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Effective interactions in the sd and p shells]

J.C. Varvitsiotis and L.D. Skouras
Institute of Nuclear Physics, N.C.S.R. Demokritos, Aghia Paraskevi GR 15310, Greece

ABSTRACT: Using matrix-inversion techniques effective interactions for the sd and p
shells are determined in the complete space Ohw + 2nw. The derived interactions are
used to determine the spectra of A=18-20 and A=5-15 nuclei and compare them with

experiment.

1. INTRODUCTION

One of the purposes of nuclear theory is the derivation of effective interactions appropriate
for shell model calculations. Since the pioneer work of Kuo and Brown (1966), there has been a
large amount of studies in this field trying to deduce effective interactions using several methods
and techniques.

Inthis paper, we describe a method based on matrix-inversion techniques to derive effective
interactions appropriate for shell model calculations in the sd and p sﬁells (Skouras and
Varvitsiotis 1990a,b). In this method the energy matrices are constructed in the space of
Ohw + 2hw excitations and convergence studies are made for the effective interaction after the
elimination of the unlinked graphs in the above space.

This work falls in three parts. First, the elimination of unlinked graphs in the space of
Onhw +2hw excitations is shown in sect.2, which leads to the linked plus folded diagram
expansion. The summation of the above expansion is performed.in sect.3 and finally the results

of the calculation are given in sect.4.
2. ELIMINATION OF UNLINKED DIAGRAMS INOfiw + 2w SPACE

The energy matrices are constructed for the A=16-18 and A=4-8, A=14-16 systems in a
space that includes all 0nw + 2w excitations. The Hamiltonian for a system of A nucleons has

the form

i<)

A A
H=le,+ZV(zuj) 1)

1 Presented by J.C. Varvitsiotis
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wheretdenotes the kinetic energy, 1 the two body interaction while A the number of the nucleons

in the nucleus. The Hamiltonian (1) can be written as
H=H,+H, (2)
where
A ) A . A
Ho=) (t+U), Hy=) V(i,)=) U® (3
=1 i<jf i=1
and U an one body potential. We also define the projection operators

M
P=i|a><a|, Q=) li><il, (4)
a=1 i=1

where P projects onto the Ofiu model space while Q onto the 27w space. By Greek letters
a,B,v,...are labeled the model space states while by i,j,k,... the 27 w states. u, M denote the
dimensions of the Oftwand 27 wspaces respectively.

We consider now the Rayleigh-Schroedinger expansion for a degenerate system
Vii=) S (5)
k=1

Since all energy denominators in the calculation are equal, the first few terms of the above series

are written as

S,=E, : (6a)
S,=F, ' (6b)
S;=E, (6¢)
s,=E4—@+_E35-E—§ (6d)
D D? D
e.t.c, where
E,=PH,P , E - PH.QGQH QY 7GH P , n22 , D=E,-E, (6e)

" D n-1
The terms of the Rayleigh-Schroedinger series (5) that produce unlinked diagrams in a space
restricted to 27 wexcitations appear in fourth and higher orders and are those that contain two
or more factors E , with k > 1 (Mavromatis and Skouras 1979, Skouras and Varvitsiotis 1990a,b).
For example, the term — £3/ D of the fourth order in a double closed shell system contains the

product graphs of fig.1
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Fig. 1 Product graphis” contained in- £ 3/ Dterm of fourth-order. The dash line denotes a minus
and an extra denominator D.
which in a complete space calculation are canceled by the unlinked graphs of fig.2.
" Fig. 2 Fourth-order unlinked diagrams that appear in the closed core system.

The graphs of fig.2 are coming from the leading term £ , of (6d) and don’t appear in the present

calculation since they involve higher than Ohw+2hw excitations. By removing from

Rayleigh-Schroedinger expansion (5) all the terms that contain more than one factor £ , withk > 1,

the series
V=) Vi 7
k=0
results, where
Y,=E, (8a)
ELE,
= 2 sl kL 8b
¥a=Bar~s (8b)
] 2E,E, E,E?
Y=E,- ;H#—' (8¢)

e.t.c. Hence, the series (7) in the 0Orw + 2fiw space includes only linked graphs in agreement with

the formal theory of effective interactions (Brandow 1967). The summation of series (7) in the above

space is the subject of the next section.
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3. SUMMATION OF LINKED PLUS FOLDED DIAGRAMS EXPANSION IN
Ohw +2hw SPACE

