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Effective interactions in the sd and ρ shells * 

J.C. Varvitsiotis and L.D. Skouras 

Institute of Nuclear Physics, N.C.S.R. Demokritos, Aghia Paraskevi GR 15310, Greece 

ABSTRACT: Using matrix-inversion techniques effective interactions for the sd and ρ 

shells are determined in the complete space Oft ου + 2ft ου. The derived interactions are 

used to determine the spectra of A =18-20 and A=5-15 nuclei and compare them with 

experiment. 

1. INTRODUCTION 

One of the purposes of nuclear theory is the derivation of effective interactions appropriate 

for shell model calculations. Since the pioneer work of Kuo and Brown (1966), there has been a 

large amount of studies in this field trying to deduce effective interactions using several methods 

and techniques. 

In this paper, we describe a method based on matrix-inversion techniques to derive effective 

interactions appropriate for shell model calculations in the sd and ρ shells (Skouras and 

Varvitsiotis 1990a,b). In this method the energy matrices are constructed in the space of 

0 ft ου + 2 ft ου excitations and convergence studies are made for the effective interaction after the 

elimination of the unlinked graphs in the above space. 

This work falls in three parts. First, the elimination of unlinked graphs in the space of 

0ftou + 2ftou excitations is shown in sect.2, which leads to the linked plus folded diagram 

expansion. The summation of the above expansion is performed in sect.3 and finally the results 

of the calculation are given in sect.4. 

2. ELIMINATION OF UNLINKED DIAGRAMS INOftuo + 2ftou SPACE 

The energy matrices are constructed for the A= 16-18 and A=4-8, A= 14-16 systems in a 

space that includes all Ο ft co + 2 ft ου excitations. The Hamiltonian for a system of A nucléons has 

the form 

/ / -£<,+ Σ>(ί,7) (1) 
i - l t<l 

1 Presented by J.C. Varvitsiotis 
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where t denotes the kinetic energy, V the two body interaction while A the number of the nucléons 

in the nucleus. The Hamiltonian (1) can be written as 

H = H0 + HX (2) 

where 

# ο = Σ ( ί , + ίΛ). W, = [V(i,y)-Ii/(0 (3) 
i - l ( < / / - l 

and U an one body potential. We also define the projection operators 

| α > < α | , Q - X l i > < i | , (4) 
o-l i-l 

where Ρ projects onto the Oft ου model space while Q onto the 2h<x> space. By Greek letters 

α, β, γ, . . . are labeled the model space states while by i,j,k,... the 2 h υο states, μ, M denote the 

dimensions of the Ο h <x> and 2 h ου spaces respectively. 

We consider now the Rayleigh-Schroedinger expansion for a degenerate system 

k-i 

Since all energy denominators in the calculation are equal, the first few terms of the above series 

are written as 

51 = E1 (6a) 

52 = E2 (6b) 

53 = E3 (6c) 

e.t.c, where 

PH,Q(QH iQy~zQHxP 
Ε,-ΡΗ,Ρ , En = . . . - n>2 , D = E0-EQ (6e) 

The terms of the Rayleigh-Schroedinger series (5) that produce unlinked diagrams in a space 

restricted to 2 h oj excitations appear in fourth and higher orders and are those that contain two 

or more factors E k with fc > 1 (Mavromatis and Skouras 1979, Skouras and Varvitsiotis 1990a,b). 

For example, the term -E\/D of the fourth order in a double closed shell system contains the 

product graphs of fig. 1 

169 



Fig. 1 Product graphs " contained in - £ I / Dterm of fourth-order. The dash line denotes a minus 

and an extra denominator D. 

which in a complete space calculation are canceled by the unlinked graphs of fig.2. 

Ο Oo 
Fig. 2 Fourth-order unlinked diagrams that appear in the closed core system. 

The graphs of fig.2 are coming from the leading term E 4 of (6d) and don't appear in the present 

calculation since they involve higher than 0fnx> + 2hu) excitations. By removing from 

Rayleigh-Schroedinger expansion (5) all the terms that contain more than one factor E k with k > 1, 

the series 

fc-0 

results, where 

r 2 = f2 (8a) 

> W 3 - ^ (8b) 

> W < - - F - + — . ( 8 c ) 

e.t.c. Hence, the series (7) in the Oh ου + 2ha> space includes only linked graphs in agreement with 

the formal theory of effective interactions (Brandow 1967). The summation of series (7) in the above 

space is the subject of the next section. 
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3. SUMMATION OF LINKED PLUS FOLDED DIAGRAMS EXPANSION IN 

Oft ου+ 2 ft ου SPACE 

A summation to all orders of expansion (7) is obtained in a space that is the direct product 

of the Ρ and Q spaces ofsect.2. This space denoted by Ρ ® Qhas dimension μ x M and the following 

quantities are defined into it 

a) An operator Z: 

_ (Q// ,Q) i j6 a ß-( />/ /1 />) a ß6 i ; (Q. 

