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Conditions for the existence of peaks
in the Sigma hypernucleus spectra *

~ Th.Petridou and C.Daskaloyannis
Department of Theoretical Physics
University of Thessaloniki
GR-54006, Thessaloniki, GREECE

Abstract: The (K ~, 7%) sigma hypernuclear spectrum is studied qualitatively in the
Green function approach, using a solvable interaction model. The general features of the
spectrum are explained. The necessary conditions for the existence of peaks in the spectrum
are also studied. We show that the resonant peaks can be distinguished in the case of a

real strong spin-orbit potential with a relatively weak Sigma to Lambda conversion.

1.Introduction

The Sigma production spectrum in the (K, 7%) interaction was experimentally stud-
ied by using in flight [1-5] or at rest [6-11] kaons. The early estimates of the data gave
a small width, 5 to 10 MeV, to the Sigma-nucleus resonances [1,3,7].This width was not
confirmed in the subsequent experimental data [10],although the resonance structure reap-
pears in the case of small £ -hypernuclei as in § He [11].

Gal and his collaborators [12,13] proposed an explanation of the resonances with
narrow width,using the UBS (Unstable Bound State) theory. Morimatsu and Yazaki [14],
using the Green function method, have found a discrepancy between the position of the
resonance peaks and the location of the UBS poles, specially when the imaginary part
of the optical nucleus-hadron potential is strong enough. Gal [15] observed, that this
disagreement depends on the position of the poles in the complex k-plane. Thus,it was
concluded that the UBS theory cannot be used for the study of the resonant peaks in
the pion spectrum, derived by the (K~,7%*) production of the Sigma Hypernucleus. The
general features of the pion spectrum are usually attributed to the quasi-free background
[16,17].

The aim of this contribution is the qualitative study of the (K ~, 7%) spectrum.For this
reason we use a square well potential with a delta spin-orbit interaction. The production
strength (the response function) of the (K, 7%)g hypernucleus production can be written
as the superposition of terms, each of them corresponding to a definite nucleon hole -

hyperon configuration. Each term has the typical appearance of resonance, but in the case

* Presented by Th. Petridou
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of the Sigma-hypernuclei these resonances are densely distributed above the threshold.
When the resonances are prominent, we observe peaks in the spectrum.

The location of the poles of the hypernuclear Green function and the position of the
observed peaks in the spectrum are related, but fhey do not coincide always. We observe
that this coincidence depends on the relative size of the real part of the potential depth
over the size of the imaginary part. The addition of a real strong spin orbit potential
intensifies the real part of the total potential over the imaginary part, and the coincidence
between the Green function poles and the resonant peaks becomes more prominent. We
estimate the difference between the position of the resonant peaks and the poles.

The Green function method is analyzed in ref.[14] and [18].This method takes into
account the resonant and the continuum processes.Thus it is appropriate to describe the

sigma hypernucleus production.

2. The model
The production strength S(E) is given by the formula [14,18]:

S(E) = —%ImF(E) (1)
In the case of the at-rest Kaon capture, the partial production rate is given by:
D(K™(nklk),Z? = 7(ks),all) =
1 do
T 7T [ o

The averaged strength function F(E) over the nuclear spin orientations is given by the

/dQ,rS(EK = B = B

formula:

F(E) = ) Fi;(E)
£,y

where:

iv 7 L\’
Foi(E) = (2j+1)(2in +1)Y (2L +1) ) féi(B)
{L) -1/2 1/2 0

where {L} denotes the summation over the permitted values of L such that £x+¢+L =even.

him=% / dr / dr' [FM()] Gos (B rr) £ () @)
and the weight function fM(r) is:
FH(r) = ey () / 40 Y (7) [xa(P]* xx(F)
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The G¢ ;(E;r,r'") is the radial part of the Green function of the hyperon in the optical
hyperon-nucleus potential corresponding to the [¢, ] sigma configuration. The ugy jy(7)
is the radial part of the nucleon wave function corresponding to the [EN,jN]_l hole con-
figuration. The x» (or xx )is the pion (or the kaon) wave function in the pion-nucleus (or
the kaon-nucleus) optical potential.

The Green function in eq.(2) corresponds to the Schrodinger equation

S {(B)w-vo- o 3)

where V(r) is the optical potential, containing a central part and a spin orbit part. For
the shake of simplicity, we consider the case of the £° hypernucleus ,so that no Coulomb
interaction appears. 2
5 1 dw(r
V(r) = Vow(r) + V(1 S)TDZ;—E,E—)

The potential depths V. and Vj, are assumed to be complex. The imaginary part of
the potential simulates the Sigma to Lambda conversion. The function w(r) is the nucleon
density normalized to unity at the origin. In the solvable model, adopted in this paper,

the nucleon distribution is represented by a density of rectangular shape:

1 if r<R;
w(r) = { R=r,A'? (4)
0 if r>R;
wnd du(r)
w\r
e =—é(r — R)

