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A Democratic Mapping between the Shell Model and t h e IBM1 

L.D. Skouras1, P. Van Isacker2 and M.A. Nagarajan2 

1 Institute of Nuclear Physics, N.C.S.R. Demokritos Aghia Paraskevi GR 15310, 
Greece 
2 SERC Daresbury Laboratory, Daresbury Warrington WA4 4AD, England 

Abstract: A method is proposed to connect states of the shell model 
and the interacting boson model and derive the boson model hamiltonian 
from shell-model data. This novel mapping technique is based on the 
properties of the shell-model overlap matrix. An application to the /7/2 

shell is presented and the results of the new mapping are compared with 
the standard OAI results. 

1. Introduction 

The method that has been most widely used to connect the interacting boson model1) 
(IBM) with the shell model is the Otsuka-Arima-Iachello or OAI mapping 2) . It is 
a seniority-based state mapping, that is, the seniority classification of shell-model 
states is carried over onto a similar classification of boson states. The boson images 
of fermion operators are then determined by computing matrix elements between 
shell-model states with good seniority. 

We propose an alternative mapping method which is based on the diagonalization 
of a shell-model overlap matrix. Whereas the OAI method implicitly assumes an or­
dering of states according to the number of correlated S pairs, this hierarchy is absent 
from our method where all shell-model states that are mapped onto corresponding 
boson states are treated on an equal footing. One thus could describe our mapping 
method as being "democratic." The formalism can be used without making reference 
to a specific system of interacting bosons and is applicable equally well to odd-mass 
nuclei in the context of the interacting boson-fermion model3) (IBFM). 

A test of the mapping is presented for the /V/2 shell4). Since we consider neutrons 
and protons in the same valence shell, isospin is of vital importance and we map 
the shell model onto an isospin invariant version of the interacting boson model, the 
IBM-3 5 ) , and its extension to odd-mass nuclei, the IBFM-3 6 ) . 
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2. A mapping from the IBM and IBFM into the shell model 

We assume we have solved the eigenvalue problem for a two-fermion system, 

H\2Va) = Ε2Γα\2Υα), (1) 

where by \nTa) we represent the eigenvectors of the shell-model hamiltonian for a 

n-fermion system. In this notation Γ stands for the pair J, Τ if isospin formalism is 

used, or, simply for J if the particles are identical. On the other hand, the index a 

distinguishes the various eigenvectors that belong to the same (ηΓ) set. 

From the above set (1) of two-fermion eigenvectors we select some that are made 

to correspond with single-boson states, 

|ΦΓ β> *=> |2Γο). (2) 

The correspondence (2) defines the one-boson energies, 

# B | * r « ) = J5&l*r«), (3) 

where 

E?a = E2Ta. (4) 

We now construct boson-fermion states |ΦΓΙΟΙ > 7ιΐ Γ) and the symmetric and nor­
malized two-boson states |ΦΓ ι α ι , ΦΓ2α2>Γ) and, as in (2), we associate them with 
three- and four-fermion states, 

| φ Γ ι β 1 , 7 ; Γ ) < — 1 2 1 ^ , 7 ; r ) , 

|*Γ 1 β 1 ,*Γ,β,;Γ) <—> \2Txctu2T2Cti\T). (5) 

The problem with the mapping in eq. (5) is that the states on the lhs of these relations 

form orthonormal sets while those on the rhs do not. Hence the states cannot directly 

be associated with each other and in the following we describe a mapping method 

that deals with this nonorthonormality problem. 

