HNPS Advances in Nuclear Physics

Vol 1 (1990)

HNPS1990

ARISTOTLE UNIVEABITY OF THESSALONIKI

FIRST HELLENIC SYMPOSIUM

 ONTHEORETICAL NUCLEAR PHYSICS

24 and 25 April 1990 THESSALONIKI-GREECE

Under the mineicen of the

and ed ity
FACBLTT CF PMESES

A completely integrable case in the complex Lorenz equations
G. P. Flessas, P. G.L. Leach
doi: $10.12681 / \mathrm{hnps} .2831$
\qquad

To cite this article:

Flessas, G. P., \& Leach, P. G. (2020). A completely integrable case in the complex Lorenz equations. HNPS Advances in Nuclear Physics, 1, 126-133. https://doi.org/10.12681/hnps. 2831

A completely integrable case in the complex

Lorenz equations *

G.P. Flessas ${ }^{+}$
and
P.G.L. Leach ${ }^{+}$

+ Department of Mathematics and Research Laboratory of Samos. University of the Aegean, 83200 Karlovassi, Samos, Greece
++ Department of Mathematics and Applied Mathematics, University of Natal, King George V Avenue, 4001 [urban, Ferublic of South Africa

Abstract

By application of the be theory of exterided groups and for the parameter values $\sigma=1 / 2, b=1, r_{1}=e^{2 / 2}, r_{2}=e / 2$, e arbitrary we prove that the sysiern of the complex Lorenz equations is algebraically cornpletely integratle. The respective general exact solution is expressed by mearis of Jacobion elliptic runctions

[^0]The non-linear system of differential equations, the comples Loremz équations (CLE),
$\dot{x}=\sigma(y-x)$
$\dot{y}=r x-x z-9 z$
$\dot{z}=-b z+\left(x^{*} y+x y^{*}\right) / 2$
were first proposed and subsequently numerically investigated by
 differentiation with respect to the time t and the parimeters b. a. r. a are defined by
$b>0 . \sigma>0 . r=r_{1}+i r_{2}, r_{1}>0 . r_{2}>0 . a=1-i e . e>0$.
The dynamical system (|a)-(Ic) passes the Painleve test for
$a=1 / 2, b=1, r_{1}=e^{2} / 2, r_{2}=e / 2$, e arbitrary
$\sigma=1, b=2, r_{1}=e^{2} / 4+1 / 9, r_{2}=0$, e arbitrary.
$0=1 / 3, b=0, r_{1}$ arbitrary, $r_{2}=e, e$ artitrary
as shown by Rookaerts [4]. Although constants of the motinit of eqs (1a)-(1c) of the form
$F\left(x_{1}, x_{2}, x_{3}, x_{4}, z, t\right)=\exp \left(c_{0} t\right) P\left(x_{1}, x_{2}, x_{3}, x_{4}, z\right)$
$x=x_{1}+i x_{2}, y=x_{3}+i x_{4}$.
where c_{0} is a constant depending on a, b, r_{1}, r_{2}. e and P is a polynamial of at most fourth order in its arguments, have been recently constructed [4], the important possibility af the system (10)-(1c) being algebreically completely integrable for some parameter values has up till now not been addressed to. We note here that it is very rare for a mon-linear dynsmical system depending on parometers and deriving from s physical problem to be completely integrable even for specific porometer values $[5-6]$. On the other hond a thorough numerical investigation of the CLE, which serve os 0 model of dispersively unstable, weakly non-linear, weakly damped fihysical systemis, is
practically a very hard tosk due to the number of independent. prameteres (1-3). Consequently the search for completely integroble coses valid for specific values of the frorameters, on which a given dynamical system depends, seems to be worth pursuing since the corresponding general exoct solutions, afort from the impirtance they may have in their own right, can also be used to test the feasibility of numerical algorithms.

In the present work we present the penergl exact solution to eqs.(10)-(1c) for the Painleve case (3s). We recall at this point that passing the Painleve test is only a necessary and by no mesns a sufficient condition for complete integratility through Abelian functions [5]. We need only mention that there ore dulnamicsl systems Which do mot asss the Pamleve test and yet are completely integrable [5]. In the following, however, by constructing the gener al solution of eqs(1al-(IC) by mears of Jocotion elliptir fumetions sind ior the paremeter values (3a), we shall demonstrate that passing the Faimleve test for the case (3s) is a necessary snd sufficient condition for algetraic complete integrstility of the CLE.

