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Greece
2 SERC Daresbury Laboratory, Daresbury Warrington WA4 4AD, England

Abstract: A method is proposed to connect states of the shell model
and the interacting boson model and derive the boson model hamiltonian
from shell-model data. This novel mapping technique is based on the
properties of the shell-model overlap matrix. An application to the f7/,
shell is presented and the results of the new mapping are compared with
the standard OAI results.

1. Introduction

The method that has been most widely used to connect the interacting boson model')
(IBM) with the shell model is the Otsuka-Arima-Iachello or OAI mapping ?). It is
a seniority-based state mapping, that is, the seniority classification of shell-model
states is carried over onto a similar classification of boson states. The boson images
of fermion operators are then determined by computing matrix elements between
shell-model states with good seniority.

We propose an alternative mapping method which is based on the diagonalization
of a shell-model overlap matrix. Whereas the OAI method implicitly assumes an or-
dering of states according to the number of correlated S pairs, this hierarchy is absent
from our method where all shell-model states that are mapped onto corresponding
boson states are treated on an equal footing. One thus could describe our mapping
method as being “democratic.” The formalism can be used without making reference
to a specific system of interacting bosons and is applicable equally well to odd-mass
nuclei in the context of the interacting boson-fermion model®) (IBFM).

A test of the mapping is presented for the f7/; shell*). Since we consider neutrons
and protons in the same valence shell, isospin is of vital importance and we map
the shell model onto an isospin invariant version of the interacting boson model, the
IBM-3 %), and its extension to odd-mass nuclei, the IBFM-3 ).

1Presented by L.D. Skouras
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2. A mapping from the IBM and IBFM into the shell model

We assume we have solved the eigenvalue problem for a two-fermion system,
H|2Ta) = Eyrq|2Ta), (1)

where by |nI'a) we represent the eigenvectors of the shell-model hamiltonian for a
n-fermion system. In this notation I' stands for the pair J, T if isospin formalism is
used, or, simply for J if the particles are identical. On the other hand, the index a
distinguishes the various eigenvectors that belong to the same (nT’) set.

From the above set (1) of two-fermion eigenvectors we select some that are made
to correspond with single-boson states,

|¥ro) <= |2Ta). (2)
The correspondence (2) defines the one-boson energies,
HP|¥r,) = Ef,|¥ra), ®3)

where
Ef, = Epra. (4)

We now construct boson-fermion states |¥r,q,,71;I") and the symmetric and nor-
malized two-boson states |¥r,q,, ¥r,qe,; ') and, as in (2), we associate them with
three- and four-fermion states,

¥riey, 7 T) = [2T1a1,7;T),
"Ilr1ﬂx7wr2a2;r) — I2r101,2F202;F). (5)

The problem with the mapping in eq. (5) is that the states on the lhs of these relations
form orthonormal sets while those on the rhs do not. Hence the states cannot directly
be associated with each other and in the following we describe a mapping method
that deals with this nonorthonormality problem.

In order to simultaneously discuss the three- and four-fermion cases, we denote by
| B;) the boson-fermion and two-boson states that appear on the lhs of (5). Similarly,
we denote by |F;) the fermion states that appear on the rhs of (5). Thus eq. (5) reads
in the new notation

|B;) «— |F}), i=1,2,...,d, (6)

where d denotes the dimension of the space for a given set {n['}. As pointed out
previously, the |B;) form an orthonormal set while the |F}) do not,

(Bi|B;) = 6i5, (Ei|F;) # 65, 1,5 =1,2,...,d. (M
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~ Our mapping method requires the determination of the matrix elements
P;=(F|F;), H;=(FlH|F), 45=12,...,d (8)

These matrix elements can be determined either directly or, in a more elegant manner,
from the solutions of the eigenvalue problem:

H|nl'a) = E,py|nla) (9)

Thus, if we obtain all solutions of (9) for n = 3,4 and for all I, we can then use the
quantum-mechanical relations

I =Y |nla}(nla|, H =Y |nla)E.ra(nlal, (10)
Ta Fa
to determine
Py = Z(F,-|n[‘a)(nl"a|Fj), Hy; = Z(F,-|nFa)Enra(nFa|F}-). (11)
la la

As eq. (11) shows, the only quantities required for the determination of the P and H
matrices, defined in (8), are the overlaps (F;|nT'a) which can be obtained from the
solutions of (9).

