2 Publishing

HNPS Advances in Nuclear Physics

Vol 1 (1990)

HNPS1990

On the Foundations of Statistical Nuclear Physics
C. Syros

doi: 10.12681/hnps.2836

FIRST HELLENIC SYMPOSIUM
ON
THEORETICAL NUCLEAR PHYSICS

24 and 25 Aprid 1990
THESSALONIKI-GREECE

To cite this article:

Syros, C. (2020). On the Foundations of Statistical Nuclear Physics. HNPS Advances in Nuclear Physics, 1, 179-186.
https://doi.org/10.12681/hnps.2836

https://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at: 20/01/2026 10:18:26



On the Foundations of Statistical Nuclear Physics

C.Syros
Laboralory of Nuclear Technology,
University of Patras, 26110 Patras,Greece

ABSTRACT: The density matrix for the nucleus, . 1he canonical
ensemble in second quantized representation and a quantum
mechanical definition of the temperature have been derived
from Quantum Field Theory. The evolution operator takes

. conservative or dissipative form and is ergodic.

1 ‘Introduction .

Classical Mechanics has always been considered as the most
fundamental example of determinism in Fhysice and Fhilosophy.
However, in the last decade Hamiltonian Mechanics became the
most proli?ic source of examples with chactic mechanical
behavior .Meanwhile Chaos has expanded to a field of research
to which many branches of science-not only Fhysics- have con-
tributed important developments.

Chaotic pheriomena do not occur only in Classical Fhysics.There
have been discovered in recent years quantum chaotical systems
(Seligman and Mashioka 1984) although not as many as in Clas-
sical Mechanics.

The subject of this paper is to present arguments for the view
that stochastic behavidr,dissipation and irreversibility in
Nuclear Fhysics are direct consequences of Quantum Field
Theory.

Before addressing this question it is worth pointing out that
there is a clear relationship between Chaos situations and
stochastic behavior.Also Statistical Nuclear Fhysics has been
based” by Bohr (1936),Wigner (1958),Ericson (1966) and by
others both in structure and reaction theory (Forter 1963) on
Classical ‘Statistical Mechanics or on first principles.

THe importance of Statistical Mechanics faor the description of

definite aspects of nuclear structure and reaction theory is
best illustrated by the well-known level spacing distribution.
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To show the intri

i e nuclear observables and the dynami
&, the folicwing examples may prove expedient. .
. 2 level density which is directly related to the mean
level epacing can be calculated from the projections of the
eyetem  Hamiltonianm cnto the suitable model subspaces af
the appropriate Hilbevt space (Bohigas et al. 19830,

=i relationship  between the etatistical
ce of the

Z.The mean neutron strength function follows from the optical
" potertial which is 1n fact & mean field guantity related to
the dyramics of the nucleus.

The mean value. of the scattering matrix for ion induced
actions at energies below a few tens MeV and for moderate
mass numbers ie cbtained by the coupled channel method.This
again is based on the dynamics of the mean field.These three
classes of nuclear observables exhibit fluctuation properties
suggesting that the rnucleus 1is a quantum system . w.Lh
stochastic behavior,at least at excitetion energies above
sgveral MeV (Bohigas and Weidsnmueller, 1988).

¥

The role of the chaos hypothesis concerning the velocities of
the atoms in & gas is well-known from Classical Statistical
Mechanics. This role is to be compared with the role of the
nuclear matter in the theory of Statistical Nuclear Fhysics.

This short introduction makes sufficiently clear the scope of
this papef. It will be shown tha the statistical theory of
nuclear structure and reactions is a direct conseguence of
Buantum Field Theary in conjunction with +the theory of the
gerneralized random fields (Gel”fand and Vilenkin 1964 ).This
purpcse will be achieved with the help of path integrals in
sect. 2. In sect. T a new form of the evolution operator will
be given starting from the usual form obeying the Schroedinger
equation.By acting with this operator on the second quantized
state vector we shall obtain the finite temperature density
matrix for the nucleus in sect. 4. Finally, some conclusions
and & discussion will be given in the last section.