In order to simultaneously discuss the three- and four-fermion cases, we denote by 

\B{) the boson-fermion and two-boson states that appear on the lhs of (5). Similarly, 

we denote by \Fi) the fermion states that appear on the rhs of (5). Thus eq. (5) reads 

in the new notation 

\Bi)<—*\FÒ,M i=h2,...,d, (6) 

where d denotes the dimension of the space for a given set {nT}. As pointed out 
previously, the |j?,·) form an orthonormal set while the \F$ do not, 

(Bi\Bj)=6ij, (FilFJ^Sij, i,j = 1,2,...,d. . ( 7 ) 
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Our mapping method requires the determination of the matrix elements 

Pii = (FilFj), Hns(Fi\H\FÏ)t ij = 1,2,. . . ,d. (8) 

These matrix elements can be determined either directly or, in a more elegant manner, 
from the solutions of the eigenvalue problem: 

H\nTa) = ΕηΓα\ηΤα) (9) 

Thus, if we obtain all solutions of (9) for η = 3,4 and for all Γ, we can then use the 
quantum-mechanical relations 

Ι = Σ \ηΤα)(ηΤα\, Η = Σ \ηΓα)ΕηΓα(ηΤα\, (10) 
Γα Γα 

to determine 

Pia = Σ ( ^ | η Γ α ) ( η Γ α | ^ ) , Ha = Σ ( # · | η Γ α ) £ η Γ β < η Γ α | ^ ) . (11) 
Γα Γα 

As eq. (11) shows, the only quantities required for the determination of the Ρ and Η 

matrices, defined in (8), are the overlaps (Fi\nTa) which can be obtained from the 
solutions of (9). 

Let us now consider the transformation from the nonorthonormal basis |F,·) to 
an orthogonal basis \Xk) obtained by diagonalizing the overlap matrix P. The di-
agonalization yields the eigenvalues pk and the transformation coefficients (Fi\Xk) = 

(Xk\Fi), defined by 

P\Xk) = pk\Xk), 

\Xk) = Ç W W I f l } . * = 1 . 2 , . . , , i (12) 
i 

The eigenvectors \Xk) form-an orthogonal basis since 

(Xk\Xt) =E(X"\Fi)(Fi\Fj)(Fj\Xl) =pk6kh k,l = 1,2,. . . ,d. (13) 
*'i 

and this relation can be viewed as a property satisfied by the coefficients (Fi\Xk)· 
Since these coefficients result from a matrix diagonalization, they also satisfy the 
orthonormality property 

J2{Xk\Fi){Fi\X,) = 6kti k,l = 1,2,..., d. (14) 
t 

Equation (14) can be viewed as a special case of (13), namely one in which the original 
basis \Fi) was properly orthonormalized. 
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It is important to realize that the coefficients (Fi\Xk) satisfy both relations (13) 

and (14). This occurs because the diagonalization method is insensitive to whether 

the overlap matrix was defined in an orthonormal basis or not. As will be discussed 

below, this property of the coefficients (Fi\Xk) is the basic point in our mapping 

method. 

Let us now return to the results obtained by diagonalizing the overlap matrix in 

the nonorthonormal basis |F,·) and examine the following two possibilities: 

Case 1: The vectors \F{) are linearly independent 

The condition for this case to occur is 

Pk>0, k = l,2,...,d. (15) 

In such a case it is straightforward to introduce an orthonormal basis in the fermion 

space, formed by the vectors 

\X[) = -^=\Xk), k = l,2,...,d, (16) 
VPk 

which, as is evident from (13), satisfy 

(X[\Xf)=Skl, k,l = l,2,...,d. (17) 

We now introduce the following vectors in the boson space: 

|Α?> = Σ(*ί|**}|*.-)> k=l,2,...,d. (18) 
t 

where the coefficients (Fi\Xk) are the same as those that appear in (12). Since these 

coefficients satisfy (14) while, as seen in (6), the vectors \Bì) form an orthonormal set 
one can easily verify that 

{X*\X?) = ëkl, k,l= 1,2,..., d. (19) 

Since we now are dealing with orthonormal bases in both the fermion and the boson 
spaces, we can formally execute the mapping 

