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On the Foundations of Statistical Nuclear Physics 

C.Syros 

Laboratory of Nuclear Technology, 

University of Patras, 26110 Patras.Greece 

ABSTRACT! The density matrix for the nucleus, the canonical 
ensemble in second quantized representation and a quantum 
mechanical definition of the temperature have been derived 
from Quantum Field Theory. The evolution operator takes 
conservative or dissipali ve form and i s ergodic. 

1 Introduction 

Classical Mechanics has always been considered as the most 
•fundamental example of determinism in F'hysics and Philosophy. 
However,in the last decade Hamiltonian Mechanics became the 
most prolific source of .examples with chaotic mechanical 
behavior .Meanwhile Chaos has expanded to a field of research 
to which many branches of science-not only Physics- have con­
tributed important developments. 

Chaotic phenomena do not occur only in Classical Physics.There 
have been discovered in recent years quantum chaotical systems 
(Seligman and Nashioka 1986) although not as many as in Clas­
sical Mechanics. 

The subject of this paper is to present arguments for the view 
that stochastic behavior,dissipât ion and irreversibility in 
Nuclear Physics are direct consequences of Quantum Field 
Theory. 

Before addressing this question it is worth pointing out that 
there is a clear relationship between Chaos situations and 
stochastic behavior.Also Statistical Nuclear Physics has been 
based" by Bohr (1936),Wigner (1958),Ericson (1966) and by 
others both in structure and reaction theory (Porter 1965) on 
Classical Statistical Mechanics or on first principles. 

The importance of Statistical Mechanics for the description of 
definite aspects of nuclear structure and reaction theory is 
best illustrated by the well-known level spacing distribution. 
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To show the intrinsic relationship between the statistical 
nature? of some nuclear observables and the dynamics of the 
nucleus,the following examples may prove expedient. 
l.The level density which is directly related to the mean 
level spacing can be calculated from the projections of the 
system Hami1tonian onto the suitable model subspaces of 
the appropriate Hilbert space (Bohigas et al. 1983). 

2.The mean neutron strength function follows from the optical 
potential which is in fact a mean field quantity related to 
t he dy nam ics of t he nuc1eus. 

3.The mean value- of the scattering matrix for ion induced 
reactions at energies below a few tens rleV and for moderate 
mass numbers is obtained by the coupled channel method.This 
again is based on the dynamics of the mean field.These three 
classes of nuclear observables exhibit fluctuation properties 
suggesting that the nucleus is a quantum system . ν . Lh 
stochastic behavior,at least at excitation energies above 
several MeV (Bohigas and Weidenmuel1er,1988). 

The role of the chaos hypothesis concerning the velocities of 
the atoms in a gas is well-known from Classical Statistical 
Mechanics. This role is to be compared with the role of the 
nuclear matter in the theory of Statistical Nuclear Physics. 

This short introduction makes sufficiently clear the scope of 
this pap€A It will be shown that the statistical theory of 
nuclear structure and reactions is a direct consequence of 
Quantum Field Theory in conjunction with the theory of the 
generalized random fields (Gel'fand and Vilenkin 1964 ).This 
purpose will be achieved with the help of path integrals in 
sect. 2. In sect. 3 a new form of the evolution operator will 
be given starting from the usual form obeying the Schroedinger 
equation.By acting with this operator on the second quantised 
state vector we shall obtain the finite temperature density 
matrix for the nucleus in sect. 4. Finally, some conclusions 
and a discussion will be given in the last section. 

2 The path integral 

The path integral is characterised by the two quantities 3)fi,3)q, 
determining the measure in the Feynman path integral: 

F = Ci/2n} pDp £q expCitC fdLtlpq - HCp,<}}3>. 

We shall not use this form of path integral in OFT. One reason 
is that the product dnCxï. dhpCx> would violate the Uncertainty 
Principle.The elimination of ρ via a Gauss integral is 
possible only if the Ha*miltonian is of the particular form 
(Abers and Lee,1973) _ 

HCtl m p^/Zm + VC?}. (2.1) 

This condition represents a restriction for the set of 
admissible Lagrangian densities in field theory due to the 
relat ionship 
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£C<pCxï,d (pCxiy = d <pCxlnCxï - 9Ç<φζχϊ , nCxD , 

where TTC*XJ> = â φϊχϊ a n d 9£Cx7> i s t h e I-lami l t o n i a n d e n s i t y . 
T h i s . r e s t r i c t i o n h o l d s t r u e a l s o f o r t h e p r o p a g a t o r s of t h e 
f i e l d . O n e c o n s e q u e n c e may be f o r e x a m p l e t h a t i t d o e s n o t g i v e 
t h e most g e n e r a l q u a n t i z a t i o n i n gauge f i e l d t h e o r y . T h e f a c t 
t h a t t h e e x p r e s s i o n 

/ Dfxco; = / ridxcti 
t 

is not countably additive (Caratheodory,1963),(Halmos,1970) 
may imply serious mathematical and physical shortcomings in a 
t heo r y (Κ1 au der,1986). 