^Ήΐβμ2Γθνννβ«θΓ8Ψρ ( α , β = 1 ,2 , . . . , μ): 

(vi\rò^PH^«t ( 1 0 ) 

e) The column vector Φ : 

Φ (¥ = « ? / / , / % . ( H ) 

We also define the model space quantities 

(* η )α Ρ

 = ^ Τ Τ ψ ρ ( ' - ζ ) " ( " 1 ) φ - " = 0 , 1 , 2 , . . . (12) 

where I denotes the unit matrix in the Ρ ® Q space. The quantities R „ can be expressed in the 

form of a series: 

where 

Ψ2Ζ'Φ 
{Υ ι.,} =— ( 1 4 ) 
κ Ι* 2 ' a ß η 

The quantities R „are the basic units in our method to derive the effective interaction. For a Q 

space restricted to0ftou + 2ftooexcitations, eachR „includeslinked plus folded valence diagrams 

and linked core diagrams (Skouras and Varvitsiotis 1990a). By considering the difference 

rl-Ri-K (15) 

we obtain the valence one-body graphs, where j and c denote an orbital in the model space of 

1'O and the core state respectively. For the two-particle system, we obtain the valence graphs 

by considering 

<ij;JT\rn\kl;JT> = <ij;JT\Rn\kl\JT>-bikb/t(ri

n + r'n + R'n) (16) 

where i,j,k and 1 denote orbitals of the sd shell. 
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We correspond now the quantity r 0 to the Q-box of Krenciglowa and Kuo (1974) and the 

quantities r„ (n > 0) as the derivatives of the Q-box. Hence, the effective interaction is given 

b ^ the expansion 

Vt„-F0 + Fl + F2 + ... (17) 

where 

F0

 = ro< Fl = rlr0, F2 = r2r
2

0 + r*r0, e.t.c (18) 

4. RESULTS 

In this section we present the results for the effective interactions for the sd and ρ shells 

using the method of sect.3. The results for the sd shell have been obtained with the choice of 1.7 

fm for the oscillator parameter ( h co = 14.42 Me f) and using for the two body interaction V in 

( 1) the "Sussex" matrix elements of Elliot et al ( 1968). At first, we have to determine the quantities 

R „ defined in (12). As (12) shows, the exact determination of these quantities involves the 

inversion of matrix Z. However, the dimension of Z, as for example in the (J,T) = (2,1) state of 

A= 18 with dimension 17880, exceeds in several cases the capabilities of our computing system. 

Hence, we determine the quantities R „ approximately by summing the first fifty terms of 

expansion (13) in all cases where matrix inversion is not possible. 

The next step contains the calculation of the operators F n defined bo (18) and the 

convergence study of expansion (17). The results are shown in table 1 for ^O and the J = 0 state 

of l^O a n d contain contributions up to F 6 term. In table 1 the results for l^O include the 

zero-order contribution and give the energies of ^ O states relative to ^O. The energy of ^ O 

is also included in table 1 calculated by considering only the contribution of F 0 term. As it is 

clear from table 1, for the I ' O case there is a rapid convergence of expansion (17). Hence, the 

energy of 1?0 states is almost completely attributed by the first two terms F 0and F x. In the ^ O 

case the convergence of expansion (17) is much slower, although such convergence clearly exists. 

The largest difference between the results of columns 5 and.6 of table 1, appears in the 

< ( 5 / 2 ) 2 ; J = 0 | K t / / | ( 3 / 2 ) 2 ; J = 0> matrix element and represents only 4%. For this reason 

we consider only up to F 6 terms in the determination of the effective interaction. 

It is well known (Brandow 1967) that due to the inclusion of folded graphs the operator 

H eff defined by 

He„ = H0 + Veff (19) 

is not Hermitian. Following the procedure described by Brandow (1968) and Des Cloizeaux 

(1960), one can find a symmetric Η β//having the same eigenvalues in the space of two-particle 

states with the original non-symmetric H eff. The two-body matrix elements of the symmetric 

operator Η „//for all (J,T) states of the A = 18 system (Skouras and Varvitsiotis 1990a) are found 
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to be in remarkable agreement with Kuo's matrix elements (Kuo 1967) and with those obtained 

by Preedom and Wildenthal (1972). This agreement shows that our matrix elements obtained 

without the use of any adjustable parameters, may be suitable for shell model calculations in the 

beginning of the sd shell. A first test was done by using our interaction to determine the spectra 

of the A = 19 and A=20 nuclei. The results of this shell model calculation are shown in figures 3 

and 4 and are in reasonable agreement with experiment (Ajzenberg-Selove 1983). 

As mentioned in the beginning of this paper, we also use our method to determine the 

effective three-body interaction in the space of Ohuo + 2 h<x> excitations. In the case of Op shell 

the dimensions of the energy matrices are not extremely large (the biggest dimension is 1868). 