2 The path integral

The path integral is characterized by the two quantities Dn,De
determining the measure in the Feynman path integral:

F = cir2n> [Dp Dg exptit lsdtipg - HCp.gd1).

We shall rniot use this form of path integral in GFT.0One reason
is that the product drlx.d¢dx> would violate the Uncertainty
Frinciple.The elimination of p via a Gauss integral is
possible only if the H&miltonian is of the particular form
(Abers and Lee,1973) o o
HCtD = p 72m + VCqD. : (2.1)
This condition represents a restriction for the set of
admissible Lagrangian densities in field theory due to the
relationship .
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£CHCx0,8 400> =

where alx> =

the most general gquantization in gauge field

that the expre

is not  counta

may imply serious mathematical and physical shortcomings in  a

theory (Elaude

In order to exclude this event one

q.¢(x)n(x) =

FKCPCxD,nC x>,

@ x> and x> is the Hamiltonian density.
This . restriction holds true also for the propagatore of the
Field.Dne consequence may be for example that it

55100
S DIxCtO]

kiy additive

r,1986).

= S Nadx(td

t

does not give

theory. The fact

(Caratheodory, 1963) , (Halmos, 1970

should demonetrate that the

lack of the necessary property of the measure does not preclo-
de the description of any class of physical phernomena.
The measure we shall derive from the evolution operator ite-if

ige

HCLD = Sdox SAPCE, ONCH LD

0tfd3§f Lim [ @CH L9 A" — ¢Cx " s hOIPCHR, t; R

X, t> e M

dt[hlim f[rd3x¢c§.:';h'>¢c§,t;ha
e h

- PRI A IR, g hD
with @¢lx;ho € H = Hilbert space of the field equation scluti-

... . .
ons,M =Minkowski space, (hRi=space of the symmetry*grogp parame-—

ters in accord

If, - M
and .

M
then

arnce with the
trCtL, Lt R RO

*Ctot* h,h D

M

oether

theorem and

s

e R™.

SR PCH L S RIIHKE, LR

SR PR L RO LR

|£6, lim , [u*’Ct,t*;h,R*D —p’Ct,t*;h,hO1|

=S otdp Ct,t*;h|

The measure ultd) of our integtral

putting

TRITEANT

HCt o =

3 The evolution operator

By summing & series of path integrals

uct, t’ ;RO |

This well-behaved measure will-be the basis

< .
is obtained from

t=t”

(including

uCt,t*> by

of what follows.

a limiting

case cotrresponding to the Feynman path integral for n=e) which

results from a

development

of the

evolution

operatar , the

following expression has been derived by Syros (1990):
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UCt, t"> = expl—-h" Tod x SAC>xOnCxOsinlh™ *od xCo% — nCxd3 ¢ xd1
—ihT  rd s dpC xOnC xdcosih” L rdxCge - nCx O PCxDD1). (3.1

The expression n(x)f¢(x)) in (3.1), proportibnal to the number
of nucleons, is related to the chemical potential.

Orne of the main features of ouwr evolution operator is that it
es both possibilities: It may be: conservati
ot dizsipative (Halmoe,1956). It carm be sehown that in both
[ there are conditions under which ergodic  behavior
spontanscously appsars. We introduce the guantization conditions

SN0 Cmpas

Alnse) = & 1od ¢ - & P P ix) ), (3.2
with t
n+ 172 ,o0 =1
Ain,o) = , . il §
n , o= 2

~

With the definitions of (3.2) and (Z.32) the evolution operator
becomes

£ (3.4

t
exp[-ih‘:,f dt HCtO+ACn, 1)1, conservative (b)),

t
expl~h" ' SALHCEI+ACn,151,  dissipetive (a)
uct,t'> =

where HCtD=Sd°x 96CxD.
The following remarks may be made:

1. The measure in eq.(3.1) is countably additive.

2. A Feynman path-integral-like expression summed-up in the
cegries heg & zero contribution due to the zero weight fector
following from the series.

