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Study of energy quantities for a hyperon in hypernuclei

using a single particle potentialx*

G. A. Lalazissist, M.E. Grypeos and S.E. Massen

Department of Theoretical Physics,University of Thessaloniki ,Thassaloniki 54006, Greece

A single particle hyperon-nucleus potential is adopted for the study of various energy
quantities of a hyperon (Y) in hypernuclei.Approximate semi-empirical formulae for the
ground state (g.s.) binding energy and for the oscillator spacing hwp of a A in hypernuclei
are proposed. The region of their validity is discussed.The g.s. binding energies of the
A =~ hyperon in the few known =~ hypernuclei are also analyzed and a comparison of the

volume integrals of the 2~ nucleon and A nucleon potentials |Vz- y| and |Va x| is made.
The value of the ratio v = Ve- 5/Van is found to be < 0.8.Such a conclusion is also

obtained by using in the same way other potential models such as the Woods-Saxon one.

1. Introduction

The binding energy of a hyperon in hypernuclei is a fundamental quantity in hypernu-
clear Physics.Various expressions,which describe the A dependence of the ground state
(g.s.) binding energy and of the lowest energy level spacing or of the oscillator spacing
of a hyperon have been proposed in the past [1,2]. However, most of these expressions
have the disadvantage, that they are not appropriate for the lighter hypernuclei for which
experimental data are mainly available.

Recently, through the studies of the associated production reaction (7+, K+) [3] it has
become possible to track the evolution of A binding energies (ground and excited states)
as a function of the mass number A up to A ~ 90.This outcome has increased the interest

for the derivation of analytic expressions which reproduce the variation with A of various
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energy quantities of a hyperon in hypernuclei, such as the g.s. binding energy and the
energy level spacing of the A particle.The latter problem is related to the variation with A
of the A-oscillator spacing hw,, which approximates the lowest (or the lower) energy level
spacing(s) for the A.This subject has received considerable attention in the past [2].

Recently [4-6], we have examined such problems by adopting a rather suitable single par-
ticle potential for the motion of a hyperon in relatively light hypernuclei.Our attention
* was mainly focused on A hypernclei , but we have also analysed the g.s. binding energy
of the =~ hyperon in the few known =~ hypernuclei. Here we report the main results
of our investigation. In sec 2 we describe the potential model and the analytic expres-
sions for various energy quantities. In sec.3 we present some of our numerical results with

comments, while in sec.4 the main conclusions are summarized.

2. The potential model and analytic expressions for various energy quantities

The hyperon-nucleus interaction is approximated by a (spin- averaged) Y-nucleus potential

of the form

Vy_a= —D/coshZ%, 0<r<oo (1)

where D > 0 is the potential depth and R the distance from the origin, at which the value
of the potential becomes -0.42D. It is therefore a little larger than the ” half-depth ” radius.
This potential model which seems to be suitable mainly for relatively light hypernuclei, has
some worth-mentioning features. It approximates well the harmonic oscillator potential
for r <« R but unlike this potential which becomes infinite for r — oo , its range is finite.
Its volume integral |J| can be obtained analytically. This fact makes it possible to obtain
an expression of the radius parameter rg in terms of the volume integral of the Y-nucleon
potential |Vy x| and of the depth D, which follows from the well known rigid-core model
relation |J| = A|Vyn| , valid because of the expression of the hyperon-nucleus potential in

terms of a convolution [7]. We have therefore

R=rpA3, 1y == (3|Vanl/D)"" (2)

3|~

where A is the mass number of the core nucleus (A= A4.) .
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We may note that potential (1) falls off exponentially for large r, as does the usual Woods-
Saxon one, but its surface region is very extended. This fact makes it suitable for compar-
atively light hypernuclei, but it is not (in general) appropriate for the intermediate and
heavy ones.

