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Equivalent Local Potentials for the coupled channel system
and the optical potential

C.Daskaloyannis
Theoretical Physics Department
University of Thessaloniki
54006 Thessaloniki GREECE

Abstract: The explicit formulae of the equivalent local potentials for a coupled chan-
nel problem are calculated. We prove that the equivalent local potential of the coupled
channel system coincides with the equivalent local potential of the Feshbach optical po-
tential.

1. Introduction

There are different methods of constructing an Equivalent Local Potential (ELP), which
is equivalent to the single channel Schrodinger equation with non-local interactions. One
method, for the single channel Schrédinger equation, was proposed by Fiedeldey [1]. In
this method, each pair of independent solutions of the single channel problem corresponds
to an equivalent local potential. The solutions of the Schrédinger equation with the ELP
are wave proportional to the solutions of the original equation with non-local potentials.
The Fiedeldey method was used with success in the nucleon-nucleon problems(2], in the
aa interaction [3], and also in the case of the quark cluster interpretation of the NN
interaction[4].

" The WKB method for the single channel equation with a non-local potential was
introduced by H.Horiuchi [5]. In this method the non local potential is replaced by a local
one, using the Wigner transform of the non-local operators. If the approximate equivalent
local potential is treated by the WKB method, its WKB solutions are wave proportional to
the WKB solutions of the original problem with the non-local potential. This method was
successfully used for the quark structure investigations of the NN interaction [6] The WKB
treatment of the coupled channel equation with non-local potentials was introduced by
Yabana and Horiuchi[7]. The WKB method of constructing the single channel equivalent
potential was generalised for the coupled channel Schrodinger equation by Yabana and
Horiuchi [8]. In this method, the WKB solutions of the coupled channel problem with
non-local potentials are wave proportional to the WKB solutions of the equivalent system
with local potentials. In these papers the WKB-equivalent coupled channel problem is
constructed with local potentials which are linearly dependent on the momentum, if the
non-local potentials are not symmetric.

Mackellar and Coz {9] proposed also a generalisation of the Fiedeldey method for the
coupled channel problem.

134



In part 2 of this paper we study the Fiedeldey-Mackellar-Coz method and we give
explicit expressions for the ELP in the elastic channel. In part 3 we study the properties of
the coupled channel system and we examine the relation between the Fiedeldey-Mackellar-
Coz procedure and the Feshbach optical potential. We prove that the ELP constructed
by the Fiedeldey method for a coupled channel system coincides with the ELP of the .
Feshbach optical potential. So the Fiedeldey method is compatible with the Feshbach
optical potential. In part 4, we summarize our results.

2. Construction of the Equivalent Local Potential
The Fiedeldey theory (1] for the single channel problem is summarized as follows:

Fiedeldey ELP. If yu(r) and v(r) are two independent solutions of the equation

2 m oo
(d_ s 1)> i) = 2h—2 (V(r) - E)9(r) +/0 Ur, ' yp(r')dr' 1)

dr? r2

we define the function:

F(r)=f(r)=u'v=v'p (2)
then the functions: ) ") .
= ﬁL an w(r)= =
=5 0= 50 @

are the two independent solutions of the Schrédinger equation:

~E’_(d2 £ +1)

dr? r?

) P(r) + (VELP(r) = E)(r) = 0

2m
where VELP(r) is the ELP, given by the formula:
Jo Ulr, ) (W' (r)v(r') = v/ (r)p(r)) dr’

F
(4)

2m ELP _2m 1F” 3 F’ 2
/o =V rsE iF) *

We consider now the system of coupled differential equations:

( d _ é(i—f—_l_).) 1/),—(7‘) - Z(Zm,/hz)(V,m(T) - Eiéim)¢m(r) =

dr? r?
m=1

> / Ui (™ Yo' (5)
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If {¢i(r)} and {vi(r)}, with ¢ = 1...n, are two independent set of solutions of the
system (5), the wronskians

Fi(r) = £2(r) = Wl = Vi

satisfy the system of equations:

F_ _;:’_ Z Vim () (um (r)vi(r) — vm (r)pi(r)) +

£y / Uin(r#") (W) = v () ' i =1 (©)

m=1
We can define the functions

pi(r)

() = Vz(r)
gi(r) = f( ) and hy(r) =

fin !

these functions constitute a pair of solutions for the system of equations:

=liam (7

(5:_2 _ é(@r-i- 1)) oi(r) + Xi(T)d¢(;£T) 2;::. 2_:1 (F7 X )WVim(r) fn(r) = Eibim) dm(r)+
1R 3 Sy Sy Ui, ) () om (') = ()i (1))
2F, 4 (f) F, #i(r)  (8)
where
Xi(r) = 2;:‘! 2om=1 Vim(r) (#i(")ﬁl;m(r) — vi(r) pm(r)) )

Equation (8) can be written in a more compact form:

R? (d2 e(e+1)
2mt dr?

