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! Institute of Nuclear Physics, NCSR “Demokritos”, GR-15310 Aghia Paraskevi, Attiki,

Greece

2 Institut fiir Theoretische Physik, Universitat Tiibingen, Auf der Morgenstelle 14, D-7400

Tibingen, FRG
ABSTRACT: A new method for calculating the optical model potential from One
Boson Exchange Potentials (OBEPs) is developed. The G-matrix is calculated by
solving the Bethe-Goldstone equation in momentum space. Using vector brackets
these G-matrix elements can be transformed from the center of mass representation
into the laboratory system. This allows the evaluation of the G-matrix interaction
between nucleons in bound states and those in a plane-wave state. The lowest order
contribution to the real part of the potential comes from the Hartree—-Fock term, while
the lowest order contribution to the imaginary part comes from the tW&pmticle—
one-hole (2p1h) diagram. Calculations for 180 and *°Ca have been carried out. Local
approximations are obtained by describing the results for the central part in terms of a
Woods-Saxon potential and those for the spin—orbit part in terms of the corresponding
derivatives. The dependence of these potentials on energy and angular momentum is
discussed. The parameters for these local approximations are in good agreement with

emipirical fits.

The calculation of properties of finite nuclei from nucleon-nucleon potentials is a
longstanding problem in nuclear physics. In the early attempts (Kuo and Brown 1966,
1968), purely phenomenological potentials were used, like the Hamada-Johnston potential
(Hamada and Johnston 1962). Nowadays more advanced one boson exchange potentials

* Presented by Dennis Bonatsos

86



(OBEPs) exist, like the Bonn potential (Holinde et al. 1972a, 1972b) and the new version of
it (Machleidt et al. 1987), derived by field theoretical techniques and viewed as a means of
describing the low energy ahd small momentum transfer characteristics of QCD. It is there-
fore of great interest to try to determine properties of finite nuclei from modern OBEPs.
The optical model potential for negative energies is particularly interesting, since, despite
the richness of experimental data existing for the potential at positive energies (Hodgson
1984), little is experimentally known at negative energies. This lack of information has
in fact motivated the recent extension of the optical potential into the negative energy
region attempted through the dispersion relation method of Mahaux and Sartor (1987).
The real part of a microscopically calculated optical potential can be directly compared to
the results of this work.

Another source of motivation for the microscopic derivation of the optical potential
for finite nuclei is the experimental data for the longitudinal quasielastic charge response
(Barreau et al. 1983, Meziani et al. 1984, 1985), obtained by deep inelastic electron
scattering. For their interpretation one needs an accurate calculation of the particle-hole
interaction. .

In this paper we use the self-energy approach of Mahaux et al. (1985). Our method
is described in detail in Bonatsos and Miither (1989). We start by solving the Bethe-
Goldstone equation for the Brueckner G-matrix in momentum space and in the center of
mass coordinates. This equation reads

Gw)=V+V- _QHO G(w), (1)

where @ is the Pauli operator, V is the nonlocal nucleon-nucleon potential and w is the
starting energy. For V we use the relativistic OBEP of the Bonn group (Holinde et al.
1972a, 1972b). The equation is solved through use of the matrix inversion method (Haftel

and Tabakin 1970). From this calculation we obtain matrix elements of the form
< kISJsKLT|G|k'I'SIsKLT >, (2)

where k (1) is the relative momentum (angular momentum), K (L) is the corresponding

center of mass quantity, S (T') stands for spin (isospin) and by definition Je=T+8.
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The lowest order contribution to the real part of the optical potential comes from the

Brueckner-Hartree-Fock term, which is given by (Kuo and Brown 1966)

Vur(li,j1; k1, k) =

1

L — i1 k2o o JT|G|k Liginglaja JT >, 3
5@ D) Z (27 + 1)(2T + 1) < kil1j1k2lajo JT |Gk i jinglage (3)

nalzj2JT
where J denotes total angular momentum, k;, Ij, j1 are the quantum numbers of the
incoming particle (unbound states we describe as plane waves), ki, l1, j1 are these of the
outgoing particle and ns, ly, j» are the quantum numbers of the hole, which is described as
a harmonic oscillator eigenstate. In the case of 1®0 the occupied levels are characterized
by ns =0, I = 0,1, the harmonic oscillator having hw,s. = 14.0 MeV, which corresponds
to an oscillator length in the laboratory system a = 1.72 fm. In “°Ca one has the levels
with no =0, I, =0,1,2 and ny = 1, I = 0, the oscillator parameters being fw,s. = 10.4
MeV, a = 2.00 fm.

