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Conditions for the existence of peaks 

in the Sigma hypernucleus spectra * 

Th.Petridou and C.Daskaloyannis 

Department of Theoretical Physics 

University of Thessaloniki 

GR-54006, Thessaloniki, GREECE 

Abstract: The (A"_, π*) sigma hypernuclear spectrum is studied qualitatively in the 

Green function approach, using a solvable interaction model. The general features of the 

spectrum are explained.The necessary conditions for the existence of peaks in the spectrum 

are also studied. We show that the resonant peaks can be distinguished in the case of a 

real strong spin-orbit potential with a relatively weak Sigma to Lambda conversion. 

l.Introduction 

The Sigma production spectrum in the (K~, π±) interaction was experimentally stud­

ied by using in flight [1-5] or at rest [6-11] kaons. The early estimates of the data gave 

a small width, 5 to 10 MeV, to the Sigma-nucleus resonances [1,3,7].This width was not 

confirmed in the subsequent experimental data [10],although the resonance structure reap­

pears in the case of small Σ -hypernuclei as in ^He [11]. 

Gal and his collaborators [12,13] proposed an explanation of the resonances with 

narrow width,using the UBS (Unstable Bound State) theory. Morimatsu and Yazaki [14], 

using the Green function method, have found a discrepancy between the position of the 

resonance peaks and the location of the UBS poles, specially when the imaginary part 

of the optical nucleus-hadron potential is strong enough. Gal [15] observed, that this 

disagreement depends on the position of the poles in the complex k-plane. Thus,it was 

concluded that the UBS theory cannot be used for the study of the resonant peaks in 

the pion spectrum, derived by the (Α'-,π1*1) production of the Sigma Hypernucleus. The 

general features of the pion spectrum are usually attributed to the quasi-free background 

[16,17]. 

The aim of this contribution is the qualitative study of the ( Α - , π ± ) spectrum.For this 

reason we use a square well potential with a delta spin-orbit interaction. The production 

strength (the response function) of the (Α, π ^ ) ^ hypernucleus production can be written 

as the superposition of terms, each of them corresponding to a definite nucléon hole -

hyperon configuration. Each term has the typical appearance of resonance, but in the case 

* Presented by Th. Petridou 
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of the Sigma-hypernuclei these resonances are densely distributed above the threshold. 

When the resonances are prominent, we observe peaks in the spectrum. 

The location of the poles of the hypernuclear Green function and the position of the 

observed peaks in the spectrum are related, but they do not coincide always. We observe 

that this coincidence depends on the relative size of the real part of the potential depth 

over the size of the imaginary part. The addition of a real strong spin orbit potential 

intensifies the real part of the total potential over the imaginary part, and the coincidence 

between the Green function poles and the resonant peaks becomes more prominent. We 

estimate the difference between the position of the resonant peaks and the poles. 

The Green function method is analyzed in ref.[14] and [18].This method takes into 

account the resonant and the continuum processes.Thus it is appropriate to describe the 

sigma hypernucleus production. 

2. The model 

The production strength S(E) is given by the formula [14,18]: 

S(E) = --lmF(E) (1) 
7Γ 

In the case of the at-rest Kaon capture, the partial production rate is given by: 

r(K~(nKeK),ZA - π(Κ),αΙΙ) = 

Σ j dünS{EK - Επ - Er) 
2t κ + 1 

da 

ΊΚΝ-*Σπ ... 

The averaged strength function F(E) over the nuclear spin orientations is given by the 

formula: 

F(E) = £ > , , ( £ ) 

where: 

Fej(E) = (2j + l)(2jN.+ l)J2(2L + l)( ' ) tftj(E) 

{L] V - l / 2 1/2 0 / 

where {L} denotes the summation over the permitted values of L such that l^+i+L =even. 

