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Microscopie Calculation of the Optical Model Potential from One Boson Exchange Poten

tials * 

Dennis Bonatsos α and H. Müther 2 

1 Institute of Nuclear Physics, NCSR "Demokritos", GR-15310 Aghia Paraskevi, Attiki, 

Greece 

2 Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, D-7400 

Tübingen, FRG 

ABSTRACT: A new method for calculating the optical model potential from One 

Boson Exchange Potentials (OBEPs) is developed. The G-matrix is calculated by 

solving the Bethe-Goldstone equation in momentum space. Using vector brackets 

these G-matrix elements can be transformed from the center of mass representation 

into the laboratory system. This allows the evaluation of the (r-matrix interaction 

between nucléons in bound states and those in a plane-wave state. The lowest order 

contribution to the real part of the potential comes from the Hartree-Fock term, while 

the lowest order contribution to the imaginary part comes from the two-particle-

one-hole (2plh) diagram. Calculations for 1 6 0 and 40Ca have been carried out. Local 

approximations are obtained by describing the results for the central part in terms of a 

Woods-Saxon potential and those for the spin-orbit part in terms of the corresponding 

derivatives. The dependence of these potentials on energy and angular momentum is 

discussed. The parameters for these local approximations are in good agreement with 

empirical fits. 

The calculation of properties of finite nuclei from nucleon-nucleon potentials is a 

longstanding problem in nuclear physics. In the early attempts (Kuo and Brown 1966, 

1968), purely phenomenological potentials were used, like the Hamada-Johnston potential 

(Hamada and Johnston 1962). Nowadays more advanced one boson exchange potentials 

* Presented by Dennis Bonatsos 
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(OBEPs) exist, like the Bonn potential (Holinde et al. 1972a, 1972b) and the new version of 

it (Machleidt et al. 1987), derived by field theoretical techniques and viewed as a means of 

describing the low energy and small momentum transfer characteristics of QCD. It is there

fore of great interest to try to determine properties of finite nuclei from modern OBEPs. 

The optical model potential for negative energies is particularly interesting, since, despite 

the richness of experimental data existing for the potential at positive energies (Hodgson 

1984), little is experimentally known at negative energies. This lack of information has 

in fact motivated the recent extension of the optical potential into the negative energy 

region attempted through the dispersion relation method of Mahaux and Sartor (1987). 

The real part of a microscopically calculated optical potential can be directly compared to 

the results of this work. 

Another source of motivation for the microscopic derivation of the optical potential 

for finite nuclei is the experimental data for the longitudinal quasielastic charge response 

(Barreau et al. 1983, Meziani et al. 1984, 1985), obtained by deep inelastic electron 

scattering. For their interpretation one needs an accurate calculation of the particle-hole 

interaction. 

In this paper we use the self-energy approach of Mahaux et al. (1985). Our method 

is described in detail in Bonatsos and Miither (1989). We start by solving the Bethe-

Goldstone equation for the Brueckner G-matrix in momentum space and in the center of 

mass coordinates. This equation reads 

0(ω) = ν + ν—%- G(«), (1) 
ω — no 

where Q is the Pauli operator, V is the nonlocal nucleon-nucleon potential and ω is the 

starting energy. For V we use the relativistic OBEP of the Bonn group (Holinde et al. 

1972a, 1972b). The equation is solved through use of the matrix inversion method (Haftel 

and Tabakin 1970). From this calculation we obtain matrix elements of the form 

< klSJsKLT\G\k'l'SJsKLT >, (2) 

where k (I) is the relative momentum (angular momentum), Κ (L) is the corresponding 

center of mass quantity, S (Γ) stands for spin (isospin) and by definition Js — 1 + S. 
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The lowest order contribution to the real part of the optical potential comes from the 

Brueckner-Hartree-Fock term, which is given by (Kuo and Brown 1966) 

V H F ( ' I , Ì I ; * I I * Ì ) -

= ο / ο · 1 , η Σ ( 2 J + 1)(2Γ+ 1) < kil1j1k2l2J2JT\G\k'1l1j1n2l2J2JT >, (3) 
^ 3 l ' n2l2j2JT 

where J denotes total angular momentum, ki, Ιχ, j \ are the quantum numbers of the 

incoming particle (unbound states we describe as plane waves), k[, /χ, j \ are these of the 

outgoing particle and n2, l2, h are the quantum numbers of the hole, which is described as 

a harmonic oscillator eigenstate. In the case of 1 6 0 the occupied levels are characterized 

by ri2 = 0, I2 = 0,1, the harmonic oscillator having %ω030 = 14.0 MeV, which corresponds 

to an oscillator length in the laboratory system α = 1.72 fm. In 4 0 C a one has the levels 

with ri2 = 0, I2 — 0,1,2 and n2 = 1, h — 0, the oscillator parameters being hu>osc = 10.4 

MeV, α = 2.00 fm. 