A summation to all orders of expansion (7) is obtained in a space that is the direct product
ofthe P and Q spaces of sect.2. This space denoted by P ® Qhasdimensionp X Mand the following

quantities are defined into it

a) An operator Z: _
(QH Q) bap = (PH P)ypb,
Zlu.)ﬂ= : D (9)
b) The p?row vectors¥ i (a,B=1,2,...,p):
(¥3),,=85(PH,Q),, (10)
¢) The column vector $:
¢, =(QH,P), ' (11)
We also define the model space quantities
(Rn)up=§;n—?l‘l’§(1-2)"""’¢ w N=05152; (12)

where I denotes the unit matrix in the P ® Q space. The quantities R ,can be expressed in the

form of a series:

(—)"“’(n+i) '
R,= Yis » n=0,1,2,... 13
Dn‘Z0 n te2 (13)
where
vizZ'e
Yi)=—p— (14)

The quantities R ,are the basic units in our method to derive the effective interaction. For a Q

space restricted to O rw + 2 hw excitations, each R includes linked plus folded valence diagrams
and linked core diagrams (Skouras and Varvitsiotis 1990a). By considering the difference
ra By= R (15)
we obtain the valence one-body graphs, where j and ¢ denote an orbital in the model space of
170 and the core state respectively. For the two-particle system, we obtain the valence graphs
by considering
<UGJT|r |k JT >=<ij;JT | Ry | kL JT >=6,6,,(ri+ri+RE) (16)

where i,j,k and 1 denote orbitals of the sd shell.
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We correspond now the quantity r, to the Q-box of Krenciglowa and Kuo (1974) and the

quantitiesr, (n>0)as the derivatives of the Q-box. Hence, the effective interaction is given
by the expansion

Viy=Fo+Fi+Fy+... ' (17)
where

Fo=ro, F,=r,ry, Fo=r,ri+rir,, e.t.c (18)
4. RESULTS

In this section we present the results for the effective interactions for the sd and p shells
using the method of sect.3. The results for the sd shell have been obtained with the choice of 1.7
fm for the oscillator parameter (fiw = 14.42 Mev)and using for the two body interaction V in
(1) the "Sussex" matrix elements of Elliot et al (1968). At first, we have to determine the quantities
R , defined in (12). As (12) shows, the exact determination of these quantities involves the
inversion of matrix Z. However, the dimension of Z, as for example in the (J,T)=(2,1) state of
A =18 with dimension 17880, exceeds in several cases the capabilities of our computing system.
Hence, we determine the quantities R , approximately by summing the first fifty terms of
expansion (13) in all cases where matrix inversion is not possible.

The next step contains the calculation of the operators F, defined b_‘) (18) and the
convergence study of expansion (17). The results are shown in table 1 for 170 and the J=0 state
of 180 and contain contributions up to F ¢ term. In table 1 the results for 170 include the
zero-order contribution and give the energies of 170 states relative to 160. The energy of 160
is also included in table 1 calculated by considering only the contribution of # ,term. As it is
clear from table 1, for the 170 case there is a rapid convergence of expansion (17). Hence, the
energy of 170 states is almost completely attributed by the first two terms F oand F . In the 180
case the convergence of expansion (17) is much slower, although such convergence clearly exists.
The largest difference between the results of columns 5 and.6 of table 1, appears in the
<(572)%;J =01V .4;1(3/2)?;J = 0> matrix element and represents only 4%. For this reason
we consider only up to F terms in the determination of the effective interaction.

It is well known (Brandow 1967) that due to the inclusion of folded graphs the operator
H ,;;defined by

H,=Ho+V .y (19)
is not Hermitian. Following the procedure described by Brandow v(1968) and Des Cloizeaux
(1960), one can find a symmetric H ,;,having the same eigenvalues in the space of two-particle
states with the original non-symmetric # ,;; The two-body matrix elements of the symmetric
operator H .4 ¢for all (J,T) states of the A = 18 system (Skouras and Varvitsiotis 1990a) are found
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to be in remarkable agreement with Kuo’s matrix elements (Kuo 1967) and with those obtained
by Preedom and Wildenthal (1972). This agreement shows that our matrix elements obtained
without the use of any adjustable parameters, may be suitable for shell model calculations in the
beginning of the sd shell. A first test was done by using our interaction to determine the spectra
of the A=19 and A =20 nuclei. The results of this shell model calculation are shown in figures 3
and 4 and are in reasonable agreement with experiment (Ajzenberg-Selove 1983).