The Green function Gy ;(E;r,r'), corresponding to the Schrédinger equation (3), sat-
isfies the equation:
G=G.+G.U,G
where U,, = —Vw(i -3)r2(1/R)é(r — R) is the spin-orbit potential and G, is the Green
function of the central potential.For simplicity, we omit all the indices relative to angular
momentum £ . This equation can be solved exactly and after a little algebra we find:

V,o(T-5)r2(1/R)Go(E; r, R)G(E; R, ')
1+ Vio(1-5)r2(1/R)G.(E; R, R)
In this paper, we consider the case of the at rest (K, 7~)-production of the C§2. The

Gi;(E,r,r'") = G(E;r,r') - (8)

parameter 7, in eqn.(4) is taken to be 1.31 fm. The Kaon is assumed to be in the atomic
3d state. The pion interacts with the hypernucleus with the complex optical potential 71
of the ref.[19] and for the nucleon-nucleus interaction the Bohr-Mottelson optical potential
is used [18].
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The strength function fz{’j(E) given by eq.(2) can be written as follows:

fE(E) = G¢j(E; R, R)E}(E) (6)

where
* i ' % 45(7‘<)"vb(_1-)(7‘<)-1 My 1
Tii(E) =) de | @ [0 | S| T ) (7
' M/o [ vl [qs(R) Jn(R) | 12

The functions ¢(r) and (+)(r) are the regular and Jost solutions of the Schrédinger
equation (3). The factor Gy ;j(E; R, R) is the origin of the resonant and continuum back-
ground of the spectrum and depends only on the hyperon-nucleus potential. The factor
22 ;(E) depends essentially on the production mechanism ( (K, 7%) or (xt, K), in-flight or
at-rest) of the hypernucleus. This term is slowly dependent from the spin-orbit potential
and does not contain any resonant behaviour, as we can see in fig.1. The function inside
the brackets is equal to unity near the radius R, while the terms fM(r) tend to zero when
r — 00,

The factor E,ﬁ ;(E) is responsible for the general features of the quasi-free background
of the spectrum as in ref. [16] and [17]. The Green function in eq.(6) generates the resonant
peaks in the pion spectrum. Therefore, there must be some correlation between the poles
of the Green function and the resonant peaks. In some cases there is a coincidence of the
peaks and the poles, while in other cases this coincidence is not obvious, see ref. [14].

In fig.2, we can see that the entire pion spectrum can be regarded as a dense accumula-
tion of resonances above the sigma threshold. These resonances depend on the nucleon-hole
and sigma particle configurations. The appearance of the resonant peaks depends on the
sharpness of the corresponding resonance in the particle-hole configuration. By the little
arrows in fig.2, we indicate the position of the real part of the poles (Ep,i. ). We remark
that the location of the poles is clearly correlated to the energy positions (Epeqr ) of the
[pols el » el peaks »

We can explain the discrepancy between the position of the peak (Epeqx) and the
location of the Green function pole (Epoc). For simplicity we consider a simple square

well potential as in ref.[14]. The Green function is given by the formula:

2m 1

G1;(E;R,R) = W2 H(E)

where
H(E) = pje(pR)/je(pR) — khy(kR)/he(kR)

where p = 4/2m(E — V)/h2 and k = \/ZmE/h2 and hg, 7 are the Bessel-Ricatti functions.
Let E' = Ep,. —iI'/2 be the root of the function H(E), this root is the pole of the

Green function. If the pole lies either on the first or on the fourth quadrant, we have a
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resonant shape of the strength function S(E) in the positive energy axis. In this region,
Epo1e is positive, but the imaginary part of E can be positive or negative.
By definition we have H(E') = 0. If T is small then for every E near to Ep,. the

function H(E) admits a Taylor expansion:

H(E)=(E-E)H'(E)+0((E-E'))

We can calculate the derivative of the function H(E) at E = E":

oty "_n_R v 2011 I(+1)  ire(k'R)
H'(E") = 27 ———E,_V(Te(kR)-l— (WR)? o+ R
where k' = 1/2mE'/h? and the function 7¢(z) is defined as:

ro(z) = hi(z)
¢ ihe(2)

From eqn.(6) the strength function ftL’J(E) in the vicinity of the E can be expanded

in a Laurent series as follows:
D
L
fe’](E):m+F+ (8)
where
2y 52
"RV T3 (K'R)+ £+ 1)/(K'R)? + im(kK'R)/(K'R)

The first term in the left hand side of (8) is proportional to 1/(E— E') and the second
one is constant if E is in the vicinity of E,,. = Re E'. The other terms are very small

D

and they are proportional to (E — E'). The first term generates the resonant peak of the
response function S(E), see eqn.(1), for a given configuration [¢, j]. We can write the
strength function S(E) as the sum of two terms.

S(E) = 5p(E) + Sy(E)

The first term S,(E) is responsible for the peak structure, while the second term Sy(E)
corresponds to the continuum background. The maximum of the $,(E) is the peak which
is located at Epeqr. The S,(E) is given by the formula:

D
E-5)

This function has two extrema,(see fig.3). In our problem, we are interested only in

Sp(E) = ~=Im(

the maximum. We have two cases:
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(i) Im(E')=-T/2>0
Then, the location of the peak is given by the relation:
Epeak = Epote + (T'/2) cot(a/2) (9)

where a = arg(D).