/•OO Λ Ο Ο 

#;(-£) = Σ / dr àr'[flf(r)]*Gtj(E-try)fìf(r') (2) 
M JO JO 

and the weight function fj?{r) is: 

/ L V ) = « W N ( 0 / dÜ YL
M(r) [χπ(Γ)Γ χκ(ν) 
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2 1 dw{r) 

The Gej(E; r, r') is the radial part of the Green function of the hyperon in the optical 

hyperon-nucleus potential corresponding to the [£,j] sigma configuration. The ueN,jN(r) 

is the radial part of the nucléon wave function corresponding to the [£N,JN] hole con­

figuration. The χ π (or χκ )is the pion (or the kaon) wave function in the pion-nucleus (or 

the kaon-nucleus) optical potential. 

The Green function in eq.(2) corresponds to the Schrödinger equation 

. £+{(5?>-™-^}~ο 
where V(r) is the optical potential, containing a central part and a spin orbit part. For 

the shake of simplicity, we consider the case of the Σ° hypernucleus ,so that no Coulomb 

interaction appears. 

V(r) = Vcw(r) + Vao(l-s)r0< 
r dr 

The potential depths Vc and Vso are assumed to be complex. The imaginary part of 

the potential simulates the Sigma to Lambda conversion. The function w(r) is the nucléon 

density normalized to unity at the origin. In the solvable model, adopted in this paper, 

the nucléon distribution is represented by a density of rectangular shape: 

(I if r < R ; 
w(r) = I R = r0A^3 (4) 

lO if r > R ; 

and 

*p. = -S(r-R) 
dr 

The Green function Gij(E;r,r'), corresponding to the Schrödinger equation (3), sat­

isfies the equation: 

G = Gc + GcUaoG 

where Uso = — Vso(l · s)rl(l/R)6(r — R) is the spin-orbit potential and Gc is the Green 

function of the central potential.For simplicity, we omit all the indices relative to angular 

momentum £ . This equation can be solved exactly and after a little algebra we find: 

C, , (* , r, r') = GC(E; r, Q - M ' ΦΜ«***, r, R)GC(E; R, r-) 
1 + V,0(ls)rl(l/R)GC(E;R,R) W 

In this paper, we consider the case of the at rest (/<", π -)-production of the C]?. The 

parameter r0 in eqn.(4) is taken to be 1.31 fm. The Kaon is assumed to be in the atomic 

3d state. The pion interacts with the hypernucleus with the complex optical potential πΐ 

of the ref.[19] and for the nucléon-nucleus interaction the Bohr-Mottelson optical potential 

is used [18]. 
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The strength function f[j(E) given by eq.(2) can be written as follows: 

fe
L

jj(E) = Giij(E;R,R)ElJ(E) (6) 

where 

The functions <f>(r) and ^>(+)(r) are the regular and Jost solutions of the Schrödinger 

equation (3). The factor Ge,j(E;R,R) is the origin of the resonant and continuum back­

ground of the spectrum and depends only on the hyperon-nucleus potential. The factor 

Σ^j(E) depends essentially on the production mechanism ( (Α', π * ) or ( π + , Κ), in-flight or 

at-rest) of the hypernucleus. This term is slowly dependent from the spin-orbit potential 

and does not contain any resonant behaviour, as we can see in fig.l. The function inside 

the brackets is equal to unity near the radius R, while the terms fîf(r) tend to zero when 

r —» oo. 

The factor Σ ^ A E) is responsible for the general features of the quasi-free background 

of the spectrum as in ref. [16] and [17]. The Green function in eq.(6) generates the resonant 

peaks in the pion spectrum. Therefore, there must be some correlation between the poles 

of the Green function and the resonant peaks. In some cases there is a coincidence of the 

peaks and the poles, while in other cases this coincidence is not obvious, see ref. [14]. 

In fig.2, we can see that the entire pion spectrum can be regarded as a dense accumula­

tion of resonances above the sigma threshold. These resonances depend on the nucleon-hole 

and sigma particle configurations. The appearance of the resonant peaks depends on the 

sharpness of the corresponding resonance in the particle-hole configuration. By the little 

arrows in fig.2, we indicate the position of the real part of the poles (Epoie ). We remark 

that the location of the poles is clearly correlated to the energy positions (Epeak ) of the 

[P3/2]E, [<*e/2]E » [/7/2] E , -peaks. 