Hence, the quantities /? „ are determined directly by matrix inversion. We use two types of 

two-body interactions. The first is the "Sussex" interaction of Elliot et al (1968) while the other 

is a G-matrix (Skouras and Varvitsiotis 1990b) derived from the Reid soft-core potential (Reid 

1968). We distinguish the results obtained using these two interactions by Vif) and 

V Respectively. In table 2 we present the results for the matrix elements of the three-body 

effective interaction. In this table there are several three-body matrix elements with magnitude 

between 0.5 and 1 Mev. This notice suggests that three-body forces will have an important effect 

on the spectra of nuclei with several valence particles in the Op shell. Actually, in the calculation 

of the spectra of the Op shell nuclei we find (Skouras and Varvitsiotis 1990b) the three-body 

interaction to produce significant differences in the excitation energies. These differences are 

of the order of several Mev near the end of the Op shell. We also observe that generally, the 

three-body effects bring the calculated spectra to closer agreement with experiment. This 

behaviour is clear in fig.5 where the spectrum of ^B is shown. The introduction of the three-body 

component of V aff pushes up for example the (1,0) state from 0.13Mev to 2.44 Mev and better 

agreement with experiment is obtained. 
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Table 1 

Convergence oiv.„in terms of additional folded graphs 

ME Numoer of folds1 

1 6 0 

1 7 0 

5/2 

3/2 

1/2 

18 0 

5_5 

5.2 

5.1 

3.5 

2.2 

3.1 

1.5 

1.3 

1.1 

-95.02 

•1.448 

4.508 

-1.895 

-2.424 

-2.119 

-1.487 

-2.971 

-1378 

-1.088 

-1.366 

-1.168 

-1.457 

-1.431 

4.543 

-1.783 

-2.132 

-2913 

-1.476 

-3.040 

-1.158 

-1.035 

-1.278 

-1.157 

-1.545 

r Each coiumn οι results ; i ! ι1" the un i 
For i ó O ana x'0 ihcamnBaaoaotH.hu> 

•1.432 

4.542 

•1.785 

2.297 

2.381 

1.419 

3.030 

1.187 

1.039 

1.302 

1.098 

1.541 

restiti uot 
been added 

-1.432 

4.542 

-1.787 

-2.192 

-2.733 

-1.467 

-3.029 

-1.191 

-1.041 

-1.288 

-1.149 

-1.544 

ο that order. 
mtnecotauH 

-1.432 

4542 

-1.786 

-1260 

-1501 

-1.434 

-3.031 

•1.184 

•1.039 

-1.298 

•1.113 

1.540 

i t f f» 

-1.432 

4542 

-1.786 

-1215 

-1657 

-1.456 

-3.030 

-1.189 

•1.040 

-1291 

-1.138 

-1.543 

-1.432 

4542 

-1.786 

-1246 

-1549 

-1.440 

-3.031 

-1.185 

-1.040 

-1296 

-1.120 

-1.541 
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Table 2 

List of 3-boay matrix elements 

ME V\Vf V\*} ME V\*} V\» ME irffl V% 

1,1' 

1.2 

1,3 

1,4 

1.5 

2,2 

23 

2.4 

2.5 

3,3 

3.4 

3.5 

4.4 

4.5 

5,5 

6.6 

6.7 

0.518 

0.054 

-0.418 

•0.464 

-0.715 

-0.305 

-0.139 

-0.143 

0.296 

-0.646 

-0.017 

0.364 

0.895 

-0.296 

-0.839 

0.153 

0.054 

0.624 

0.129 

-0268 

-0.264 

-0.172 

-0387 

-0.385 

-0.105 

0.406 

-0.744 

-0.086 

0.568 

0.916 

-0.101 

-0.719 

0.148 

0.069 

6,8 

6,9 

6,10 

7,7 

7,8 

7,9 

7,10 

3,8 

8.9 

8,10 

9,9 

9,10 

10.10 

11,11 

11,12 

11,13 

11.14 

0219 

0208 

0.489 

0.128 

-0.070 

0278 

-0266 

0.071 

-0.008 

-0.163 

0277 

-0:131 

0.273 

-0.001 

-0.083 

0.120 

0341 

0.155 

0.101 

0385 

0.194 

-0.076 

0300 

-0.137 

0.050 

0.045 

-0.021 

0254 

-0.023 

0309 

0.012 

-0.043 

0.07O 

0224 

12,12 

12,13 

12,14 

13,13 

13,14 

14,14 

15,15 

15,16 

16.16 

17,17 

18,18 

18,19 

1820 

19,19 

1920 

2020 

2121 

0307 

0.085 

-0.063 

0.032 

0.726 

0239 

-0.187 

0.167 

-0371 

0363 

- -0.060 

0.023 

0.175 

0.131 

-0209 

0214 

0.063 

0213 

0.026 

-0.030 

0.121 

0320 

0.464 

-0.064 

0.113 

-0.147 

0.625 

0.032 

0.019 

0.052 

0.119 

-0.087 

0.148 

0.075 

175 



is 
•3 

.3 

h 
•Ο) 

,3 — f t 
5 13 

A 7 

•3 5 
5 

•5 5 1 1 
Εχρ. Cale. Exp. Cale. 
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Fig.3. Energy spectra of the A=19 nuclei 
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Fig.4. Energy spectra of the A=20 nuclei 
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