The system of eqs.(10)-(1c) can the reduced to the equivalent system

$$
\begin{equation*}
\ddot{x}+(\sigma+a) \dot{x}+a(a-r) x=-a x= \tag{5a}
\end{equation*}
$$

$\dot{z}+2 b=|x|^{2}+\left[d\left(|x|^{2}\right) / d t\right](1 / 2 a)$
$y=\dot{x} / \sigma+x$.
From eq.(5b) we get
$z(t)=\operatorname{Cexp}(-b t)+|x|^{2} / 2 \theta+\exp (-b t)(1-b / 2 \sigma) \int|x|^{2} \exp (b t) d t$.
C being a constant of integration.
Let now
$b=2 a$
Equations (50) and (6) - (7) yield
$\ddot{x}+(\sigma+a) \dot{x}+\sigma(a-r) x=-x|x|^{2} / 2-\exp (-2 \sigma t) C \sigma x$.

On introducing the functions $u=u(\xi), \xi=\xi(t), v=v\{t)$ through
$x(t)=u(\xi) v(t)$.
eq.(8) becomes after some algebro ond, essentially, by solving a differential equation of the type of Bessel for $v(t)$,
$u^{\prime \prime}=-\exp [-(0+1) t] u|u|^{2} Z_{p}^{4}(\zeta)\left|Z_{p}(\zeta)\right|^{2} / 2$,
the dash denoting differentiation with respect to ξ. and
$\zeta=(c / \sigma)^{\frac{r^{2}}{2}} \exp (-\sigma t), c>0$
$v(t)=\exp [-(0+a) t / 2] z_{p}(\zeta)$
$\dot{\xi}(t)=\exp [-(\sigma+\theta) t] / v^{2}$,
where $Z_{p}(\zeta)$ is a cylinder function of order p and
$\beta=\left[(\sigma-a)^{2}+4 \sigma r\right]^{k} / 20$.
We consider now $p=1 / 2$. Then eq.(10e) yields the following relations between the parameters σ, e, r_{1}, r_{2} :
$1+2 \sigma\left(2 r_{1}-1\right)-e^{2}=0$
$e(\sigma-1)+2 \sigma r_{2}=0$.
Thus, since $Z_{1 / 2}(\zeta)=J_{1 / 2}(\zeta)$, where $J_{1 / 2}(\zeta)$ is the Bessel function of the first type, eq.(100) becomes
$\left.u^{\prime \prime}=-\lambda u l u\right]^{2} \exp [(2 \sigma-1) t]_{\sin }{ }^{6} \zeta, A=\left(4 / n^{3}\right)(\sigma / C)^{3 / 2}$
$\xi(t)=(\cot \zeta) \pi / 2 \pi, \zeta=\exp (-\sigma t)(c / \sigma)^{\frac{1}{2}}$,
eq.(12b) following from eqs.(10c)-(10d) with $p=1 / 2$.
On setting in eqs.(12a)-(12b) $\sigma=1 / 2$ and by introducing a runction $f(\rho)$ through
$u(\xi)=F(\rho), \rho=\xi / \pi=\operatorname{col} \zeta, \zeta=\exp (-1 / 2)(2 C)^{\frac{1}{2}}$
eq.(128) is written os
$F^{\prime \prime}(\rho)=-6 F(\rho)|F(\rho)|^{2} /\left(\rho^{2}+1\right)^{3}, \varepsilon=\pi n^{2}, \quad A=\left(4 / \eta^{3}\right)(2 C)^{-3 / 2}$
provided
$a=1 / 2, b=1, r_{1}=e^{2} / 2 \cdot r_{2}=e / 2$. e arbitrary
due to conditions (11a)-(11b).
We distinguish two coses:
Gase (A) : u(g) complex. Let
$F(\rho)=F_{1}(\rho)+i F_{2}(\rho)$
yith real $F_{1}=F_{1}(p) . F_{2}=F_{2}(p)$. Ey virtue of eq.(15) eq.(1) (1) gives
$F_{1}{ }^{\prime}=-\varepsilon F_{1}\left(F_{1}{ }^{2}+F_{2}{ }^{2}\right) /\left(\rho^{2}+1\right)^{3}$
$F_{2}{ }^{\prime \prime}=-\varepsilon F_{2}\left(F_{1}{ }^{2}+F_{2}{ }^{2}\right) /\left(p^{2}+1\right)^{3}$.