Finally, the main advantage in using this potential is that the Schrédinger eigenvalue
problem can be solved analytically for states with 1=0.(See N. Bessis et al [8], where this
eigenvalue problem is also discussed). The radial wave functions are given by the expression

ro..r 3 . r
Uoo(r) = Nnocosh_”—ésmhﬁgFl <—n,n -2 + 1 5; —sinh? E) (3)

where V9 is the normalization constant, which may be expressed in terms of the I" function

[6] as follows:

_ [8T(n+3/2)T(2A —n+1/2)(2A —2n — 1)]*/?
Nuo = [ RaT(n ¥ DT (2 —n) ] )

The parameter A is given by the expression
1 -
A= [ +suDRe )" 1] (5)

where u is the Y-core reduced mass. The corresponding energy eigenvalues are :

2
1 [3uDR? 3

Using (6), the g.s. binding energy of the A may be written in the form

—32

Eno =
2uR?

2

1/2
By=-Ey,=D [(1 +d2A-2/3) - 3dA‘1/3] (7)

where

d = (h2/8uDr2)"’ ®)

We may note that an expansion of (7) in powers of A can be derived

2 1/2
By=D [1 ~ 6dgA™Y/3 £ 1042A/3 _ 3BA —3dy A 4= 4 | = (P
mpy 8mp Drk

(9)
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It is interesting to note that its first term, apart from the one which is independent of A,
is proportional to A™1/% and not to A™2/3 g5 is the case for the square well potential and
the Woods-Saxon one[1]. Such a behaviour of By is observed for the first time, to our
knowledge, on the basis of a potential model(with D and ry independent of A).
Expression (7) is a rather simple ”semi-empirical” formula By = B;{4) which reproduces
the average trend of the variation of B, with the mass number A and which is obtained
from the corresponding energy eigenvalue equation without additional approximation apart
from the assumption that the parameters D and r( are independent of A.

We may also point out that formula (7) may be solved for A analytically (in an approxi-
mate way).Thus, a number of approximate expressions are derived, which may be used in
estimating analytically the mass number of a hypernucleus if the corresponding Bp value
is known.For details and the relevant expressions see ref. 6.

An expression analogous to (7) may also be used for an estimate of the nuclear part
(Bz-) Nyo Of the 27 g.s. binding energy in =~ hypernuclei.For an estimate of the Coulomb
part of the Bz- in which the diffuseness of the surface is taken into account, the following
approximate formula is used, which follows directly from the analogous formula in the
nuclear case [9], on the basis of the corresponding expression of ref.10 for the 2~ Coulomb

energy in the case of the uniform distribution:

6e Zc Tn? (t>2
Ec=-—F—=|1-——{- 10
T7F e [ 6(4n3)” \c (19)

where Z¢ is the atomic number of the corresponding core nucleus, t the skin thickness and
c the half density radius. Note that for t=0, expression (2.1) of ref.10 is obtained.
Unfortunately, there are no available data for the cores of all =~ hypernuclei.The charge
distributions of neighbouring nuclei have been used instead.The values of |E¢| obtained
with a uniform distribution are bigger than those obtained by taking into account the
diffuseness of the surface.This fact leads however to very small differences in the final
result.

Another advantage in using the considered potential model is the possibility of obtaining
easily, as one should expect, analytic expressions for the expectation values of the potential
and kinetic energies of a hyperon in its ground state.Thus, one finds analytically the

dependence of these quantities on A.The relevant expressions are [5,6]:
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3D
= — 11
<Vy > D+(4/\+1) (11)

K% 3(4\ —2)(4\+2/3)

2uR? 441 +1) i)

< Ty >=

We may therefore calculate the g.s. potential and kinetic energy of a A as well as the
expectation values of the kinetic and potential energy part of (Bz- )y - ‘
Expression (12) is particularly useful in deriving an approximate expression for the A

oscillator spacing by applying the virial theorem:

4 4
th=§<T>h,a,2§<TA>1s

=4DdyA™/? — %OpdgA”“ +6d3A7 + zdeL”Z—AA—‘*/a +..(13)
N

where h.o. means that the expectation value is calculated with the (g.s.) h.o. wave
function.

