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Study of energy quantities for a hyperon in hypernuclei 

using a single particle potential* 

G. A. Lalazissisf, M.E. Grypeos and S.E. Massen 

Department of Theoretical Physics,University of Thessaloniki ,Thassaloniki 54006, Greece 

A single particle hyperon-nucleus potential is adopted for the study of various energy 

quantities of a hyperon (Y) in hypernuclei.Approximate semi-empirical formulae for the 

ground state (g.s.) binding energy and for the oscillator spacing hu>\ of a Λ in hypernuclei 

are proposed. The region of their validity is discussed.The g.s. binding energies of the 

Ξ - hyperon in the few known Ξ - hypernuclei are also analyzed and a comparison of the 

volume integrals of the Ξ - nucléon and Λ nucléon potentials | V = - N I a n d |VA.ÌV| is made. 

The value of the ratio 7 = V=- Ν/V\N is found to be ~ 0.8.Such a conclusion is also 

obtained by using in the same way other potential models such as the Woods-Saxon one. 

1. Introduction 

The binding energy of a hyperon in hypernuclei is a fundamental quantity in hypernu-

clear Physics.Various expressions,which describe the A dependence of the ground state 

(g.s.) binding energy and of the lowest energy level spacing or of the oscillator spacing 

of a hyperon have been proposed in the past [1,2]. However, most of these expressions 

have the disadvantage, that they are not appropriate for the lighter hypernuclei for which 

experimental data are mainly available. 

Recently, through the studies of the associated production reaction ( π + , A' + ) [3] it has 

become possible to track the evolution of Λ binding energies (ground and excited states) 

as a function of the mass number A up to A ~ 90.This outcome has increased the interest 

for the derivation of analytic expressions which reproduce the variation with A of various 
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energy quantities of a hyperon in hypernuclei, such as the g.s. binding energy and the 

energy level spacing of the Λ particle.The latter problem is related to the variation with A 

of the Λ-oscillator spacing hu^, which approximates the lowest (or the lower) energy level 

spacing(s) for the A.This subject has received considerable attention in the past [2]. 

Recently [4-6], we have examined such problems by adopting a rather suitable single par­

ticle potential for the motion of a hyperon in relatively light hypernuclei.Our attention 

was mainly focused on Λ hypernclei , but we have also analysed the g.s. binding energy 

of the Ξ~" hyperon in the few known Ξ~ hypernuclei. Here we report the main results 

of our investigation. In sec 2 we describe the potential model and the analytic expres­

sions for various energy quantities. In sec.3 we present some of our numerical results with 

comments, while in sec.4 the main conclusions are summarized. 

2. The potential model and analytic expressions for various energy quantities 

The hyperon-nucleus interaction is approximated by a (spin- averaged) Y-nucleus potential 

of the form 

VY-A = -DI cosh2?-, 0 < r < oo (1) 

where D > 0 is the potential depth and R the distance from the origin, at which the value 

of the potential becomes -0.42D. It is therefore a little larger than the " half-depth " radius. 

This potential model which seems to be suitable mainly for relatively light hypernuclei, has 

some worth-mentioning features. It approximates well the harmonic oscillator potential 

for r <C R but unlike this potential which becomes infinite for r —• oo , its range is finite. 

Its volume integral \J\ can be obtained analytically. This fact makes it possible to obtain 

an expression of the radius parameter TQ in terms of the volume integral of the Y-nucleon 

potential |Vy/v| and of the depth D, which follows from the well known rigid-core model 

relation \J\ = A|Vy^| , valid because of the expression of the hyperon-nucleus potential in 

terms of a convolution [7]. We have therefore 

R = r0A
l'\ r0 = ~(3\VAN\/D)1/3 (2) 

7Γ 

where A is the mass number of the core nucleus (A= Ac) . 

78 



We may note that potential (1) falls off exponentially for large r, as does the usual Woods-

Saxon one, but its surface region is very extended. This fact makes it suitable for compar­

atively light hypernuclei, but it is not (in general) appropriate for the intermediate and 

heavy ones. 