In order to exclude this event one should demonstrate that the 
lack of the necessary property of the measure does not preclu­
de the description of any class of physical phenomena. 
The measure we shall derive from the evolution operator its "IF 
is; 
μζίϊ = fc^x SdfpCx, tlnCx, Ο . <Γχ. Ο e IM* 

= d Sc^xf lim. Ι φϊχ,Ι';Η'} - φζχ. t' ;Ml<pCx, t ;hL> 

= â T lim S /cTx^Cx, t* ;h'}<pCxt t ;/0 

- ΤάΡχφζχ, t* ;fO<pCx, t;hJ>V\ 

w i t h <pCx;hS> € S = H i l b e r t s p a c e of t h e f i e l d e q u a t i o n s o l u t i ­

ons,IM =ri inkowski s p a c e , C?i3=space of t h e symmet ry g roup p a r a m e ­

t e r s i n a c c o r d a n c e w i t h t h e Moether t h e o r e m and xe R . 

If , μ'^ί,Ι* ;h,h*J = fd^x φίχ, t ' ; h* J>^Cx, t ; hJ> 
and _ 

μ*<1, t* ;h,h -> = fdTx <pCx,f ;hJ<pCxtt;fO , 
t h e n 

\fdt l i m . tß"Ct,t* ;h,h'ï -μ' C t, t ' ;h,hJÌ Ι 

= 1/ d άμ Ct, f;h>\ 

- \μ Ct,f ;fO\ < ω . 
The measure μα> of our integral is obtained from /JC £,£*.> by 
putting 

*" · ** » 't'=t 

This well-behaved measure will·be the basis of what follows. 

3 The evolution operator 

By summing a series of path integrals (including a limiting 
case corresponding to the Feynman path integral for n=oo) which 
results from a development of the evolution operator , the 
following expression has been derived by Syros (1990): 
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UCt,f> = exp<-WXfdix fd<pCx}n<x}sin[h~iSd xCPf - nCx>dl<pCxU] 

-ih~iSd3xSd<pCxJnCx}cos[triSdxC9e - nCx>di<pCxU3>. (3.. 1) 

The e x p r e s s i o n nCxïd <pCx5> in ( 3 . 1 ) t p r o p o r t i o n a l t o t h e number 
of n u c l é o n s , i s r e l a t e d t o t h e c h e m i c a l p o t e n t i a l . 
One of t h e main - f e a t u r e s of our e v o l u t i o n o p e r a t o r i s t h a t it. 
encompasses bo th p o s s i b i l i t i e s : I t may be c o n s e r v a t i v e 
or d i s s i p â t i v e ( H a l m a s , 1 9 5 6 ) . I t can be shown t h a t in bo th 
c a s e s t h e r e a r e c o n d i t i o n s u n d e r which e r g o d i c b e h a v i o r 
s p o n t a n e o u s l y a p p e a r s . W e i n t r o d u c e t h e q u a n t i s a t i o n c o n d i t i o n s 

Am.oO = h~iSd4x (Χ - d <pCx}Ôi<p(x) ) , (3.2·) 
w i t h 

A ( n . c ) { n + Î/2 ,σ = i 

η , α m 2 

With t h e d e f i n i t i o n s of (3 .2) and ( 3 . 3 ) t h e e v o l u t i o n o p e r a t o r 
becomes t 

UCt.t'} = { expl-h fdtHCt}+ACn,l}l• d i s s i p a t i v e (a) 

l_' t ( 3 . 4 ! 
expi-ih ,f dt HCtï+ACn,1)3.conservâtive ( b ) , where HCt^-Sd χ 9eCxJ. 