This expression for hw, which is derived with the approximation < T >4, ~< Tp >i,
gives the energy spacing of the oscillator for which the g.s. A kinetic energy equals the g.s.
kinetic energy for potential (1). Such an expression for hwa gives larger values than the
values of the lowest energy spacing Ei, — Ey, for the A particle moving in potential (1),

because of the inequalities [11]

2
Elp_ElsS%F;_<—r21‘>—“S§<T>ls (14)
It turns out, however, that the difference between Ey, — Ey, and hw, is quite small for
A R 16.1t is therefore suitable for estimates of E,, — Ey, in the region of the validity of
the model. The leading term of (13) is proportional to A~'/3. Such a behaviour should be
attributed to the ”surface effects” introduced by the potential we used, which has extended
surface. However, according to our numerical results, the contribution of the next term
A~?/3 is quite significant. A
Finally, in the framework of this approach, approximate analytic expressions of < r% >

and of the r.m.s radius for the g.s. orbit of the A may also be derived [5,6].
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3. Numerical results and comments

The parameters D and 7y of the A-nucleus potential were determined by least square
fitting of the analytic expression for the g.s. energy of the A to the experimental values of
the hypernuclei }$ B,13 C,1% N,1¢ 0,32 § [12] together with the upper limits of the binding
energies corresponding to A = 63,72,80,93 and 103 [13]. Our best fit values are D=38.93
MeV , r0=0.986 fm. These were used for the results of Table 1.

It is seen from Table 1. that the values of Aw, obtained using the first two terms of the

expansion (13)

4
By, o2 4Ddy ALY — ?Oz)dg,«r’/3
=52.86471/% — 59.8247%/3 (15)

are quite close to those of the energy level spacing E1, — Eq,. Therefore, it is preferable
expression (15) to be used in estimating the lowest A-excitation spacing in the region
12 £ A < 40 where it is expected to be valid and where there is also satisfactory agreement
with the few available "experimental values” [14].

A comparison with the quite realistic (for Arzl6) Woods-Saxon potential shows that the
values of Ey, — Ey, obtained with the two potentials agree fairly well for AS40.Therefore,
the estimates of hwa with model (1) are not expected to be appropriate for AR40.

It should be noted, however, that the values of E;, obtained with the two potentials agree
fairly well for 16 & A < 140. In addition the estimated values of By with potential (1)
are quite close to the available experimental A binding energies, known from the nuclear
emulsions and the (A~ ,77),(r*, K*) reactions. Thus, formula (7) seems to be rather

accurate for quite a wide range of mass numbers (12 Al 140).

Table 1. Energy quantities (in MeV) for various A hypernuclei

By <Th > <Vp > hwp Expres. 13 hwy Expres .15 Elp — Eq,
2C | 11.59 9.40 -20.99 12.53 11.68 10.99
70 | 13.59 9.19 -22.78 12.26 11.56 11.24
8BS | 17.96 8.33 -26.29 11.10 10.72 10.68
NCa | 19.24 7.99 -27.23 10.66 10.34 10.33
STNi | 21.04 7.47 -28.50 9.96 9.73 9.73
1Zv | 2838 6.72 -30.05 8.96 8.82 8.82
MCe | 25.24 6.04 -31.28 8.05 - 7.96 7.97
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Finally expression (15) for hws may be used in estimating the relative probability for the
recoilless A production in the (K ~,77) strangeness exchange reaction in relatively light

nuclei, by means of the nuclear Debye-Waller factor:

Rfg? 1
— 16
2mA ﬁwA ( )

P(ni,ni) = exp | = (2n;i +1)

as it was suggested by Povh [15] for this reaction in analogy to the Mossbauer effect [16].
Povh had used the "experimental values” [12] of hwy in applying this expression to light
hypernuclei. However, it is preferable to avoid reference to the experimental values of hwy
and use a theoretical expression like the one we propose, which is suitable for relatively
light hypernuclei.Recently [17] improved expressions for the Debye-Waller factor have been
obtained, where hw, also appears.