Finally, the main advantage in using this potential is that the Schrödinger eigenvalue 

problem can be solved analytically for states with 1=0.(See N. Bessis et al [8], where this 

eigenvalue problem is also discussed). The radial wave functions are given by the expression 

!λ r ..-„L Γ TP ( OX , 1. 3 . „„„1,2 T 

®no(r) = Nn0cosh ^sinh—2Fx ( -n,n - 2λ + 1; -; -sink — (3) 

where Nno is the normalization constant, which may be expressed in terms of the Γ function 

[6] as follows: 

Nn 

8Γ (n + 3/2) Γ (2λ - η + 1/2) (2λ - 2η - 1 ) 1 1 / 2 

#ττΓ(η + 1 ) Γ ( 2 λ - η ) 

The parameter λ is given by the expression 

X = ^[(l + SßDR2/h2)1/2-l\ 

where μ is the Y-core reduced mass. The corresponding energy eigenvalues are 

(4) 

(5) 

Er. 2μΒ? 

1 ΖμΌΒ? Λ / 3 

Using (6), the g.s. binding energy of the Λ may be written in the form 

(6) 

BA.= -EA = D 
1/2 

( l + J 2 A - 2 / 3 ) -UA-1" 

where 

ά=(η2/8μΏΓ2

0)
1/2 

We may note that an expansion of (7) in powers of A can be derived 

(7) 

(8) 

5 Λ =D 1 - 6 4 A - 1 / 3 + 10d 2 A- 2 / 3 - 3 ^ 4 " 
mN 

,d0 = ( 
\8mADrï 

1/2 

(9) 
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It is interesting to note that its first term, apart from the one which is independent of A, 

is proportional to A - 1 / 3 and not to A~2/3 as is the case for the square well potential and 

the Woods-Saxon one[l]. Such a behaviour of Βχ is observed for the first time, to our 

knowledge, on the basis of a potential model(with D and r 0 independent of A). 

Expression (7) is a rather simple "semi-empirical" formula B^ = B^{A) which reproduces 

the average trend of the variation of B^ with the mass number A and which is obtained 

from the corresponding energy eigenvalue equation without additional approximation apart 

from the assumption that the parameters D and r 0 are independent of A. 

We may also point out that formula (7) may be solved for A analytically (in an approxi­

mate way).Thus, a number of approximate expressions are derived, which may be used in 

estimating analytically the mass number of a hypernucleus if the corresponding B\ value 

is known.For details and the relevant expressions see ref. 6. 

An expression analogous to (7) may also be used for an estimate of the nuclear part 

(i?~- )Nuc[ of the Ξ - g.s. binding energy in Ξ - hypernuclei.For an estimate of the Coulomb 

part of the B^~ in which the diffuseness of the surface is taken into account, the following 

approximate formula is used, which follows directly from the analogous formula in the 

nuclear case [9], on the basis of the corresponding expression of ref. 10 for the Ξ - Coulomb 

energy in the case of the uniform distribution: 

£ c = _ ^ L _ ^ ( T ) 2 | (10) 
5 c [ 6(4/n3)2 W J 

where Zc is the atomic number of the corresponding core nucleus, t the skin thickness and 

c the half density radius. Note that for t = 0 , expression (2.1) of ref.10 is obtained. 

Unfortunately, there are no available data for the cores of all Ξ - hypernuelei.The charge 

distributions of neighbouring nuclei have been used instead.The values of \Ec\ obtained 

with a uniform distribution are bigger than those obtained by taking into account the 

diffuseness of the surface.This fact leads however to very small differences in the final 

result. 

Another advantage in using the considered potential model is the possibility of obtaining 

easily, as one should expect, analytic expressions for the expectation values of the potential 

and kinetic energies of a hyperon in its ground state.Thus, one finds analytically the 

dependence of these quantities on A.The relevant expressions are [5,6]: 
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3D 

<vv>=-D+(îxTT) ( n ) 

' s τ » h2 3(4Λ-2)(4Λ + 2/3) 
< T Y > = 2 Ï Î V 4 ( 4 λ Τ Τ ) ( } 

We may therefore calculate the g.s. potential and kinetic energy of a Λ as well as the 

expectation values of the kinetic and potential energy part of (ΒΞ- ) N u c l • 

Expression (12) is particularly useful in deriving an approximate expression for the Λ 

oscillator spacing by applying the virial theorem: 

4 4 
^ω Λ = - <T >h,0, ~ - < ΓΛ >I, 

40 „ ,o ,_,/, , „, , ,_ι , η Ι Λ , mA = 4Dd0A-V3 - i-DdlA-2'* + 64A-1 + ΊΌά,-^Α-^ + . .(.13) 
3 rriN 

where h.o. means that the expectation value is calculated with the (g.s.) h.o. wave 

function. 