Z. Integration over the momentum space in the  path- integral
does not follow from GFT. .o

4. Hamiltonians not quadratic in the momentum can  alsoc be
used.

5. Spontanecus dissipation and irreversibility is implied for

Hermitian Hamiltonians,if the quantization condition
ig fulfilled t

S, dt HCE> = nmjh, j = 1s2,32,... .

6. If on the contrary, the conditicon is applied,then

t
fr dt HCt> = najh , j =1,2,...

no dissipation appears. :
The deeper significance of this guantization is not yet clear.

7.Let us define Hnm=<n|H|m> and <MN> ,T by

<H> = £ H /M, T =L S H T /CH.<HD
nm nm nm
and g
EH T =2 HCtodt ., n = 1,2,...,m=any micrastate
n nm nm tr
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where T = T +
. nm life of n n-+m

Then,the abseolute temperature of the nucleus in state m is

T =hCTt .k D,
nm nm B

where R is  the Boltzmann constant.

B.Thermgdynamic equilibrium establishes itself,if <Ho=constant

in time and <H>. Tt = constant.

M ie the number of states involved in the transitions during

the interval [t’,t].From this the equilibrium temperature of

the nuclieus follaows '

: g T = constant.

4 The density matrix in the second quantized method
Assuming that the transition time,thm, is wvery short we may

decompose {t’,t2 into short time steps corrvesponding to the
individual microscopic transitions. Thise may be done by using
the group property of the U: ’
et + . ,t°> = Wt + ©_ ,toUCt, t'O.
nm nm

The average transition time plus the sojourn time of a nuclecn
in each state is a measure for the magnitude of I/meith Tmthe

temperature.This requires writing UCt,t'J in the form
n

uce,t*> = nuce ,t D, t =t and t_ = t'.
=1 v V-1 : n ]

' This acts on the state vector

o . n
= §y 12 3 * T 42 . o ( 19
v T, 720 sakdc (R, Rt (R, ;0 107 (4.1

n=o
Each term in eq. (4.1) represents an n-nucleon wave function

with probability amplitude proportional to c(k ,...3 it). It
satisfies "ot n

ine, € = HE n=1,2,....with € = FIC 3
t n n n

30

31 3 is the Fourier transformation operator in the configura-
tion space and {Ch} are antisymmetrized.In the

state vector , (4.1),we have

x> = £CCovun... . i OEW x>
n f Moo

¢ "Myt
12
tIl“_n“_Cx) = ([l"‘l(n.!)]/N!) z¢f Cx‘)...¢((xN)
£ f (P) 4 N

To study the action of Wt ,t*> on ¥ we shall study it in
the case of the operator function
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g “ + _
e R st Nack ;tolox . (4.2)
1 n 5 I

cf the generic term of (4.1).]o}'is the vacuum state vector.

c Rk
n

Since every transition changes either the first or the second
o both of these factors in (4.2),the Hamiltonian in U is
expressed as matrix element,X .and integrated over Tt.We qget
from (4.Z2) nm n
UCt+ZT  ,t'D> CCR ,...R ;t*> Na*ck ;t'>|o0>
vvm n 1 n 1 v

n
= cckR ,...R s+ 7 O N a+(£ st expl-X H T
n 1 n v vm v=o0 Y Ym Vm

+2 T ACny 008 1|05

n m nm
The exponent depends on the number N,of terms corresponding to
the states involved in the transitions.
Corisequently, for a number,N, of transitions the time integral

can be written as
N

3r1 Z

& H T .
n nm nm

‘This sum is repeated in the course of the time with its terms
in different orders,if X attains a time independent value for
t>t’’.

Up to this point we are discussing in terms of many particles
in GFT.Gtatistical Nuclear Fhysics enters the play if we
decide to introduce a hypothetical nuclean exhibiting on  the

average the behavior of the nucleons.