The lowest order contribution to the imaginary part of the potential comes from the 

two-particle-one-hole (2plh) contribution to the self energy, given by 

< k1l1j1n2l2J2JT\G\qlSJsQLT >< qîSJsQLT\G\k[lijin2l2J2JT > 

n8{ul+{en2h-eF)-^--Ì-), (4) 

4m m 

where &i, lu j x refer to the incoming particle, k[, l\ ji refer to the outgoing particle, q, 

Q, I, L refer to the intermediate states (in the center of mass system) and n2 , l2, J2 refer 

to the hole. The energy eigenvalues of the harmonic oscillator used for the description of 
the holes are 

3 
en2/2 = fwoac(2n2 +l2 + - ) , (5) 

with the parameter values given above. For ep we use the value corresponding to nuclear 

matter of Fermi momentum kf = 1.4 fm - 1 . 

The matrix elements needed in V2pih we calculate from the matrix elements (2) in 

two steps. First, we transform the bra (or the ket) from the center of mass system into 
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the laboratory system. This transformation involves the use of vector brackets (Wong and 

Clement 1972), as described in detail in Bonatsos and Müther (1989). As a result we 

obtain matrix elements of the form 

< klSJsKLTlGlkihJMtjtJT > . (6) 

From them we can easily calculate matrix elements in a mixed representation (where some 

states are described by plane waves and some others by harmonic oscillator eigenstates) 

as shown by the following example 

< klSJsKLT\G\kllijln2l2J2 JT >= 

f k2
2dk2a

zl2Pn^{ak2) < klSJsKLT\G\k1l1j1k2l2j2JT >, (7) 

where by P n / we denote harmonic oscillator radial wave functions. 

In order to calculate the matrix elements needed in VHF, we perform once more the 

transformation which led to the matrix elements (6), obtaining matrix elements of the 

form 

< hhhhh^JT^WjW'^JT > . (8) 

We then calculate matrix elements involving harmonic oscillator states in a way analogous 

to eq. (7). 

Following common practice, we try to fit the microscopic results for the optical model 

potential by the Fourier-Bessel transform of a local potential. We consider a Woods-Saxon 

potential of the form 

U(r) = r - ~ ^ m V (9) 

and we calculate its Fourier-Bessel transform 

< k\U\k' >= [ ji(kr)U(r)ji(k'r)r2dr, (10) 
Jo 

where ji(kr) are the spherical Bessel functions of the first kind. The three free parameters 

of the Woods-Saxon potential we fit to the microscopic results by least square fitting. 
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In the same manner, we fit the microscopic results for the spin-orbit potential using 

a derivative Woods-Saxon potential (Hodgson 1984) of the form 

U" = V'^fri^Jn^
LS' (U) 

where 

s = \t, (12) 

( ^ ) 2 = 2 . 0 0 0 / m , (13) 

and τηΈ = 139.6 MeV/c2 (the pion mass). 

Extensive applications of the method have been made to 1 6 0 (Bonatsos and Müther 

1989) and 4 0Ca (Bonatsos and Müther 1990a). The main results are summarized here: 

i) The Woods-Saxon local approximation to the microscopic optical model potential 

works well in the low momentum (k) region, while at large A; the local approximation 

overshoots the microscopic results. This is the case for the real and the imaginary part. 

This disagreement can be avoided by using local potentials which are depressed at the origin 

and enhanced at the surface, as the ones suggested by Fiedeldey and Sofianos (1983). 

ii) The Woods-Saxon potentials obtained from the fits of the real and imaginary parts 

show a systematic /-dependence, again similar to the one suggested by Fiedeldey and 

Sofianos (1983). As / increases the depth of the potentials decrease, while the radius and 

the steepness increase. In other words, the nucleus is more transparent for larger /. 

iii) The radius and steepness parameters of the so obtained Woods-Saxon potential 

agree very well with the parameters determined empirically (Co' et al. 1988, Mahaux and 

Sartor 1988), while the depth parameter for the real part is found to be underestimated by 

roughly 25%-30%. This is attributed to the lack of binding, which is known to characterize 

the OBEP used in this calculation. Improved results can be obtained with the new Bonn 

potential (Machleidt et al. 1987). 

iv) Also the parameters for the fit of the spin-orbit potentials are similar to the em

pirical ones, the depth of the potential being underestimated by the same percentage. 

The contributions made by 3p2h, lp2h and 2p3h diagrams to the optical model po

tential are currently under investigation (Bonatsos and Müther 1990b). In addition, the 
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improvements obtained through use of the new Bonn potential (Machleidt et al. 1987) are 

under study. 

Support from the Bundesministerium für Forschung und Technologie (DB, HM) and 
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