The f o l l o w i n g r e m a r k s may be made: 

1. The measure i n e q . ( 3 . 1 ) i s c o u n t a b l y a d d i t i v e . -: 

2. A Feynman p a t h - i n t e g r a l - 1 i k e e x p r e s s i o n summed-up i n t h e 
s e r i e s has a zero c o n t r i b u t i o n due t o t h e z e r o w e i g h t f a c t o r 
f o l l o w i n g from t h e s e r i e s . 
3. I n t e g r a t i o n o v e r t h e momentum s p a c e i n t h e p a t h - i n t e g r a l 
d o e s not f o l l o w from QFT. 
4. H a m i I t o n i a n s n o t q u a d r a t i c i n t h e momentum can a l s o be 
u s e d . 
5 . S p o n t a n e o u s d i s s i p a t i o n and i r r e v e r s i b i l i t y i s i m p l i e d f o r 
H e r m i t i a n H a m i I t o n i a n s , i f t h e q u a n t i z a t i o n c o n d i t i o n 
i s f u l f i l l e d t 

S^ dt HCtJ = rr jh, J = i/2,3s2 

6. I f on t h e c o n t r a r y , t h e c o n d i t i o n i s a p p l i e d , t h e n 

t 
/ dt HCtl = njh , jf = i t 2 t . . . 

no d i s s i p a t i o n a p p e a r s . 
The d e e p e r s i g n i f i c a n c e of t h i s q u a n t i z a t i o n i s n o t y e t c l e a r . 

7 . Let u s d e f i n e Η =<n\H\m> and <H> , τ by 
ran ' • 

Φ = Σ Σ « / » , f « Σ Σ Η τ /CM.<H» 
Titt> nm ητη 

and 
t 

Σ Η .τ - S HCtïdt , η = ΐ,2,... ,m=any m i c r o s t a t e 
rim nm 

η f 
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where τ - τ . . . . + τ *Μ = ΛΓ. 
nun l i f e of η n-nn 

Then,the absolute temperature of the nucleus in state m is 

Γ =h/CT .k J>, 
nrri n m Β 

where h is the Boltzmann constant. 
S. thermodynamic equilibrium establishes itself,if <#>=constant 

in time and <Η>.τ = constant. 
M is the number of states involved in the transitions during 
the interval fi',£.7. From this the equilibrium temperature of 

t he nuc1eus foilows 
Τ = constant. 

4 The density matrix in the second quantized method 

Assuming that the transition time,τ , is very short we may 
ΓίΤη 

decompose fi'.tJ into short time steps corresponding to the 
individual microscopic transitions. This may be done by using 
the group property of the U: 

VCt + χ ,t'> = UCt + χ ,t2UCt, t'J>. 
nm ' nm 

The average transition time plus the sojourn time of a nucléon 

in each state is a measure for the magnitude of ί/T with Γ the 

m m 
temperature.This requires writing UCt,t*5 in the form 

η 

UCt, t'y = Π UCt ,t J>, t = t and t = f . 
V V-i η Ο 

This acts on the state vector 

oo 
4 , * 

* = Σ ( η ! ) - 1 ' 2 Π Sdh9C (Ά .. . . £ j $ 2 < V » O l ° > ( 4 . 15 

Each t e r m i n e q . ( 4 . 1 ) r e p r e s e n t s an n - n u c l e o n wave f u n c t i o n 
w i t h p r o b a b i l i t y a m p l i t u d e p r o p o r t i o n a l t o C ih , . . . M ;t). I t 

. . . . y\ ι ' π ' s a t i s f i e s 

i h d , C = Η C , n = i , 2 w i t h C = £ { C 3·. 
i n η ri v η 

2K y is the Fourier transformation operator in the configura­
tion space and CC > are antisymmetrized.In the 

Γ» 

sfate vector ,(4.1),we have 

*Cx-> = ZC C .n . . . ; Ο Σ * Cx2 
η f . . . rv. . . 
f < P> f 

Φ Cx.> « <CnCnfl}SN!3 ΣΛ C x ; . . . f f x ; . 
. . . η . . . η *f 1 ^f Ν 

f f <P> 1 Ν 

To study the action of ΙΛΓ£ ,£*.> on Ψ we shall study it in 
the case of the operator function 
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C ·:%.,,.. Λ ;£-> Π a CÂ ;O|0> . (4.2) 
ν 

of the generic term of (4.1).|o> is the vacuum state vector. 

Since every transition changes either the first or the second 
or both of these factors in (4.2),the Hami1tonian in U is 

expressed as matrix element,// , and integrated over τ. We get 

from (4.2) 
η 

UCt+Στ .f> CC%. ....%. i f } Ua*C% ; t ' J> 10> 
U V 

π 
= CC%. >...%. ;t'+Z τ J Π α <Ά ; £ ' J>«?xpf-Σ Η τ 

ν, ι η Vm V ^ vm Vm 

+Σ Σ ACn.oOÓ J | 0 > . 
τ> m ητη ' 

The e x p o n e n t d e p e n d s on t h e number, A/, of t e r m s c o r r e s p o n d i n g t o 
t h e s t a t e s i n v o l v e d i n t h e t r a n s i t i o n s . 