Excluding for the time being the trivial solutions (α) $F_{1}=0$ and $(\beta) F_{1}=$ F_{2} we may find the general solution of the systom (16ia) (16b) by setting
$F_{1}=R(p) \cos (\rho(p)), \quad F_{2}=R(p) \sin (p(p))$.
Upon insertion of eq.(17) into eqs.(16a)-(16b) we find that eqs.(16s)-(16b) are satisfied if
$R^{*}+\varepsilon R^{3} /\left(\rho^{2}+1\right)^{3}-C_{1}{ }^{2} / R^{3}=0 \cdot R=R(\rho)$
$\varphi^{\circ}=C_{1} / R^{2}, \varphi=\zeta(\rho), C_{1}$ constant.
Thus we have reduced our problem to the solution of the nen-linear differential equation ($18 a$). We shall treat eq(189) in the framework of the Lie theory of extended groups (i-ell. In fact, eq.(180) has the symmetry

$$
\begin{equation*}
G=\xi(\rho, R) \partial / \partial \rho+\eta(\rho, R) \partial / \partial R, R=R(\rho) \tag{19}
\end{equation*}
$$

provided (5-6)
$G^{(2)} N\left(R^{\prime}, R, \rho\right)=0$
where
$N\left(R^{*}, R, p\right)=R^{*}+\varepsilon R^{3} /\left(p^{2}+1\right)^{3}-C_{1}{ }^{2} / R^{3}=0$
and $G^{(2)}$ is the second extention of G given by
$G^{(2)}=\sigma^{-}+\left(\eta^{*}-\xi R^{\prime}\right) \partial / \partial R^{*}+\left(\eta^{\prime}-\xi^{\prime \prime} R^{\prime}-2 \xi R^{\prime}\right) \partial / \partial R^{*}$
with $\eta^{\prime}=\Delta \eta / d \rho \cdot \xi^{*}=d \xi / d \rho$. Equations (19)-(200) yield
$\xi(p, R) \partial g / \partial p+\eta(p, R)$ ag $/ \partial R+\left(\eta^{*}-\xi^{\prime} R^{*}-2 \xi^{\prime} R^{*}\right)=0$
where
$g=g(R . p)=\varepsilon R^{3} /\left(p^{2}+1\right)^{3}-c_{1}{ }^{2} / R^{3}$.
We obtain from eqsi2le)-(2lb) ofter separeting coefficients of $\left(R^{\prime}\right)^{3}$ $\left(R^{\prime}\right)^{2} . F^{\prime}, R$, os both $\bar{\xi}$ and η are functions of ρ and R only,
$a^{2} \xi / \partial \pi^{2}=0$
122a!
$a^{2} \eta / \partial R^{2}-2 d^{2} \xi / \partial R \partial \mu=0$
$2 \partial^{2} \eta / \partial R \partial \rho-\dot{j}^{2} \xi / \partial \rho^{2}+3 g \dot{\partial} / \partial R=0$
$\partial^{2} \eta / \partial \rho^{2}-g \partial \eta / \partial R+2 g \partial \xi / \partial \rho+\xi \partial g / \partial \rho+\eta \partial g / \partial R=0$.
Solution of the system of partial differential equations (228)-(22d) con be carried out and we deduce
$\xi(\rho, R)=\rho^{2}+1, \eta(\rho, R)=\rho R$
and eq.i(9) shows that
$G=\left(\rho^{2}+1 / \partial / \partial \rho+(\rho R) \partial / \partial R\right.$.
The generator G in eq.i24) can be transformed to $d / \partial P$ by means of the trensformation (6-8)
$P=\tan ^{-4} p, f=R\left(p^{2}+1\right)^{-1 / 2}$

In which case eq.(180) is written awing to eq.(25) as

$$
\begin{equation*}
f^{\prime}+\varepsilon f^{3}+f-c_{1}{ }^{2} / f^{3}=0, f=f(P) \tag{26}
\end{equation*}
$$

Equation (26) has the first integral
$\left(f^{\prime}\right)^{2}+\varepsilon f^{4} / 2+f^{2}+C_{1}^{2} / f^{2}=C_{2} \cdot C_{2}>0$.
and from en.27) we conclude that

$$
\begin{equation*}
\int_{f_{0}}^{f}\left[c_{2}-e f_{1}^{4 / 2}-f_{1}{ }^{2}-c_{1}{ }^{2} / f_{1}{ }^{2}\right]^{-\frac{1}{2}} d f_{1}=P-F_{0}, f\left(F_{0}\right)=f_{0} \tag{28}
\end{equation*}
$$

