac = <τ^/σα^ (0 < Ac < 1). Using 

eqs.(3.12) one may express the parameter λβ in terms of the external couplings ga,gb of 

the fractal pomeron and the fundamental parameters of the critical system as follows : 

(0) / \ \ 
λ < ~ 1 = 1 + Γ7^~1(τΟ ( 4 · 3 ) 

In eq.(4.3) σαΙ> is the normal component of the total cross section <raj corresponding to 

conventional multihadron intermediate states in the unitarity equation. Integrating now 

eqs.(4.1) in a rapidity interval δ, in the central region, |y| < δ/2, we find the corresponding 

two-component model for the moments Fp(6, Ae) as follows : 

FP(*,AC) = ÄC 
< Pc(Q) > IP 

< P ( 0 ) > J p 
F^Ae) + (l-\e) 

<pn(0)>] 

[ < P(0) > 
W A ) (4.4) 

For the critical component Fp (δ, Ac) one may use the power law (3.8) which is valid in the 

fractality region, δα < δ < Δ β , whereas for the normal term 2ρη\δ, Δ € ) one may adopt in 

practice a phenomenological model for the conventional system assuming an exponential 

two-particle correlation function for the lowest moment (p = 2) and a negative binomial 
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distribution prescription for the higher moments [p > 2). For completeness we write the 

corresponding expressions as follows : 

à (4.5) 

F{
P

n) = F(

pl\(6,Δ)[1 + (ρ - l ) (F< n ) - Ι)) 

where 6C is the correlation length in rapidity and 7 the strength of the two-particle corre

lation [9]. With these specifications, the two component model (eq.4.4) may confront the 

measurements of the scaled factorial moments in several experiments leading to a num

ber of qualitative results for the corresponding pattern and the underlying mechanism as 

follows [2]. 

(a) The scaled factorial moments of lowest order (p = 2,3) are dominated by the 

conventional component whereas a clear intermittency pattern appears at the level of 

higher moments. The intermittency indices form a linear spectrum indicating a second 

order phase transition. « 

(b) The intermittency effect due to a quark-hadron phase transition may be significant 

even if the production cross section for the critical system is very small (Ac ci 10~5). The 

magnitude of the mixing parameter Ac is a measure of the population of exceptional events 

in the sample characterized by strong fluctuations in rapidity density. These events belong 

to a critical hadronic system which may be interpreted as a newly hadronized quark-gluon 

plasma. 

(c) The intermittency pattern breaks down for rapidity intervals close to a minini*! 

scale, δ m ~ £0, as a result of self-similarity violation in these domains of the rapidity space. 

Furthermore, the presence of the critical component in the 5-matrix leads to measur

able effects in the diffractive sector of the collision introducing a new energy threshold, 

y/sö, associated with the production of a critical hadronic system. In particular, the elastic 

amplitude Aak(s,t) in the forward direction (t = 0) admits a contribution from the critical 

component as follows [2} 

Λ*Μ) = 4S(.,0> + Ä r J?»' „ (4.6, 

where f(r) is given by eq.(3.12) and A^b (s,Q) is the conventional elastic amplitude corre

sponding to a standard, rising total cross section at high energies and a slowly varying real 
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part [10]. Using the convention σ^ = 3~lImAab, we obtain from eq.(4.6) the following 

measurable quantities : 

ΑΛ.Μ) = ft^SVo) + i 2 ^ P Γ* - f f l f ,, (4.7) 
0 τ y0 sinn[d0(r' - r)] 

*.»(*) = " i ? +9Îc)gïc)Sïl%· - « O M ' 1 ! » - ) (4-8) 
so 

For pp collisions, the onset of the critical component at CERN collider energies may explain 

the unexpectedly large value of the real part found by the UA4 experiment [11]. The precise 

remeasurement of this effect in a forthcoming experiment at CERN [12] together with more 

accurate measurements of the factorial moments, may constraint the parameters of the 

model providing us with the basic ingredients for a proposal towards a phenomenological 

theory of the critical sector of the 5-matrix. 

5. Concluding remarks * 

We have formulated a model for the one-dimensional critical sector of the hadronic 

5-matrix introducing a fractal measure in the rapidity space. Hence, together with the 

conventional principles of maximal analyticity, unitarity and self-consistency we have im

posed the property of self-similarity in rapidity space as a new constraint of the 5-matrix, 

associated with the criticality of the system and the related non conventional production 

mechanism (quark-hadron phase transition). Within the framework of the fractal geome

try introduced in the rapidity space we have found a self-consistent solution corresponding 

to a factorizable singularity at the point J = 1 of the angular momentum plane (fractal 

pomeron) which leads to a hadronic system (FW fluid) undergoing a second order phase 

transition. The fundamental parameters of the model are (a) the critical exponent η related 

with the fractal dimension, η — I —DF (0 < η < 1) and (b) the "ròrW*! scale So, physically 

connected with the maximal time scale in the hadronization process [1]. At large inter

vals in rapidity (S « Δ) the system obeys KNO scaling whereas at small scales (δ < Δ) 

the system becomes intermittent. The intermittency effect breaks down if the rapidity 

interval δ is comparable with the minimal scale 6Q. In order to study phenomenologicaliy 

these remarkable effects we have constructed a simple model for the complete 5-matrix 
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in rapidity space taking into account the totality of the events in a high-energy collision, 

including the conventional, non critical states of the hadronic fluid. We have adopted a 

two-component mechanism for the inclusive densities, introducing a mixing parameter in 

terms of the couplings of the fractal pomeron with the initial hadrons. In this model the 

non conventional properties of the hadronic fluid compete with the standard behaviour of 

the hadronic system at the level of higher order factorial moments. Moreover, the produc

tion of a critical system may generate a new threshold ^/SQ in high energy collisions with 

measurable effects in the real part of the forward elastic amplitude (y/sç ~ 542 GeV for 

pp collisions). It is therefore suggestive that in order to test these theoretical ideas which 

attempt to connect the non perturbative sector of QCD with a critical (fractal) sector 

of the 5-matrix, measurements of high statistics are required both of the scaled factorial 

moments in the limit δ —* 0 and the elastic-diSractive scattering in the limit a —*• 3o [2]. 

Finally, the forthcoming extensive experimental programme with relativistic heavy ions 

is expected to play a decisive role in establishing the critical properties of the strongly 

interacting system and the nature of the quark-hadron phase transition. 
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