C o n s e q u e n t l y , f o r a number.W, of t r a a s i t i o n s t h e t i m e i n t e g r a l 
can be w r i t t e n a s 

Ν Ν 

Σ Σ Η χ 
π τη τ\χη τ%τη 

This sum is repeated in the course of the time with its terms 
in different orders,if Η attains a time independent value for 
£>£''. 
Up to this point we are discussing in terms of many particles 
in OFT.Statistical Nuclear Physics enters the play if we 
decide to introduce a hypothetical nucléon exhibiting on the 
average the behavior of the nucléons. 

Taking the geometric average is equivalent to subdividing the 
time variable in M parts: 
M-l M-l 

π uct _,_ , £ j) = υ czt __ ,t ι 
f+l V v+t ο 

= UCttt*y , £ = £ and £ = £' 

Μ Ο 
and 

i/M t Ν 
ÌUCt,t'}] = expC-K.Coï/n IS dtHCt} - Ζ \Cn,<?}]>. (4.3) 

π 
t ' 

If M is time independent , then the first term in the exponent 
of (4.3) becomes HCt-t '^///.Appropriate choice ΣΛ puts to zero 
the e:;ponent, makes U isometric and the system ergodic. 

If,however,the Hamiltonian depends on the time,averaging the 
time integral of the Hamiltonian is equivalent to mixing the 
various time contributions of the evolution. From (4.3) one 

finds for the average factor of the n-th component of the 
state vector: 
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-, -, NN · 
<fd~& . . .d-'Ά C C%. , ...£ ;£' + Σ Σ τ J> Π α CA ; t '.» 

1 η η 1 η l>m ο V 
V. m ν 

N N Ν 

.expi-<<:<*>/>/ [ΈΤΗ χ - ΙΑ(η<σ}2> (4.4) 
ν m Vro ι-»τη η 

Expression (4.4) is the canonical ensemble under the condition 
of a constant number of nucléons,, 

We shall now construct the density matrix for non—constant 
number of particles.The usual definition of the density 
matrix requires the ad hoc introduction of an infinite set of 
weight coefficients. 

These are usually calculated in the framework of the Boltzmann 
or the Gibbs theories. In the present case these coefficients 
follow directly from the evolution operator making the 
theory selfcontained. 

/\ 
Next,we define the Schwinger operator, SCx,x'.> in the Bchröd-
inger picture by 

A °° 
SCx,x'5 = Σ |Ψ f x ; t > <» <Γχ· ; t · .> I 

r> « ri η • 

Α 
and l e t t h e e v o l u t i o n o p e r a t o r UCt,t'S> a c t on S as i t i s 
given by ( 4 . 3 ) . Then, 

* °° 
UCt.t'JSCx.x*} = Σ g expf-Ç<O><tf>/c-h/x ïl 

. |Ψ C x ; £ J » <ψ Cx*;t}>\ . ( 4 . 5 ) 

= : ρ<Γχ» t;x', Ο 
The c o e f f i c i e n t s , i g · >, B.re defined by 

V 

g = &χρ[ζζσ}/ζ2Μ2(\(ν) oOJ. g tends to unity, if the number of 

states»//, involved in the system transitions tends to infinity. 
From (4.5) the partition function follows as the matrix ele­
ment of p. 

It has,thus, been shown that Statistical Nuclear Physics which 
was derived on first principles by the pioneers of Nuclear-
Theory, is a direct consequence of the quantum theory, provided 
one assumes that the Lagrangian density is a random field. 

5 Discussion and conclusions 

The statistical behavior of nuclei is justified in the 
framework of the Quantum Field Theory by the recognition that 
the Lagrangian density represents a random field.This fact was 
already used tacitly by Feynman in the construction of his 
path integral.The deeper meaning of the quantisation 
condition in (3.2) has not yet been fully understood. 
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From our analysis it. foi lows that the' Feynman path integral 
ccrresponds to the- term of infinite order in the series 
development of the evolution operator. Trie nonexistence of the 
measure S)fi< t )3>q.l t ) is outweighted in our case by the factor 
1/n! with n-oo and its contribution is put to zero. 
An essential difference is that in our case,which follows from 
the Schroedi. nger equation, a product of differentials in the 
momenturn and path functions space does not appear in the 
measure of the integrals.What appears,instead,is a product of 
the momentum itself and a differential of the path space. 

This product does not interfere with the Uncertainty 
FT ino 3 ρ 3 e,for the integrai of infinite order corresponding to 
the Feynman path integral vanishes due to a factor l/Cn?J> with 
ri = αχ Another point is that the path functions space 
variations must for consistency be in accordance with the 
Noether t heorem. 

The density matrix and the partition function for the nucleus 
follow in a unified way by application of the evolution 
operator on the second quantization state vector representing 
the nucleus.From this all statistical properties of the 
nucleus can be derived. 
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