Depending on the values of the canstants $C_{1}, C_{2}, \varepsilon$ three difterent cases arise. all of which lead essentially to the result, that the integral in eq.(28) is expressitile by meons of elliptic functions. We shall give below the final result which derives from one of the three cases stoune nomely when the polynomisl $\bar{\varphi}(w)=C_{2} w-e w^{3} / 2-w^{2}-C_{1}^{2}>0$, $w=f_{1}{ }^{2}$. has otie real root z_{1}. Thus we obtan from eqs (130). (15). (17) (25), (28), after inverting the elliptic integral,
$u(\xi)=\left[z_{1}-\tau \operatorname{sn}^{2} A /(1+c n \Lambda)^{2}\right]\left(1+\zeta^{2} \prime^{2} n^{1 / 2} \exp [i \varphi(\zeta / n)]\right.$,

Where z_{1} ind $z_{2}=\alpha+1 \beta, z_{z}=a-1 f$ are the real and cumplex rocts of $\varphi(w)$ respectively,
$\Lambda=\Lambda(\xi)=F\left(\gamma_{2}, \delta\right)+\left[F_{0}-\tan ^{-1}(\xi / \pi)\right](\varepsilon \tau / 2)^{1 / 2}$
$T=\left[\left(\alpha-z_{1}\right)^{2}+\beta^{i}\right]^{1 / 2}, \xi / \pi=\cot \left[\exp (-1 / 2)(2 C)^{1 / 2}\right]$
$\gamma_{2}=2 \tan ^{-1}\left[\left(\left(z_{1}-f_{0}\right) / \tau\right)^{1 / 2}\right] . \delta=\left[\left(\tau-a+z_{1}\right) / 2 t\right]^{1 / 2}, f_{0}<z_{1}$.
II eq.(29) \sin. cin are the dacobian elliptic functions and in eq. (308) Fi $\gamma_{2} .5$) is the elliftic integral of the first kmu. As now from eus (10 c).
(12b) with $p=1 / 2, \sigma=1 / 2$, we get
$v(t)=\exp [t(t e-1) / 2] \sin \left[(2 C)^{1 / 2} \exp (-t / 2)\right]\left(2 / \pi^{2} c\right)^{t / 4}$
the general exoct solution ta eqs (10)-(10) can the essily written down from eqs.(9), (56), (6) for the volues of the parsmeters in eq.(14) The function $\mathrm{f}(\mathrm{f} / \mathrm{n})$ is of no fur ther importance since it is only a phase engle.

Cose (6) : u(g) real
On setting in eq(15) $F_{2}(\rho)=0$ it only remans from eqs (1601-(16b) 10 solve
$F_{1}{ }^{\prime}=-\varepsilon F_{1}{ }^{3} /\left(\mu^{2}+1\right)^{3}$.
Furthermore, the trivisl solutions muntioned after eqs. \mid (fal-ilib) lead to equations of the form (32). Equation (32) can be solved ill the context of extended groups ($6-8$) and we obtsin its general solution by mesns of elliptic functions.

In summary we have constructed the genergl exact solution to the CIE for the parameter values (3 a) by mesns of Jatatian elliptic functions Evidently the above solution possesses the Fisinleve property and sparosches for $t \rightarrow \infty$ the stable equilibrium point $x=y=z=0$ Therefore we have proved thot possing the fameve test for the case (3a) is indeed a necessary and sufficient combtion for the CLE to be olgebraicolly completely integroble Finolly iop note that the case (3b; can olso be treoted by the method of the present work by concidet 1 in $\rho=1 / 3$ in eq. $(10 e)$ and using Airy functions.

References

[1] A.C. Fowler, J.D. Gitbon and MJ MCGuinness, Fhysica 40 (1982) 159
[2] J.D. Gibtion snd M.J. McGuinness, Physics 5D (1982) 108.
[3] A.C. Fowler, J.D. Gibbon and M.J. McGuinness, Pliysics 70 (1983) 1.26
[4] D. Roekoerts, J. Phys. A: Moth. Gen. 21(1988) L495.
[5] W.-H Steeb and N. Euler, Nonlinear evolution equations and Painleve test (world Scientific, London, 1988)
[6] P.G.L. Leach snd G.P. Flessos, submitted to J. Moth. Phys.
17] P.G.L. Leach, J. Moth. Phys. 22 (1981) 465.
[8] P.G.L. Leach, M.R. Feix and 5.Bouquet, J. Moth. Phys. 29 (1986) 2563

[^0]: *Presented by G.D. Fessas. This paper has been accepted for publication in Phys.Let.A.