The lowest order contribution to the imaginary part of the potential comes from the

two-particle-one-hole (2p1h) contribution to the self energy, given by

Vapih = —2(—2—}11—“—) 3 % /quq/deQ(ZJ+1)(2T+1)

nalajs IL JJsST

< k; ll_]lnng]QJTIqulSJsQLT >< qlSJsQLT!GIk‘i lljlnglzszT >

2 g
T6(w1 + (€nyl, — €F) — ) (4)

where ky, Iy, j; refer to the incoming particle, kj, l; j; refer to the outgoing particle, ¢,
@, I, L refer to the intermediate states (in the center of mass system) and ng, ly, j, refer
to the hole. The energy eigenvalues of the harmonic oscillator used for the description of

the holes are

3
€nyly, = ﬁwo,c(2n2 + lg + é‘), (5)

with the parameter values given above. For er we use the value corresponding to nuclear
matter of Fermi momentum kr = 1.4 fm™1.
The matrix elements needed in Vzp1, we calculate from the matrix elements (2) in

two steps. First, we transform the bra (or the ket) from the center of mass system into
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the laboratory system. This transformation involves the use of vector brackets (Wong and
Clement 1972), as described in detail in Bonatsos and Miither (1989). As a result we

obtain matrix elements of the form
< kISIsKLT|G|kil1j1kalajoJT > . (6)

From them we can easily calculate matrix elements in a mixed representation (where some
states are described by plane waves and some others by harmonic oscillator eigenstates)

as shown by the following example
< k’ISJSKLTlGIkl11]112212]2JT >=

/ k2dkya /2P, 1, (aky) < KISTSKLT|Glkylyjrkalajn JT >, (7)

where by P,; we denote harmonic oscillator radial wave functions.

In order to calculate the matrix elements needed in Vg, we perform once more the
transformation which led to the matrix elements (6), obtaining matrix elements of the
form

< kylyjrkalaja JT|Gky 1y jrkola52 JT > (8)

We then calculate matrix elements involving harmonic oscillator states in a way analogous
to eq. (7).

Following common practice, we try to fit the microscopic results for the optical model
potential by the Fourier-Bessel transform of a local potential. We consider a Woods-Saxon

potential of the form
. W
1+ ezp(ﬁﬁ‘ﬁ) ’

U(r) = (9)
and we calculate its Fourier—Bessel transform

< kUK >= ‘/000 Jkr)U(r)gi(k'r)ridr, (10)

where ji(kr) are the spherical Bessel functions of the first kind. The three free parameters
of the Woods—Saxon potential we fit to the microscopic results by least square fitting.

89



In the same manner, we fit the microscopic results for the spin-orbit potential using

a derivative Woods—Saxon potential (Hodgson 1984) of the form

A o,1d 1 -
- R SR 11
Uls ‘/Is(m”c) Tdr(1+6$p(r:,’; )) a, ( )
where
o= ga, (12)
( f )2 =2.000fm (13)
m.C ’ ’

and m, = 139.6 MeV/c? (the pion mass).

Extensive applications of the method have been made to 1*0 (Bonatsos and Miither
1989) and *°Ca (Bonatsos and Miither 1990a). The main results are summarized here:

i) The Woods-Saxon local approximation to the microscopic optical model potential
works well in the low momentum (k) region, while at large k& the local approximation
overshoots the microscopic results. This is the case for the real and the imaginary part.
This disagreement can be avoided by using local potentials which are depressed at the origin
and enhanced at the surface, as the ones suggested by Fiedeldey and Sofianos (1983).

ii) The Woods-Saxon potentials obtained from the fits of the real and imaginary parts
show a systematic [-dependence, again similar to the one suggested by Fiedeldey and
Sofianos (1983). As [ increases the depth of the potentials decrease, while the radius and
the steepness increase. In other words, the nucleus is more transparent for larger [.

ili) The radius and steepness parameters of the 'so obtained Woods—Saxon potential
agree very well with the parameters determined empirically (Co’ et al. 1988, Mahaux and
Sartor 1988), while the depth parameter for the real part is found to be underestimated by
roughly 25%-30%. This is attributed to the lack of binding, which is known to characterize
the OBEP used in this calculation. Improved results can be obtained with the new Bonn
potential (Machleidt et al. 1987).

iv) Also the parameters for the fit of the spin—orbit potentials are similar to the em-
pirical ones, the depth of the potential being underestimated by the same percentage.

The contributions made by 3p2h, 1p2h and 2p3h diagrams to the optical model po-

tential are currently under investigation (Bonatsos and Miither 1990b). In addition, the
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improvements obtained through use of the new Bonn potential (Machleidt et al. 1987) are
under study. _
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