>¢( ) + Z (VEEE(r,9) = Eibim) ¢m(r) =0
where the potential V;EZEP(r, ) is a momentum dependent local potential:
2mgVE‘Lp p) = _dXi(r) lF_;”_:}_ F
i 4

2 .
3 a5
L 025 -2 (F) + o )0+ Fo )| imt

Thor Jo Uik(r,r') (ui(r)wa(r') = vi(r)p(r")) dr’
F;

+ 2T Wim(P) () fin (10)

where

) S

1l

~_h9
P=75



The above local potential contain momentum-dependent terms. We must notice that in
the case of WKB method the equivalent local potentials are also momentum-dependent
ones (see ref.[8]), but the momentum terms appear in the coupling channel potentials
VWKB(r) (i # m). In our case, these terms can be suppressed by a further reduction of
the local potentials. Equation (8) can be reduced to a usual Schrédinger equation without
derivatives, even if the local potentials are not symmetric. We define the transformation:

witr) = sir)esp 5 [ it (1

After the application of this transformation, the generalisation of the Fiedeldey theory
for a coupled channel problem is summarised by the following proposition:

ELP for the coupled channel problem. If {u;(r)} and {v;(r)}, i=1...n are two
" independent solutions of the equation ( 5 ) then the functions:

() = exp 3 [ ) |tr)/ )

wlr) =mp [%/Xi(r)dr]ui(r)/fi(r) i=l..n

are two Independent solutions of the Schrédinger coupled channel system:

dr?

( o 1)) i(r) = D (2mi/ %) (Vipt P (r) = Eibim) $m(r) = 0

where the VELP(r) is given by the following formula:

mVELP(T) — mw‘/‘m(ﬂ exp [—% /Xm(r)dr] fm(r)+

h2 im h2 fi(r)
ldx; 1F' 3 [(F\°
+(§ wrin 1 (7) )‘5""
e Xk Ua(ryr) Girntr) = nrp(r)dr' (12)

From the relation (6) and (9) we can find the exact form of the equivalent local
potential. After a little algebra we find:

v (r) = R Oy ) [ 1 [ ()| i) + V560150
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where

3 (ﬂ') 1fo By Uikl o) (ui(r)wa(r') = vi(r)pn(r')) dr'

diag PR

1[0 Sor, 2 (i(r)v(r) = wilr)pa(r')) dr’
+5 2

We consider the coupled channel problem, without non-local potentials:

dr? r2

(g{ ae+ 1)> $ir) = 3 (2mi/12) (Win(r) = Eiim) m(r) = 0

m=1
This system can be compared to the system (5), if:
Vim(r)=0

and

Uin(r,7") = Wim(r)é(r — ")

(13)

(14)

In this case we can compute the functions dF;(r)/dr in eqn.(6), and the final form of the

ELP is given by the following proposition:

ELP for a system of coupled local equations. Let p;(r) and v;(r) two independent

solutions of the system (14), with local potentials. Then we define
pi(r)  vi(r)
pi(r)  vi(r)

where the functions u;(r) and w;(r) are defined as follows:

F(r) =

1=1,...,n

u(r) = #i(r) and w(r) = v(r)
(r) 0 (r) 0l

are two independent solutions of the uncoupled Schrédinger equation:

2 2
~gm (7 = ) )+ (VPP) - B ) = 0

where VELP (1) is the i-th channel ELP, given by the formula:

pi(r) i)

Em 1 1m(r
WELP(T) — __3_27_77‘_1 ,Um(T') l/m(T')

4 h2 F,'(T)

+
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pi(r)  vi(r)

dw;
Z:u:l .T#m

1 pm(r)  vm(r)
3 F(r)
pi(r)  wi(r) pi(r)  vi(r)

E;leim(r) , . =
() vp(r) | | pm(r)  vm(r) (15)

+

If all the potentials Wi, (r) have the same range then the final potentials have also
the same range. If these ranges are different for the different channels then the ELP is a
combination of potentials with these ranges.