\Χξ)<=>\Χξ), k = l,2,...,d, (20) 

and use this mapping to determine the boson or boson-fermion hamiltonian by equat­

ing the matrix elements 

{Χ»\ΗΒ\Χ») = (Χζ\Η\Χ[), k,l= 1,2,...,d. (21) 
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Matrix elements of this boson or boson-fermion hamiltonian in the original boson 

basis (6) in terms of the original shell-model matrix elements (8) can be found by 

inverting the transformations (12), (16) and (18). The final result is 

(Bi\HB\Bj)=^E-F=(FiW(Xk\Fm)Hmn(Fn\Xl)(Xl\Fj). (22) 
kl mn VPkPl 

Case 2: The vectors |F t) are not linearly independent 

Suppose that m (m < d) eigenvalues of the overlap matrix Ρ are zero: 

p, = 0, i = l , 2 , . . . , m . (23) 

Equation (23) indicates that only d — m vectors \Fi) are linearly independent. To deal 

with this problem we remove from the fermion space m vectors \Fi), say those with 

i = d — m + 1, . . . , d, and we treat the remaining d — m vectors, which are linearly 

independent, as in case 1. We thus obtain the matrix elements of the hamiltonian HB 

between the d — m states \Bi) that correspond to the linearly independent vectors of 

the fermion space. The remaining matrix elements of HB are defined in the following 

way: 

{Bi\HB\Bj) = {Bj\HB\Bi)=0, i = d-m,...,d, j = 1,2,... ,d, if h 

(Bi\HB\Bi) = oo, i = d-m + l,...,d. (24) 

Finally, to determine the matrix elements of the two-body component of HB we 

need to remove the one-body contribution from the matrix elements of this operator, 

defined in eqs. (21) and (24). Thus, going back to the notation of eq. (5), we can 

write 

( Φ Γ ι α ι , 7 ; Γ | ν | Ψ Γ χ , 7 ' ; Γ ) = ( Ψ Γ ^ ^ Γ Ι ^ Ι Φ Γ Χ , ^ Γ ) 

~ ( ^ T j a i + El) fri rigori eri &YV> 

( Φ Γ ι Ω 1 , Φ Γ 2 α 2 ; Γ | ^ Γ χ , Ψ Γ ^ ; Γ ) = ( Φ Γ ι α ι , Φ Γ 2 α 2 ; Γ | ^ β | Φ Γ ; α ; , Φ Γ χ ; Γ ) 

- ( ^ Γ ι α ι + ^ Γ 2 α 2 ) ^ Γ Ι Γ ; boriai £ r 2 r ^ a a e j · 

(25) 
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I 

3 Test of the mapping in the /7/2 shell 

In the following we discuss an application of our mapping method to the /7 /2 shell. In 
this application we associate boson states to (/r/2)2 fermion states and we deduce the 
boson-boson and boson-fermion interactions from the matrix elements of the fermion 
hamiltonian in the space of (/r/2)4 and (/r/2)3 states, respectively. These interactions 
are then used to determine the energy spectra of nuclei in the A = 45-48 mass region 
and these results are compared with shell-model spectra and also with results of 
other boson model calculations based on the OAI mapping method 7 _ 9 ) . In order to 
have a meaningful comparison between the OAI and the present mapping method, 
we consider the same shell-model hamiltonian as the one used in the previous boson 
calculations. Thus, as in refs. 7 _ 9 ) , the (/7/2)2 matrix elements are taken directly 
from the experimental data on 42Sc. 

As discussed in sect. 3, our mapping method is not restricted to any specific choice 
of the boson space. To demonstrate this flexibility of the method we determine the 
spectra of the A = 45-48 nuclei for two choices. In the first we consider an sd space 
while in the second an sdg space. To avoid confusion we denote in the following 
by model-1 and model-2 the results obtained with sd and sdg bosons, respectively. 
Similarly, we denote by OAI the results obtained with the interaction deduced from 
the corresponding mapping method. Note that the sd boson space is used in both 
the OAI and model-1 calculations. In table 1 we compare the matrix elements of 
the boson-boson interaction derived in this work with those obtained using the OAI 
mapping. To avoid making the table too lengthy we give only those matrix elements 
that involve s and d bosons. Thus the list of matrix elements given in table 1 is 
only complete for model-1. As tables 1 shows, the model-1 matrix elements are only 
slightly modified by the introduction of the g boson, indicating that the s and d 
bosons are the more important components for the mapping from the fermion to the 
boson space. 