Computations have also been performed in the case of £~ hypernuclei by using several sets
of values for the parameters D and rq. It should be clear that there is a considerable un-
certainty concerning the accuracy of the parameters which is due to the poor experimental
data. Here we report (Table 2.) the results obtained with r,=0.986 fm and D=30 Mev,
which seems to be the more appropriate among those considered. The value of ro was
assumed to be the same with that of the A hypernuclei. The value of D was determined by
least square fitting of the analytic expression for (Bz- )y, to the available experimental
values of =~ binding energy [18] having subtracted from the latter the binding energy due

to Coulomb force.

—_—

Table 2. Energy quantities (in MeV) and r.m.s. radii (in fm) of a =~ hyperon for

a number of = hypernuclei

A | Ec | (Be-)nvua | Bs- | <Ve-> [ <Te- > | <rl_ >I2
8 1.7 5.8 7.9 -13.0 7.2 2.46
12 3.4 8.1 11.5 -15.4 7.3 2.33
16 3.7 9.7 13.4 -16.9 7.2 2.29
20 4.0 10.9 14.9 -17.9 7.0 2.29
24 4.3 11.8 16.1 -18.7 6.9 2.30
28 4.7 12.6 17.3 -19.3 6.7 2.31
32 5.2 13.2 18.4 -19.8 6.6 2.32
40 6.9 14.2 21.1 -20.6 6.3 2.35
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Moreover, a comparison has been made of the volume integrals of the =~ nucleon and A
nucleon potentials. The value of the ratio v of the two volume integrals

_Yeow , (17)

Van

was found to be v = 0.77.We also found that similar conclusions are reached by using in
the same way other potential models such as the Woods-Saxon one (y = 0.79).For details
see ref. 6.

Our analysis corroborates the finding of other similar studies [10,18] that the volume
integral of the Z~ nucleon potential is smaller than the corresponding A nucleon one. The
ratio of the two volume integrals v according to the present estimates is indicated to be

~ < 0.8.Its precise determination seems to be beyond our present capabilities.

4. Summary

A single particle hyperon-nucleus potential for which the Schrodinger eigenvalue problem
can be solved analytically for states with 1=0 is proposed for the study of various energy
quantities of a A and a =~ particle in hypernuclei. The potential is characterized by an
extended surface region, which makes it suitable for relatively light hypernuclei but not
(in general) for the heavy ones.

Using this potential model a ”semi-empirical mass formula” for By = By (A4), the g.s.
binding energy of a A in hypernuclei is derived. This formula for which the leading term
(apart from the constant one) in its expansion in powers of A is proportional to A~1/3
seems to be sufficiently accurate for quite a wide region of A (12 A% 140).

The oscillator spacing hwa in hypernuclei may be given by an approximate closed form
analytic expression containing the dependence on the mass number A of the core nucleus
to all orders of A~!/3. This expression. or preferably its leading terms ¢; A™1/3 — ¢, A=2/3,
are suitable to estimate the lowest A excitation spacing for hypernuclei in the region:
125 4 % 40.

An expression of the above form for hw, is proposed for the first time on the basis of a
potential model (with D and rq independent of A) and may be used for an estimate of the

relative probability for the recoilless A production in the (K~,7~) reaction, in relatively
light nuclei using the nuclear Debye-Waller factor.
The same potential model was applied to an analysis of the few available experimental

values of the =~ binding energy in the corresponding =~ hypernuclei. A comparison of
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the volume integrals of the =~ nucleon and A nucleon potentials has shown that the ratio

v =Va-n/Vanis vy < 0.8 which is an indication that the =~V interaction is weaker than

the corresponding AN one, in accordance with findings in other similar studies.
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