3. The Feshbach optical potential

The number of the independent solutions of the system-(5) is 2™. For every pair of linear
independent solutions, we can find a system of local equivalent potentials. Each ELP
depends on the boundary conditions imposed on the initial pair of the solutions. The
set of the equivalent local potentials to a system is characterised by the number of pairs
of independent solutions. All the components of the ELP in eqn (15) contain ratios of
the determinants of the components for a given pair of solutions, thus the set of possible
equivalent potentials is parametrised by (22 ) ~ 1 independent complex parameters. In the
case of the single channel problem system we have only 2 independent solutions, so there
is only one ELP.

Usually the coupled channel Schrodinger equation describes the reactions with many
output (inelastic) channels but only one input (elastic) channel. The particles in an inelas-
tic channel move out from the centre of the interaction and they behave as independent
particles after a certain time, which is sufficiently large. Let i=1 be the elastic channel
and 7 = 2,...,n are the output inelastic channels. In this case the boundary conditions
imposed on all the inelastic channels are the following ones

hi(r) ~ exp [thir] if r — o0, k,-:——“Z%-I—El i=2,...,n (16)
If the above restriction is imposed, the number of the independent solutions of the system
(5) is exactly two. If there are Coulomb potentials in the channel potentials V;;(r) then
the exponential function in eqn (16) must be replaced by the corresponding asymptotic
form of the Coulomb function. Therefore for a given elastic channel we have only one ELP,
corresponding to outgoing waves in the inelastic channels.

The asymptotic condition (16) can be satisfied if the ¢oupling potentials V;,(r) and
Uim(r,r") , (¢ # m) have a finite range R. That means that these potentials must be zero for
r > R. In the theory of nuclear reactions the basic interactions are the Coulomb interaction
combined with the strong interaction between nucleons. The Coulomb interaction has not
a finite range but is appears only in the channel local potentials V;;(r). The coupling
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potentials are derived from combinations of microscopic nucleon-nucleon potentials which
have a finite range. In this case, for r > R, the initial system (5) is written in an uncoupled
form. Solutions satisfying the condition (16) exist and the method can be applied but all
the definite integrals in eqn.(13) should be calculated from 0 to R. Eqn(15) is valid when
r < R. For r > R the ELP are equal to the local parts of the channel potentials. The
existence of the outgoing inelastic wave functions is related to the finite range of the
coupling potentials.

In the Fiedeldey method the equivalent potentials have two solutions which are wave
proportional to the corresponding two solutions of the initial non-local system. In the
WKB method the equivalent potentials have WKB solutions which are wave proportional
to the WKB solutions of the initial non-local system. Therefore the WKB coupled channel
method corresponds to the WKB treatment of the Fiedeldey-Mackellar-Coz method.

Let Q, be the set of all systems with n-equations, Q!¢ is the subset of Q,, which
contains all the coupled systems of n-equtions with local kernels. For every system x in
Q,, we attach a linear 2"-dimensional space, which is the space of the solutions of the
coupled differential equations. We choose two fixed solutions y;(r) and v;(r) of the system
x, then the Fiedeldey method is an application from Q, into !

0, 3 = — Fied(z) € Ql°°

The equivalent local system Fied(z) has two solutions {u;(r)} and {w;(r)}, which
have constant wronskians W [u;, w;] = 1, for every i. The Fiedeldey procedure was based
essenially on the hypothesis that the wronskians of the chosen solutions {y;(r)} and {vi(r)}
are not constant functions, for all i. Generally, a system of n-equations can be reduced to
another system of equations with local potentials, but the new system cannot be furhter
reduced by the same procedure, i.e. after choosing the corresponding couple of independent
solutions. Symbolically we can put

Fied(Fied(z)) = Fied(z) (17)
More generally, the Fiedeldey transform behaves like a projection:
Fied(Fied (2,)) = Fied(Qy)

The set of the n uncoupled systems in our formulation is [Q;]". Any uncoupled local
system does not change when the Fiedeldey procedure is applied, therefore:

Fied ([0l]") = [al]"

This property is compatible with eqn.(17)

An interesting topic is the relation between the Fiedeldey method and the Feshbach
procedure of constructing the optical potential of a coupled channel system [10]. We
consider the system:

d? (£ >
(77~ 252 i) - Comai) 0) - By i) = [ Uitor i =
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Z ((2mi/h2) (Vzm(r) - Ei‘sim) t»[’m(r) + /:o Uim("v r’)¢m(rl)drl> (18)

m#i

Let Gn(En,7,7') be the Green function of the n-th homogeneous equation:

(£ - e

T ) G(En, 7,7') = (2ma/B?) (Vie(r) = En) Gn(En, 7" )+

oo
- / Unn(r, 7 )Gn(E,r" r")dr" = §(r — 1)
0
The Green function satisfies the asymptotic conditions:
Gn(En,r,1') ~ pn(r) , for r = 0, and r’ = const.