We can explain the discrepancy between the position of the peak (Epeak) and the 

location of the Green function pole (Epou). For simplicity we consider a simple square 

well potential as in ref. [14]. The Green function is given by the formula: 

. . 2m 1 

where 

H(E) = pj'e(pR)/je(pR) - kh'e(kR)/hi(kR) 

where ρ = y/2m(E - V)/fi2 and k = J2mE/h2 and ht,jt are the Bessel-Ricatti functions. 

Let E' = Epoie — iT/2 be the root of the function H(E), this root is the pole of the 

Green function. If the pole lies either on the first or on the fourth quadrant, we have a 
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resonant shape of the strength function S(E) in the positive energy axis. In this region, 

Epoie is positive, but the imaginary part of E can be positive or negative. 

By definition we have H(E') — 0. If Γ is small then for every E near to Epoie the 

function H(E) admits a Taylor expansion: 

H(E) = (E- E')H'(E') + 0((E- E'f) 

We can calculate the derivative of the function H(E) at E = E': 

_ mR V ( 1(1 + 1) zre(k'R)\ 

where k' = \j2mE'/l·2 and the function Tt(z) is defined as: 

K(z) 
Φ) ihi(z) 

From eqn.(6) the strength function f[AE) in the vicinity of the E can be expanded 

in a Laurent series as follows: 

f'Lj(E) = EJrw + F+--- ( 8 ) 

where 

D ^ 2 E ' - V Zfj(E') 

R V rf(k'R) + t(l + \)/{k'R)2 + ire(k'R)/(k'R) 

The first term in the left hand side of (8) is proportional to l/(E-E') and the second 

one is constant if E is in the vicinity of Epo{e = Re E'. The other terms are very small 

and they are proportional to (E - E'). The first term generates the resonant peak of the 

response function S(E), see eqn.(l), for a given configuration [£,j]z- We can write the 

strength function S(E) as the sum of two terms. 

S(E) = SP(E) + Sb(E) 

The first term SP(E) is responsible for the peak structure, while the second term Sb(E) 

corresponds to the continuum background. The maximum of the Sp(E) is the peak which 

is located at Epeak. The Sp(E) is given by the formula: 

This function has two extrema,(see fig.3). In our problem, we are interested only in 

the maximum. We have two cases: 
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(i.) Im(E') = - Γ / 2 > Ο 

Then, the location of the peak is given by the relation: 

Epeak = Epole + (Γ/2) cot(a/2) (9) 

where a = arg(Z)). 

The maximum of the resonant part Sp(Epeak) is easily estimated 

( Τ 7~)\2 

5 p ( ^ p e a f c ) = π | Γ | (| D | +ReD) ( 1 0 ) 

(ii.) Irn(E') = - Γ / 2 < 0 

Then, the location of the peak, Epeak, is: 

. Epeak = Epole - (Γ/2) tan(a/2) (11) 

The corresponding value of the production strength is given by the formula: 

e / t . _ (ImD)2 

W*""* - π | Γ | (| D | -ReD) { > 

The width AE of the resonant part SP(E) can be calculated and the following simple 

relation is valid in both cases : 

AE = 2^/2(Epeak - Epoley + (Γ/2) 2 (13) 

If Γ is close to zero, then Epeak coincides with Epo\t. This is true when the pole of 

the Green function is located near the real energy axis (Γ = 0). From eqn.(10) and (12) 

we see that in this case , the peak is very sharp and from eqn.(13) the width is very small. 

In fig.4 we see that the poles of the Green function form a trajectory in the complex 

Ε-plane, when the strength of the spin-orbit potential depth Vso is increased. For large 

values of the spin-orbit interaction ,the poles approach the real energy axis. 