Let us now consider the transformation from the nonorthonormal basis |F;) to
an orthogonal basis | X) obtained by diagonalizing the overlap matrix P. The di-
agonalization yields the eigenvalues p; and the transformation coefficients (F;|X;) =
(Xk|F;), defined by

P|Xy)
| Xk)

x| Xk),
YN ARIX)F), k=1,2,...,d (12)

The eigenvectors |X}) form.an orthogonal basis since
(Xl Xt) = D (X ENENF)(F1 X)) = pebu, k1 =1,2,...,d. (13)
i
and this relation can be viewed as a property satisfied by the coefficients (F;|X}).

Since these coefficients result from a matrix diagonalization, they also satisfy the
orthonormality property

SUAXENFIX) = 6., k,0=1,2,...,d. (14)

Equation (14) can be viewed as a special case of (13), namely one in which the original
basis |F;) was properly orthonormalized.

17



It is important to realize that the coefficients (F;|Xj) satisfy both relations (13)
and (14). This occurs because the diagonalization method is insensitive to whether
the overlap matrix was defined in an orthonormal basis or not. As will be discussed
below, this property of the coefficients (F;|X}) is the basic point in our mapping
method.

Let us now return to the results obtained by diagonalizing the overlap matrix in

the nonorthonormal basis |F;) and examine the following two possibilities:
Case 1: The vectors |F;) are linearly independent
The condition for this case to occur is

pk>0, k=1,2...,d (15)

In such a case it is straightforward to introduce an orthonormal basis in the fermion
space, formed by the vectors

1
XFy=—|X), k=1,2,....4d, 16
1Xi) \/p—kl k) (16)
which, as is evident from (13), satisfy
(XFIXFYy=6u, ki1=1,2,...,d (17)

We now introduce the following vectors in the boson space:,

1XP) = 2ARIXi)IB:), k=12,....d (18)

where the coefficients (F;| X)) are the same as those that appear in (12). Since these
coefficients satisfy (14) while, as seen in (6), the vectors | B;) form an orthonormal set
one can easily verify that

(X81XB) =6, k,1=1,2,...,d (19)

Since we now are dealing with orthonormal bases in both the fermion and the boson
spaces, we can formally execute the mapping

|XB) <= |XF), k=1,2,...,d, (20)

and use this mapping to determine the boson or boson-fermion hamiltonian by equat-
ing the matrix elements

(XPIHPIXP) = (XPIHIXT), k0=12,...,d (21)
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Matrix elements of this boson or boson-fermion hamiltonian in the original boson
basis (6) in terms of the original shell-model matrix elements (8) can be found by
inverting the transformations (12), (16) and (18). The final result is

1
(Bi|H®|B;) = % ; \/—EI—I;(RIXk)(Xk|Fm)Hmn(Fn|Xl)(X1|F})~ (22)

Case 2: The vectors |F;) are not linearly independent
Suppose that m (m < d) eigenvalues of the overlap matrix P are zero:

pi=0, i=12...,m - (23)

Equation (23) indicates that only d —m vectors |F;) are linearly independent. To deal
with this problem we remove from the fermion space m vectors |F;), say those with
t=d-—m+1,...,d, and we treat the remaining d — m vectors, which are linearly
independent, as in case 1. We thus obtain the matrix elements of the hamiltonian H?
between the d — m states | B;) that correspond to the linearly independent vectors of
the fermion space. The remaining matrix elements of H? are defined in the following
way:

(B;|H®|B;y = (B;|HP|B;) =0, i=d-m,....d, j=1,2,...,d, i#j,
(B,']HBIB,')=OO, i=d—-m+1,...,d. (24)
Finally, to determine the matrix elements of the two-body component of HZ we
need to remove the one-body contribution from the matrix elements of this operator,

defined in egs. (21) and (24). Thus, going back to the notation of eq. (5), we can
write

(Tryay, 7 TIH® [ ¥ryor, 73 T)
(EIL‘;’ o T E'V) 5[‘1[‘; 5010"1 Sty
{(Urio1s Ursass FIHB|‘I"F;a'1, ‘I’I‘ga;; r)

(EI?IQI i Elgzaz) 6F1F; 60:10/‘ 51"21"'2602&;-
(25)

(WF10177; FlVl‘I’F;a;”yl; F)

(Trias VL6, Flvl‘l’l‘;a;» “I’F;ag; I) =
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3 Test of the mapping in the f;/, shell

In the following we discuss an application of our mapping method to the f7/; shell. In
this application we associate boson states to (f7/2)? fermion states and we deduce the
boson-boson and boson-fermion interactions from the matrix elements of the fermion
hamiltonian in the space of (f7/2)* and (f7/2)® states, respectively. These interactions
are then used to determine the energy spectra of nuclei in the A = 45-48 mass region
and these results are compared with shell-model spectra and also with results of
other boson model calculations based on the OAI mapping method 7=%). In order to
have a meaningful comparison between the OAI and the present mapping method,
we consider the same shell-model hamiltonian as the one used in the previous boson
calculations. Thus, as in refs. "=9), the (fr/2)? matrix elements are taken directly
from the experimental data on 42Sc.