At first sight the matrix elements in the OAI and model-1 columns of table 1 appear 
to be quite similar. However, a more careful study reveals significant differences 
between the two interactions. These differences are most pronounced for the ( J, T) = 
(4,0) and (0,0) matrix elements. In the first case the OAI method produces a matrix 
element which is almost 1.4 Mev more attractive than the one found with our mapping 
method. On the other hand, the two methods produce almost identical diagonal 
(«7, T) = (0,0) matrix elements, but in the OAI method the diagonal interaction in 
the s2 state is the most attractive one while in the democratic method this value is 
assigned to the d2 diagonal matrix element. 

To test the democratic mapping we now use the matrix elements of the boson 
and boson-fermion hamiltonians derived with this technique and calculate the energy 
spectra of nuclei in the A = 45-48 mass region. A selection of these spectra is shown 
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Table 1 

Matrix elements (ab; JT\V\cd; JT) (in Mev) 

a 

s 

s 

s 

s 

d 

b 

s 

s 

d 

d 

d 

c 

s 

d 

s 

d 

d 

d 

s 

d 

d 

d 

d 

J 

0 

0 

0 

0 

2 

2 

2 

2 

2 

0 

2 

4 

1 

3 

0 

2 

4 

Τ 

0 

2 

0 

2 

0 

1 

2 

0 

2 

0 

0 

0 

1 

1 

2 

2 

2 

OAI 

-7.20 

0.21 

-2.09 

0 

-8.29 

-4.46 

0.21 

0.96 

0 

-6.65 

-6.60 

-8.50 

-5.62 

-5.28 

oo 

0.71 

-0.38 

Model-1 

-6.61 

0.21 

-2.44 

0 

-7.86 

-3.92 

0.44 

1.24 

-0.67 

-7.19 

-6.63 

-7.13 

-5.12 

-4.43 

oo 

0.45 

-0.29 

Model-2 

-6.13 

0.21 

-2.55 

0 

-7.34 

-3.98 

0.44 

1.26 

-0.67 

-7.28 

-6.40 

-6.63 

-5.12 

-4.43 

oo 

0.45 

-0.36 

in figs. 1-3 and compared with the shell-model and OAI results. 

Figure 1 shows that the three IBFM-3 calculations for 4 5 T i are in satisfactory 

agreement with the shell-model spectrum, which here, as also in the following figures, 

plays the role of experiment. Most shell-model states up to about 3.5 Mev excitation 

appear also in the boson-fermion spectra and the differences in the excitation energies 

do not, generally, exceed 500 Kev. 

Figure 2 shows the energy spectra for 4 6 Ti. All three IBM-3 spectra are in sat­

isfactory agreement with the shell-model spectrum. The OAI results account for all 

shell-model states up to about 3.7 Mev excitation with the exception of the second 

J = 4 state at 3 Mev. However, the OAI spectrum is somewhat compressed and espe­

cially the J = 1,3 states occur at lower energies than the corresponding shell-model 

states. They are correctly reproduced in model-1 which, on the other hand, has trou­

ble in getting the first J = 4. Also, it fails to account for the second J = 4 and the 

first J = 6 levels which it predicts at 5.04 and 5.28 Mev, respectively. Finally, as fig. 2 

shows, model-2 accounts for all fermion levels up to 4 Mev excitation with the excep­

tion of the second J = 6 state. However, as with the OAI mapping, the spectrum 
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5 
SM OAI m o d e l - 1 model -Z 

«Ti 
Figure 1: A comparison of shell-model and IBFM spectra for 45Ti. All levels are 
labelled by 2J. 