This expression for %ωΑ which is derived with the approximation < Τ > Λ . 0 . ~ < 7Λ >is 

gives the energy spacing of the oscillator for which the g.s. Λ kinetic energy equals the g.s. 

kinetic energy for potential (1). Such an expression for %ω\ gives larger values than the 

values of the lowest energy spacing EXp — E\s for the Λ particle moving in potential (1), 

because of the inequalities [11] 

3fi2 1 _ 4 

2μ < r2 >ls * 3 
Eip - Ela < — - , : <-<T>ls (14) 

It turns out, however, that the difference between Eip — E\s and %ωΑ is quite small for 

A ~ 16.It is therefore suitable for estimates of E\p — E\s in the region of the validity of 

the model. The leading term of (13) is proportional to A - 1 / 3 . Such a behaviour should be 

attributed to the "surface effects" introduced by the potential we used, which has extended 

surface. However, according to our numerical results, the contribution of the next term 

A - 2 / 3 is quite significant. 

Finally, in the framework of this approach, approximate analytic expressions of < r\ > 

and of the r.m.s radius for the g.s. orbit of the Λ may also be derived [5,6]. 
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3. Numerical results and comments 

The parameters D and ro of the Λ-nucleus potential were determined by least square 

fitting of the analytic expression for the g.s. energy of the Λ to the experimental values of 

the hypemuclei ^B,^ C,l\ Ν,l\ 0?\ S [12] together with the upper limits of the binding 

energies corresponding to A = 63,72,80,93 and 103 [13]. Our best fit values are D=38.93 

MeV , r 0 =0.986 fm. These were used for the results of Table 1. 

It is seen from Table 1. that the values of Τιωχ obtained using the first two terms of the 

expansion (13) 

%uK~±DdQA-ll3 -^-DdlA-2!* 
ό 

= 52.86A_ 1 / 3 - 59.82A_ 2 / 3 (15) 

are quite close to those of the energy level spacing E\p — E\s. Therefore, it is preferable 

expression (15) to be used in estimating the lowest Λ-excitation spacing in the region 

12 ~ A ~ 40 where it is expected to be valid and where there is also satisfactory agreement 

with the few available "experimental values" [14]. 

A comparison with the quite realistic (for A~16) Woods-Saxon potential shows that the 

values of E\p — E\s obtained with the two potentials agree fairly well for A~40.Therefore, 

the estimates of Ήω\ with model (1) are not expected to be appropriate for A~40. 

It should be noted, however, that the values of E\s obtained with the two potentials agree 

fairly well for 16 ~ A ~ 140. In addition the estimated values of B\ with potential (1) 

are quite close to the available experimental A binding energies, known from the nuclear 

emulsions and the (K~, π~), (π+,Κ+) reactions. Thus, formula (7) seems to be rather 

accurate for quite a wide range of mass numbers (12 ~ A ~ 140). 

Table 1. Energy quantities (in MeV) for various Λ hypernuclei 

x\o 
33 c 

A\Ca 
5lNz 
*\Zr 

*?Ce 

Bk 

11.59 

13.59 
17.96 
19.24 

21.04 

23.33 

25.24 

< Γ Λ > 

9.40 

9.19 
8.33 

7.99 

7.47 

6.72 

6.04 

< v A > 
-20.99 

-22.78 
-26.29 

-27.23 

-28.50 

-30.05 

-31.28 

TlLO\ Exp rè s . 13 

12.53 
12.26 
11.10 
10.66 
9.96 
8.96 
8.05 

?IU>\ E x p r è s .15 

11.68 
11.56 
10.72 
10.34 
9.73 
8.82 
7.96 

E\p — E\s 
10.99 
11.24 
10.68 
10.33 
9.73 
8.82 
7.97 
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Finally expression (15) for %ω\ may be used in estimating the relative probability for the 

recoilless Λ production in the ( Ι \ - , π ~ ) strangeness exchange reaction in relatively light 

nuclei, by means of the nuclear Debye-Waller factor: 

Ρ (π(,Π{) = exp 

as it was suggested by Povh [15] for this reaction in analogy to the Mössbauer effect [16]. 

Povh had used the "experimental values" [12] of %UA in applying this expression to light 

hypernuclei. However, it is preferable to avoid reference to the experimental values of huA 

and use a theoretical expression like the one we propose, which is suitable for relatively 

light hypernuclei.Recently [17] improved expressions for the Debye-Waller factor have been 

obtained, where ΗωΑ also appears. 