As discussed in sect. 3, our mapping method is not restricted to any specific choice
of the boson space. To demonstrate this flexibility of the method we determine the
spectra of the A = 45-48 nuclei for two choices. In the first we consider an sd space
while in the second an sdg space. To avoid confusion we denote in the following
by model-1 and model-2 the results obtained with sd and sdg bosons, respectively.
Similarly, we denote by OAI the results obtained with the interaction deduced from
the corresponding mapping method. Note that the sd boson space is used in both
the OAI and model-1 calculations. In table 1 we compare the matrix elements of
the boson-boson interaction derived in this work with those obtained using the OAI
mapping. To avoid making the table too lengthy we give only those matrix elements
that involve s and d bosons. Thus the list of matrix elements given in table 1 is
only complete for model-1. As tables 1 shows, the model-1 matrix elements are only
slightly modified by the introduction of the g boson, indicating that the s and d
bosons are the more important components for the mapping from the fermion to the
boson space.

At first sight the matrix elements in the OAI and model-1 columns of table 1 appear
to be quite similar. However, a more careful study reveals significant differences
between the two interactions. These differences are most pronounced for the (J,T) =
(4,0) and (0, 0) matrix elements. In the first case the OAI method produces a matrix
element which is almost 1.4 Mev more attractive than the one found with our mapping
method. On the other hand, the two methods produce almost identical diagonal
(J,T) = (0,0) matrix elements, but in the OAI method the diagonal interaction in
the s? state is the most attractive one while in the democratic method this value is
assigned to the d¢? diagonal matrix element.

To test the democratic mapping we now use the matrix elements of the boson
and boson-fermion hamiltonians derived with this technique and calculate the energy
spectra of nuclei in the A = 45-48 mass region. A selection of these spectra is shown
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Table 1
Matrix elements (ab; JT|V|cd; JT) (in Mev)

b ¢ d J T OAl Model-1 Model-2

s s s s 0 0 =720 —6.61 —-6.13
0 2 021 0.21 0.21

s s dd 0 0 -—-209 —2.44 —~2.55
0 2 0 0 0

s d s d 2 0 =829 —7.86 ~7.34
2 1 —4.46 -3.92 -3.98

2 2 0.21 0.44 0.44

s d dd 2 0 0.96 1.24 1.26
2 2 0 —0.67 —0.67

d ddd 0 0 -6.65 -7.19 —7.28
2 0 —6.60 —6.63 —6.40

4 0 -8.50 -7.13 —6.63

1 1 -5.62 —5.12 —-5.12

3 1 -5.28 —4.43 —4.43

0 2 0 00 o0

2 2 07 0.45 0.45

4 2 -0.38 —-0.29 -0.36

in figs. 1-3 and compared with the shell-model and OAI results.

Figure 1 shows that the three IBFM-3 calculations for **Ti are in satisfactory
agreement with the shell-model spectrum, which here, as also in the following figures,
plays the role of experiment. Most shell-model states up to about 3.5 Mev excitation
appear also in the boson-fermion spectra and the differences in the excitation energies
do not, generally, exceed 500 Kev.

Figure 2 shows the energy spectra for “éTi. All three IBM-3 spectra are in sat-
isfactory agreement with the shell-model spectrum. The OAI results account for all
shell-model states up to about 3.7 Mev excitation with the exception of the second
J = 4 state at 3 Mev. However, the OAI spectrum is somewhat compressed and espe-
cially the J = 1,3 states occur at lower energies than the corresponding shell-model
states. They are correctly reproduced in model-1 which, on the other hand, has trou-
ble in getting the first J = 4. Also, it fails to account for the second J = 4 and the
first J = 6 levels which it predicts at 5.04 and 5.28 Mev, respectively. Finally, as fig. 2
shows, model-2 accounts for all fermion levels up to 4 Mev excitation with the excep-
tion of the second J = 6 state. However, as with the OAI mapping, the spectrum
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Figure 1: A comparison of shell-model and IBFM spectravfor “Ti. All levels are
labelled by 2J.

obtained using model-2 is compressed compared to the shell-model spectrum.