obtained using model-2 is compressed compared to the shell-model spectrum. 
Figure 3 shows the spectra for 48Cr. The three IBM-3 calculations fail to account 

for the second shell-model J = 4 state and, in addition, the J = 6 state is absent 
from model-1. The remaining levels are correctly obtained in model-1. On the other 
hand, the model-2 calculation, although it does predict a J — 6 state, produces 
excitation energies which are in less satisfactory agreement with the shell-model than 
the model-1 results. As fig. 3 shows, the OAI matrix elements lead to a compressed 
energy spectrum, in particular for states with high J. The most characteristic example 
of this behavior is the «7 = 8 state which in the OAI spectrum appears at about 3.3 
Mev while in the shell model this state is predicted above 5 Mev. 

Summarizing the comparison between the OAI and the democratic mapping meth­
ods, we observe that the first produces better results in nuclei that have few extra 
particles compared to those used to deduce the boson and boson-fermion hamilto-
nians. However, the second method becomes superior in nuclei with more valence 
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• «Ti 

Figure 2: A comparison of shell-model and IBFM spectra for 4 6 Ti. 

particles. The treatment of renormalization effects (coming mainly from the G pair) 

is responsible for this difference, as can be illustrated with the example of the J = 4 

states in 4 4 T i (see table 1). Analyzing the shell-model structure of the lowest J — 4 

state, one finds 7) it to be an almost equal mixture of D2 and S G components. The 

OAI exactly reproduces the energy of this state and it does this in spite of the fact 

that only s and d bosons are considered in the mapping. The s, d interaction matrix 

elements derived in the OAI approximation must therefore in some way incorporate 

the effect of the g boson. The democratic mapping method works differently. The 

first J = 4 state in the model-1 calculation fits the average energy of the first and 

second shell-model J = 4 states and it does so because D2 is equally shared between 

them. Thus the diagonal d2, J = 4, Τ — 0 interactions are different, —8.50 Mev in 

OAI and —7.13 Mev in model-1 (see table 1), because the former includes a g boson 

renormalization whereas the latter does not. Clearly, the renormalized results will 

be better for small particle numbers. However, as the particle number increases, the 

G pair admixtures in the shell-model wave functions tend to decrease (at least for 
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SM OAl m o d e l - 1 model-2 

Figure 3: A comparison of shell-model and IBFM spectra for 48Cr. 

low-spin states) and hence the renormalized results will overpredict the g boson effect 
and give worse results. 

4. Conclusions 

In this paper we introduced a new method to determine the boson and boson-fermion 
hamiltonians from shell-model data. The method is based on the properties of the 
overlap matrix in the basis of nonorthogonal shell-model states onto which the boson 
states are mapped. In contrast to previous mapping methods 6 '7) , which assume 
a hierarchy of states according to the number of correlated S pairs, the method 
proposed here treats all mapped shell-model states on an equal footing and can thus 
be characterized as "democratic." 

The democratic mapping method was tested in the /V/2 shell. This test proved 
successful since we obtained energy spectra for even-even and odd-mass A = 45-48 
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nuclei which compared well with the shell model. The democratic mapping method 
was also compared with the OAI mapping and turned out to give similar—if not 
slightly better—results. 

The main advantage of the democratic mapping method is that it can be readily 
applied to more realistic multi-shell configurations which are more difficult to treat 
with other mapping techniques. In addition, extensions of the method are easily 
incorporated. We showed already in this paper how the method can be used to 
deal with any choice of boson space. Another extension concerns the introduction of 
higher-order terms in the boson hamiltonian, which can be obtained via a mapping of 
states containing more than two bosons. Such terms, which effectively would correct 
for the Pauli effects, could improve significantly the agreement between the shell-
model and IB(F)M results. Having shown in this paper that the democratic mapping 
method gives sensible results in a simple test case, we believe it can now be used to 
study those more complex situations. 
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