Taking the geometric average is equivalent to subdividing the
time variable in M parts:
M-1 M-1
nuct Wyt = U (st ot D
v+’ Tp v+1' o
v =0 v=o0

e, t*'o> ,t. =t and t = ¢t°*
M o

and

1/M t N

expl( ~{Cod/M (F dtHCtD - E Aln,001)., (4.73)
¢

tUCt, Lo}

If H ic time independent ,then the first term in the exponent
of (4.3) becomes MCt-t'O>/M.Appropriate choice £A puts to =zero
the expornent,makes U isometric and the system ergodic.

If,however,the Hamiltonian depends on the time,averaging the
time integral of the Hamiltonian is equivalent to mixing the
various time contributions of the evolution. From (4.3) one
finds for the average factor of the n-th component of the
state vector:

184



3 % N N
(Fd"R ... dRCCR ,...R ;t* + = >nNack ;t'>
1 nn 1 n Ym v . v
. v om
: N N N
expl ~{Cod/M [Z T H T - INn,o>1) (4. 4)
v m rYm Vm n
Expression (4.4} is the canonical ensemble undsr the condition

of a constant number of nucleons.

We shall now construct the density matrix for non-constent
number of particles.The usual  definiticon of the
matrix requires the ad hoc introduction of an infinite se
weight coefficients.

These are usually calculated in the framework of the EBoltzmann
or the Gibbs theories. In the present case these coefficientes
follow directly from the evolution operator making the
theory selfcontained.

A
Next,we define the Schwinger operator, S{x,x'> in the Schrod-
inger picture by
oy [
-+ -+
SCx,x'> = I IW Cx; t> <¥ Cx';t')|
. n n n

; "
and let the evolution operator Wt,t'2 act on § as it is
given by (4.3).Then, -

A s o]
UCt, t"58Cx,x"> = I g expl-{Cod<H>/Ch/t D]
v v
CJe e O cw Cx 0] (4.5
v v

A -
=: pCx, t;x",t>
The coefficients,(g 2, are defined by
) v

g, = exp[((a?/(?ﬂbﬁ(v,aﬂ].g tends to unity,if the number of

states,M,involved in the system transitions tends to infinity.
From (4.;) the partition function follows as the matrix ele-
ment of 0.

It has,thus, been shown that Statistical Nuclear Fhysics which
was derived.on first principles by the picneers of Nuclear
Theory, is a direct consequence of the quantum theory, provided
one assumes that the Lagrangian density is a random field.

S Discussion and conclusions

The statistical behavior of nuclei is Jjustified in the
framework of the Quantum Field Theory by the recognition that
the Lagrangian density represents a random field.This fact was
already used tacitly by Feynman in the construction of his
path integral.The deeper meaning of the quantization
condition in (3.2) has not yet been fully understood.
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From cur anelysie it follows that the' Feyrman peth  inteqrel
cerrecponds to the term of infinite order ir the eeries
development of the evelution cperator. The mnonesicstence of the
measure Init:De(t) is cutweighted in our cese by the factor
I/n! with n=w and ite contribution is put to zero.

fin essential difference is that in our case,which follows fTrom

the Schroedinger eguaticon,a product of diff Lffﬂtlﬂ in  the
momentum and peth furctions ep toes  not in the
mecszure of the integrale.What ears, instead, et of
the momentunm 1tEG1F and = HJTFDl“htlgl of the =Xz}
Th:e does  not  anterfere with the ty
By =oral o of infinite order c to
t e vaniehes due to a fact th
n o= o i thet the rpath furctiocns spacse
fice  with the

coneistency be in accord

wcr:aticu:

MNoether theorem.

The density matrix and the partition function For the rucleus
fellow in a unified wey by eapplication of the evolution
crerator on the second quantizetion state vector reprzsenting
the nucleus.From this all statisticel properties of the
nucleus can be derived.
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