Gn(En,r, ') ~vp(r), for r — 0o, and r' = const. (19)
The n-th equation, in system (5) can be solved:

Yo(r) = Z [/ dr'Go(En, r, ' YWar(r' Yr(r')
k=1
. / i’ [ G By a1 V(5] (20)
0 0
After replacing 1, in all equations we arrive at the optical” system, with n-1 equations:
d? ee+1 e
(57~ ) i) - Com) (st = By i) = [ Uutrar ey =

= Y (@mi/B) Vi) = Bbin) i)+ [ Dumrr om0
. m=1l...n— 0
el
where the potential ﬁ.-k is defined as follows:

4m; mk

Uik(r,r') = Uir(r,r") + Vin(r)Gn(En,r, 7" YWar(r")

2m;

+h—2'1/in(r)/ den(En,r,w)Unk(w,r')-l-z;Ln—zk/ dsUin(r,8)Grn(Ey, 8,7 ) Var(r')
0 0

+/ ds/ dwU;n(r,8)Gn(Eyp, s, w)Unr(w,r") (22)
0 0

We notice that the initial system (5) of n-equations is reduced to a system with n-1
equations (21). If we repeat this procedure n-1 times we find the Feshbach local potential
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as it is described in ref{10]. Symbolically this reduction of the rank is expressed by the
function:

F: Q,3z— F(z) € Qy (23)

where F(z) represents the system derived by the Feshbach procedure. The exact definition
of this function pressuposes the choice of the solutions y;(r) and wi(r), 1 = 1,...,n.
This choice defines uniquely the channel Green functions G;(E;,r,r") with the appropriate
boundary conditions, as it occurs in eqn.( 4). The solutions pi(r) and vi(r), ¢ =1,...,n—
1 of both systems coincide for the first n-1 channels.

An interesting property of the Fiedeldey method is its compatibility with the Feshbach
reduction scheme. The following proposition is true:

Proposition 1. For every system z € §,
F (Fied(z)) = Fied(F(z)) (24)
We consider now the case with V;,,, = 0 and two solutions g;(r) and v;(r), i,..., are

two solutions of the system (5). The first n-1 functions of this kind are solutions of the
system (22). Consequently the corresponding wronskians coincide:

F,‘(T‘) = }?’,'
Also we see that:
oo n—1 -
D imlr, ') (i )m(r") = vi(r)pm(r)) dr' =
0 m=1

oo n—1
= [ X Uil (s = Y im(r) '+
n—1 oo oo oo l
b3 [ ds [t )G Bny . 0) Ui () = w1 i)

= [T % U e om() = U

Therefore the ELP’s in both cases are the same.
An obvious generalization of the proposition I is the folowing corrolary:

Corrolary. For every system z € Q,
F? (Fied(z)) = Fied (FP(z)) (25)
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This proposition means that that if we apply the Fiedeldey procedure for a Feshbach
optical potential in the elastic channel, the ELP should be the same to the Feshbach optical
potential derived by the (uncoupled) system constructed by the Fiedeldey method. We
can say that the Feshbach and Fiedeldey procedures are manipulations on the differential
systems and they ”anticommute”

4. Summary

In this paper we study the Fiedeldey method for the coupled channel case. For every
pair of solutions of the coupled channel problem, we can define equivalent potentials, such
that the coupled channel problem with non-local potentials is transformed to a coupled
problem with local potentials. The ELP’s in the coupled channel case depend on the
boundary conditions imposed on the solutions of the exact problem. In the case of the
coupling potentials with finite range we can construct one ELP in the case of outgoing
inelastic wave functions. We give the explicit formula for the ELP in the coupled channel
case. The Fiedeldey method is a procedure for transforming a coupled channel system to
an uncoupled one. The Feshbach optical potential method is a procedure to reduce the
rank of the system. In this paper we proved that the Fiedeldey method is related to the
Feshbach procedure. The two methods can be viewed as manipulations on the differential
systems, which anticommute,
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