Computations have also been performed in the case of Ξ " hypernuclei by using several sets 

of values for the parameters D and r 0 . It should be clear that there is a considerable un­

certainty concerning the accuracy of the parameters which is due to the poor experimental 

data. Here we report (Table 2.) the results obtained with r o=0.986 fm and D=30 Mev, 

which seems to be the more appropriate among those considered. The value of ro was 

assumed to be the same with that of the Λ hypernuclei. The value of D was determined by 

least square fitting of the analytic expression for (B~-)Nucl to the available experimental 

values of Ξ~ binding energy [18] having subtracted from the latter the binding energy due 

to Coulomb force. 

T a b l e 2 . Energy quantities (in MeV) and r.m.s. radii (in fm) of a ^ , hyperon for 

a number of ZL hypernuclei 

Ac 

8 
12 
16 
20 
24 
28 
32 
40 

Ec 
1.7 
3.4 
3.7 
4.0 
4.3 
4.7 
5.2 
6.9 

(BE-)NUCI 

5.8 
8.1 
9.7 
10.9 
11.8 
12.6 
13.2 
14.2 

ΒΞ-
7.5 

11.5 
13.4 
14.9 
16.1 
17.3 
18.4 
21.1 

<νΞ- > 
-13.0 
-15.4 
-16.9 
-17.9 
-18.7 
-19.3 
-19.8 
-20.6 

< Τ Ξ - > 
7.2 
7.3 
7.2 
7.0 
6.9 
6.7 
6.6 
6.3 

< T L >1/2 

2.46 
2.33 
2.29 
2.29 
2.30 
2.31 
2.32 
2.35 

ζ „ι 
(2η, + Γ 

h'q 

2m A ΗωΑ 

(16) 
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Moreover, a comparison has been made of the volume integrals of the Ξ nucléon and Λ 

nucléon potentials. The value of the ratio 7 of the two volume integrals 

7 = ^ ( Π ) 
7 vAN

 y ) 

was found to be 7 = 0.77.We also found that similar conclusions are reached by using in 

the same way other potential models such as the Woods-Saxon one (7 = 0.79).For details 

see ref. 6. 

Our analysis corroborates the finding of other similar studies [10,18] that the volume 

integral of the Ξ - nucléon potential is smaller than the corresponding Λ nucléon one. The 

ratio of the two volume integrals 7 according to the present estimates is indicated to be 

7 ~ 0.8.Its precise determination seems to be beyond our present capabilities. 

4. S u m m a r y 

A single particle hyperon-nucleus potential for which the Schrödinger eigenvalue problem 

can be solved analytically for states with 1=0 is proposed for the study of various energy 

quantities of a Λ and a Ξ~ particle in hypernuclei. The potential is characterized by an 

extended surface region, which makes it suitable for relatively light hypernuclei but not 

(in general) for the heavy ones. 

Using this potential model a "semi-empirical mass formula" for Ι?Λ = B\ (A), the g.s. 

binding energy of a Λ in hypernuclei is derived. This formula for which the leading term 

(apart from the constant one) in its expansion in powers of A is proportional to A - 1 / 3 

seems to be sufficiently accurate for quite a wide region of A (12 ~ A ~ 140). 

The oscillator spacing HLOA in hypernuclei may be given by an approximate closed form 

analytic expression containing the dependence on the mass number A of the core nucleus 

to all orders of A~llz. This expression, or preferably its leading terms Cj A - 1 / 3 — c 2 A _ 2 / 3 , 

are suitable to estimate the lowest Λ excitation spacing for hypernuclei in the region: 

12 ~ A ~ 40. 

An expression of the above form for %ωΑ is proposed for the first time on the basis of a 

potential model (with D and r0 independent of A) and may be used for an estimate of the 

relative probability for the recoilless Λ production in the (K~,π~) reaction, in relatively 

light nuclei using the nuclear Debye-Waller factor. 

The same potential model was applied to an analysis of the few available experimental 

values of the Ξ~ binding energy in the corresponding Ξ~ hypernuclei. A comparison of 
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the volume integrals of the Ξ~ nucléon and Λ nucléon potentials has shown that the ratio 

7 = V=- Ν/V\N is 7 ~ 0.8 which is an indication that the Ξ~Ν interaction is weaker than 

the corresponding AN one, in accordance with findings in other similar studies. 
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