Figure 3 shows the spectra for ¥Cr. The three IBM-3 calculations fail to account
for the second shell-model J = 4 state and, in addition, the J = 6 state is absent
from model-1. The remaining levels are correctly obtained in model-1. On the other
hand, the model-2 calculation, although it does predict a J = 6 state, produces
excitation energies which are in less satisfactory agreement with the shell-model than
the model-1 results. As fig. 3 shows, the OAT matrix elements lead to a compressed
energy spectrum, in particular for states with high J. The most characteristic example
of this behavior is the J = 8 state which in the OAI spectrum appears at about 3.3
Mev while in the shell model this state is predicted above 5 Mev.

Summarizing the comparison between the OAI and the democratic mapping meth-
ods, we observe that the first produces better results in nuclei that have few extra
particles compared to those used to deduce the boson and boson-fermion hamilto-
nians. However, the second method becomes superior in nuclei with more valence
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Figure 2: A comparison of shell-model and IBFM spectra for “°Ti.

particles. The treatment of renormalization effects (coming mainly from the G pair)
is responsible for this difference, as can be illustrated with the example of the J =4
states in **Ti (see table 1). Analyzing the shell-model structure of the lowest J = 4
state, one finds 7) it to be an almost equal mixture of D? and SG components. The
OAI exactly reproduces the energy of this state and it does this in spite of the fact
that only s and d bosons are considered in the mapping. The s, d interaction matrix
elements derived in the OAI approximation must therefore in some way incorporate
the effect of the g boson. The democratic mapping method works differently. The
first J = 4 state in the model-1 calculation fits the average energy of the first and
second shell-model J = 4 states and it does so because D? is equally shared between
them. Thus the diagonal d?,J = 4,T = 0 interactions are different, —8.50 Mev in
OAI and —7.13 Mev in model-1 (see table 1), because the former includes a g boson
renormalization whereas the latter does not. Clearly, the renormalized results will
be better for small particle numbers. However, as the particle number increases, the
G pair admixtures in the shell-model wave functions tend to decrease (at least for
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low-spin states) and hence the renormalized results will overpredict the g boson effect
and give worse results.

4. Conclusions

In this paper we introduced a new method to determine the boson and boson-fermion
hamiltonians from shell-model data. The method is based on the properties of the
overlap matrix in the basis of nonorthogonal shell-model states onto which the boson
states are mapped. In contrast to previous mapping methods ®7), which assume
a hierarchy of states according to the number of correlated S pairs, the method
proposed here treats all mapped shell-model states on an equal footing and can thus
be characterized as “democratic.” ’

The democratic mapping method was tested in the f;/; shell. This test proved
successful since we obtained energy spectra for even-even and odd-mass A = 45-48
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nuclei which compared well with the shell model. The democratic mapping method
was also compared with the OAI mapping and turned out to give similar—if not
slightly better—results.

The main advantage of the democratic mapping method is that it can be readily
applied to more realistic multi-shell configurations which are more difficult to treat
with other mapping techniques. In addition, extensions of the method are easily
incorporated. We showed already in this paper how the method can be used to
deal with any choice of boson space. Another extension concerns the introduction of
higher-order terms in the boson hamiltonian, which can be obtained via a mapping of
states containing more than two bosons. Such terms, which effectively would correct
for the Pauli effects, could improve significantly the agreement between the shell-
model and IB(F)M results. Having shown in this paper that the democratic mapping
method gives sensible results in a simple test case, we believe it can now be used to
study those more complex situations.

References

1. A. Arima and F. Iachello, Phys. Rev. Lett. 35 (1975) 1069

2. T. Otsuka, A. Arima and F. Iachello, Nucl. Phys. A474 (1978) 1

3. F. Iachello and O. Scholten,.Phys. Rev. Lett. 43 (1979) 679

4. L.D. Skouras, P. Van Isacker and M.A. Nagarajan, to appear in Nucl. Phys. A

. J.P. Elliott and A.P. White, Phys. Lett. B97 (1980) 169

. J.P. Elliott, J.A. Evans and P. Van Isacker, Nucl. Phys. A481 (1988) 245
J.A. Evans, J.P. Elliott and S. Szpikowski, Nucl. Phys. A435 (1985) 317
. J.A. Evans, P. Van Isacker and J.P. Elliott, Nucl. Phys. A489 (1989) 269
M.J. Thompson, J.P. Elliott and J.A. Evans, Phys. Lett. B19 (1987) 311

125


http://www.tcpdf.org