The maximum of the resonant part S,(Epeqr) is easily estimated

(ImD)*
eak) = 10
So(Bpeat) = STFT(T D] +ReD) (10)
(i) Im(E")=-T/2<0
Then, the location of the peak, Epeqx, is:
. Epeak = Epote — (I'/2) tan(a/2) (11)
The corresponding value of the production strength is given by the formula:
ImD)*
Sp(Epeat) = ) (12)

7 |T| (] D|—ReD)

The width AE of the resonant part S,(E) can be calculated and the following simple

relation is valid in both cases :

AE = 2/2Epeat = Epote)? + (T/2)? (13)

If ' is close to zero, then E,..i coincides with Ep,ie. This is true when the pole of
the Green function is located near the real energy axis (I' = 0). From eqn.(10) and (12)
we see that in this case , the peak is very sharp and from eqn.(13) the width is very small.

In fig.4 we see that the poles of the Green function form a trajectory in the complex
E-plane, when the strength of the spin-orbit potential depth Vj, is increased. For large
values of the spin-orbit interaction ,the poles approach the real energy axis.

The correlation between the positions of the poles and of the resonant peaks can be
studied graphically. We define the mean potential:

In our model
V = V. —3V,(I-35)/A4%3 (14)
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In fig.5 it is shown how the difference (Epote — Epeak) depends on the relative ratio of

the imaginary part over the mean potential:

| ImV |

= 15)
i (18)

Epo1c is the real part of the energy eigenvalue and E,qx is the Sigma energy corresponding
to the maximum of the associated resonance. The curve, in fig.5, corresponds to the [ds /2] 5
configuration and the spin orbit well depth takes values from 0 to 40 MeV. In this case,
when the spin-orbit potential increases, the real part of the mean potential is increased
comparatively to the imaginary part and the ratio in eqn.(15) decreases. We notice that
the position of the real part of the energy eigenvalue approaches the position of the peak,
when the real part is greater than the corresponding imaginary part of the potential.

Equation (14) indicates that the spin-orbit effects should be stronger in the hypernuclei
with relatively low mass number A. The appearance of a strong peak is more probable for
small A, see ref.[11]. '

To each Sigma configuration corresponds a partial resonant peak and the superposition
of these partial peaks creates the total spectrum. The position of each partial resonant
peak corresponds to the real part of the energy eigenvalue, though it does not necessarily
coincide with it. Therefore the resonance due to [d5 /2]2 is closer to the energy threshold
than the [dg/g]E resonance or the [f7/2]): resonance (see fig.2).

For a given ¢, the contribution from the j = ¢ + % hyperon configuration gives a peak
closer to the energy threshold, than the corresponding j = £ — % hyperon configuration,
whose peak is located far away from the Sigma threshold. If the spin orbit potential is real
and positive, from eqn.(14) we conclude that the absolute value of the mean real potential,
for the j = £ + 1 configuration, is greater than the mean real potential of the j = € — %
configuration. Therefore the peaks of the j = £ + § configurations are sharper and lie
nearer the threshold than the corresponding peaks of the 'j = £ — } configurations, for the
same ] (see fig.2).

Calculations of the at rest spectrum have been given with the Woods-Saxon opti-
cal potential by Morimatsu and Yazaki (18] and the essential features of the (K.7%)g-
hypernuclear spectrum are the same, with those obtained in our case.

In fig.6, we draw the at-rest 7 -spectrum for different values of the spin-orbit potential.
We remark that the peaks of the different & configurations éppear more clearly when the
value of the spin-orbit parameter is augmented. In this case the quantity (15) is decreased.
The corresponding resonant peaks for each ¥ configuration become sharper.

An eventual experimental confirmation of the existence of the peaks in the spectrum
must be connected to relatively low values of the imaginary part of the potential and/or to
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a strong real spin-orbit potential. The absence of the peaks in the experimental spectrum
indicates the importance of the ¥ to A conversion and a relatively moderate real and/or a

complex spin-orbit potential.

3. Conclusions
The study of the Green function part of the production strength leads to the following
conclusions:

i. The existence of narrow resonant peaks can be related to large real values of the
spin-orbit potential and to a relatively low ¥ to A conversion.

ii. The theory of the poles of the hypernuclear Green function can be used to explain
qualitatively the gross features of the spectrum as the superposition of partial reso-
nances, which correspond to definite hyperon configurations.

ili. The resonant behaviour in the spectrum originates mainly from the Green function
part of the the strength function . This part is independent of the original creation
mechanism of the sigma hypernuclei.

"Calculations of the (K, 7%)g-hypernuclear spectrum with other models, lead also to
the conclusion that, when a large real potential with large spin-orbit interaction is used,

we have bound Sigma-hypernuciear states [20-23], with a small quasifree process [22,23].
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