The correlation between the positions of the poles and of the resonant peaks can be 

studied graphically. We define the mean potential: 

/ V(, 
Jo 

V = -J3 / \'(r)r2ar 

In our model 

V = Vc - Wso(l • s) I A2'3 (14) 
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In fig.5 it is shown how the difference (Epou - Epeak) depends on the relative ratio of 

the imaginary part over the mean potential: 

i*£l (16) 
| V | 

Epou is the real part of the energy eigenvalue and Epeak is the Sigma energy corresponding 

to the maximum of the associated resonance. The curve, in fig.5, corresponds to the [̂ 5/2] Σ 

configuration and the spin orbit well depth takes values from 0 to 40 MeV. In this case, 

when the spin-orbit potential increases, the real part of the mean potential is increased 

comparatively to the imaginary part and the ratio in eqn.(15) decreases. We notice that 

the position of the real part of the energy eigenvalue approaches the position of the peak, 

when the real part is greater than the corresponding imaginary part of the potential. 

Equation (14) indicates that the spin-orbit effects should be stronger in the hypernuclei 

with relatively low mass number A. The appearance of a strong peak is more probable for 

small A, see ref.[ll]. 

To each Sigma configuration corresponds a partial resonant peak and the superposition 

of these partial peaks creates the total spectrum. The position of each partial resonant 

peak corresponds to the real part of the energy eigenvalue, though it does not necessarily 

coincide with it. Therefore the resonance due to [^5/2]Σ is closer to the energy threshold 

than the [c?3/2]v resonance or the [/7/2JV; resonance (see fig.2). 

For a given £, the contribution from the j = £ + \ hyperon configuration gives a peak 

closer to the energy threshold, than the corresponding j = £ — | hyperon configuration, 

whose peak is located far away from the Sigma threshold. If the spin orbit potential is real 

and positive, from eqn.(14) we conclude that the absolute value of the mean real potential, 

for the j = £ + | configuration, is greater than the mean real potential of the j' = £ — | 

configuration. Therefore the peaks of the j = £ + | configurations are sharper and lie 

nearer the threshold than the corresponding peaks of the j = £ — | configurations, for the 

same 1 (see fig.2). 

Calculations of the at rest spectrum have been given with the Woods-Saxon opti­

cal potential by Morimatsu and Yazaki [18] and the essential features of the (Κ. π ± ) ε -

hypernuclear spectrum are the same, with those obtained in our case. 

In fig.6, we draw the at-rest π -spectrum for different values of the spin-orbit potential. 

We remark that the peaks of the different Σ configurations appear more clearly when the 

value of the spin-orbit parameter is augmented. In this case the quantity (15) is decreased. 

The corresponding resonant peaks for each Σ configuration become sharper. 

An eventual experimental confirmation of the existence of the peaks in the spectrum 

must be connected to relatively low values of the imaginary part of the potential and/or to 
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a strong real spin-orbit potential. The absence of the peaks in the experimental spectrum 

indicates the importance of the Σ to Λ conversion and a relatively moderate real and/or a 

complex spin-orbit potential. 

3. Conclusions 

The study of the Green function part of the production strength leads to the following 

conclusions: 

i. The existence of narrow resonant peaks can be related to large real values of the 

spin-orbit potential and to a relatively low Σ to Λ conversion, 

ii. The theory of the poles of the hypernuclear Green function can be used to explain 

qualitatively the gross features of the spectrum as the superposition of partial reso­

nances, which correspond to definite hyperon configurations, 

iii. The resonant behaviour in the spectrum originates mainly from the Green function 

part of the the strength function . This part is independent of the original creation 

mechanism of the sigma hypernuclei. 

Calculations of the (Κ,π^)^-hypernuclear spectrum with other models, lead also to 

the conclusion that, when a large real potential with large spin-orbit interaction is used, 

we have bound Sigma-hypernuciear states [20-23], with a small quasifree process [22,23]. 
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