As mentioned in the beginning of this paper, we also use our method to determine the
effective three-body interaction in the space of 0w + 2w excitations. In the case of Op shell
the dimensions of the energy matrices are not extremely large (the biggest dimension is 1868).
Hence, the quantities R , are determined directly by matrix inversion. We use two types of
two-body interactions. The first is the "Sussex" interaction of Elliot etal (1968) while the other
is a G-matrix (Skouras and Varvitsiotis 1990b) derived from the Reid soft-core potential (Reid
1968). We distinguish the results obtained using these two interactions by V{;} and
V {Fxespectively. In table 2 wé present the results for the matrix elements of the three-body
effective interaction. In this table there are several three-body matrix elements with magnitude
between 0.5 and 1 Mev. This notice suggests that three-body forces will have an important effect
on the spectra of nuclei with several valence particles in the Op shell. Actually, in the calculation
of the spectra of the Op shell nuclei we find (Skouras and Varvitsiotis 1990b) the three-body
interaction to produce significant differences in the excitation energies. These differences are
of the order of several Mev near the end of the Op shell. We also observe that generally, the
three-body effects bring the calculated spectra to closer agreement with experiment. This
behaviour is clear in fig.5 where the spectrum of 10B is shown. The introduction of the three-body
component of IV ;, pushes up for example the (1,0) state from 0.13Mev to 2.44 Mev and better

agreement with experiment is obtained.
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Table 1
Convergence oV, in terms of additionai folded graphs

ME Numoer of folds™

] 1 ! 3 4 S 6
160 -95.02
170
5/2 -1.448 -1431 1432 -1.432 -1.432 -1432 -1.432
3/2 4.508 4.543 4.542 4.542 1542 4542 4.542
1/2 -1895  -1.783 .1.785 -1.787 -1.786 -1.786  -1.786
180
35 -2.424 -2.132 2297 -2.192 -2260 2215 2246
53 2119 2913 2381 2733 -2501  -2657  -23549
51 -1.487 -1.476 -1.419 -1.467 -1.434 -1.456 -1.440
3.5 -2.971 -3.040  -5.030 -3.029 -3.031 -3.030 -3.031
33 -1.37 -1.158 -1.187 -1.191 -1.184 -1.189 -1.185
31 -1.088 -1.035 -1.039 -1.041 -1.039 -1.040 -1.040
LS -1.366 -1.278 -1.302 -1.288 -1298 -1291 -1296
13 -1.168 -1.157  -1.098 -1.149 -1.113 -1.138 -1.120
1.1 -1457 -1545 -1.541 -1.544 -1.540 -1.543 -1.541

*Each coiumn of resuits represents the tocal resuits up to that order.
For 160 ana 470 the contnibution of H ¢ has been sdded in the cokuma of F o
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Table 2

List of 3-body matrix elements

ME Vi) Vi ME vy Vi) ME vy v
11 0518 0624 68 0219 0155 1212 0307 0213
12 0054 0129 69 0208 0101 1213 0085  0.026
13 0418 0268 6,10 0489 0385 1214 0063  -0.030
1,4 0464 0266 77 0128 0194 1313 0132  0.121
1.5 0715 0112 78 0070 0076 13,14 0726 0320
272 0305 -0387 79 0278 0300 14,14 0239 0464
23 0139 038 710 0266 0137 1515  -0.187  0.064
24 0143 0105 38 0071 0050 1516 0.167  0.113
25 0296 0406 89 0008 0045 1616 0371 0147
33 0646 0744 810 0163 0021 17,17 0363  0.625
34 0017 -0086 99 0277 025 1818 ~-0.060  0.032
35 0364 0568 910  -0131 0023 18,19 0023  0.019
44 0895 0916 1010 0273 0309 1820 0.175 0052
45 029 -0.101 1111 -0001 0012 19,19 0.131  0.119
55 0839 0719 1112 0083 003 1920 0209  -0.087
6.6 0153 048 1113 0120 0070 2020 0214  0.148
6.7 0054 0069 1114 0341 028 2121 0063 0075
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Fig.3. Energy spectra of the A=19 nuclei
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Fig.4. Energy spectra of the A=20 nuclei
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