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Correlated charge form factors and densities 

of the sd-shell nuclei 

S.E.Massen 

Department of Theoretical Physics.University of Thessaloniki 
Thessaloniki 54006, Greece 

ABSTRACT: The expression of the two body term in the fac
tor cluster expansion of the charge form factor of

 4
°Ca is 

derived.lt contains the harmonic oscillator (HO) parameter 
bx and the parameter λ which originates from the Jastrow 
correlation function. This expression together with the 
corresponding one of

 1 6
0 nucleus helps to find a mass de

pendence of λ and an approximate and fairly simple expres
sion of the two body term of open shell nuclei in the 
region 16<A<40 which contains one free parameter, the HO 
parameter bi. The fitting to the corresponding experimen
tal charge form factor is quite improved in comparison to 
the HO one without correlations. 

1. INTRODUCTION 

The factor cluster expansion of Ristig et al (1971) (Clark 

1981) has been used by Nassena (1979,1981) and a generalized 

expression for the charge form factor,Fch(q),of light closed 

shell nuclei was derived. This formula was simplified (Mas-, 

sen et al 1988) using normalized correlated wave functions 

of the relative motion and was applied to the
 1 6

0 nucleus. 

Finally in a recent paper (Massen et al 1989) various appro

ximations to the two-body term of the cluster expansion of 

the Fch(q) have been used and an approximate expression of 

it for the
 4
He and 1^0 nuclei has been derived. That formula 

was extended approximately to the other ρ shell nuclei. 

The purpose of the present work is to extend the previous 

works to the 4 0C"a nucleus and to the other s-d shell nuclei. 

This extension seems to be necessary for two reasons. First 
. Λ , 2 1/2 

it is worth seeing if the correlation parameter (bi/λ) 

remains constant in the s-d shell nuclei as it was the case 

in the ρ shell nuclei. On the other hand the work of finding 

the two body term of the cluster expansion of Fch(q)*for 

each nucleus in the s-d shell is a laborious one, so it is 

worth to find a simple treatment of the correlated charge 

form factor in this region of nuclei. For these reasons the 
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"exact" formula of Fch(q) for 4°Ca nucleus,which is a sum of 

the one and two body-term in the cluster expansion of it, 

has been found. This formula which is more complicated than 

the corresponding one of
 1 6

0 nucleus has two free parameters, 

the HO parameter bi and the correlation parameter λ. These 

parameters have been determined by fitting to the experimen

tal data of the charge form factor. In the next step an ap

proximate formula of Fch(q) for *°Ca has been found which is 

similar to the corresponding one of
 1 6

0 . This approximate 

formula has the advantage that it can be used in finding a 

mass dependence of the correlation parameter λ which is re

lated to the dependence of the HO parameter bi on the mass 

number. Finally from the approximate expression of Fch for 

i
6
0 which has been found in our previous work and the one of 

4 0
Ca an approximate expression of Fch(q) for the s-d shell 

nuclei has been found by making some reasonable assumptions. 

This expression has one free parameter,the HO parameter bi , 

which can be determined for each nucleus separately by fit

ting to the experimental Fch(q). Such a procedure has the 

advantage of simplifying the calculations very considerably. 

In section 2 the "exact" expression of Fch for 4° Ca (which 

is a sum of one and two body terms) is derived while in sec" 

tion 3 an approximate expression of Fch for this nucleus is 

derived and results are reported and discussed in both cases 

In section 4 the approximate expression is extended to other 

s-d shell nuclei and results for 20Ne,24Mg,2ôSi,3ip,32S and 

39K are also given and discussed. In section 5 the charge 

densities of these nuclei are given and compared with the 

experimental ones. Concluding remarks are made in section 6. 

2. THE EXPRESSION OF THE CHARGE FORM FACTOR OF *<>Ca NUCLEUS 

In a previous work (Massen et al 1988) a general expression 

of the charge form factor of light closed shell nuclei was 

derived by using the factor cluster expansion of Ristig et 

al (1971) by considering a normalized correlated wave func

tion of the relative motion. This expression has the form 

W < i ) = V q i W q K F i i q i + F ^ q ) ] ( l ) 

where fp(q) and fcM(q) are the corrections due to the finite 
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p r o t o n s i z e and t h e c e n t e r of mass m o t i o n (Massen e t a l 

1988) and 

Fj (q)= j < 0 > 1 = | 4 n ^ ( 2 1 j + 1 X 1 ^ 1 4 I j 0 ( q r x ) | n t 1L > ( 2 ) 

i s t h e c o n t r i b u t i o n of t h e one body t e r m t o F c h ( q ) w h i l e t h e 

c o n t r i b u t i o n of t h e two body t e r m t o F c h ( q ) i s 

F 2 ( q ) = j <0> 2 = ± [ < 0 > 2

U - ( A - 1 X O ) , ] ( 3 ) 

where : 

< 0 > ( 1 > = Σ Σ Σ Σ <1ηιΙΛ1|λμ><1ΊηΙ/Μ|λμ><η1ΝΕ^|ηΐ l i nj l j λ> 

η j l j n ' 1 * N ' L ' m M 

x < n ' l ' N ' L ^ | n i l i n j l j A > < N L M | e i q - R | N ' L ' M > B ( n l m , n ' l ' m ) ( 4 ) 

The matrix element B(nlm,n'l'm) depends on the wave function 

of the relative motion and the operator which introduces the 

correlations. If the operator F is spin independent the 

matrix element Β has the form 

B(nlm.n'l'm) = [16-4(-l )
X
 ' ] <nlm| F*

2
 e

1
 *'

 r/2F1 2
 | n'l'm> 

The application of the above formula to the
 4
He is straight 

forward while for i
6
0 is more difficult but still it is easy 

to be handled (Massen et al 1988). For the case of
 4 0

Ca it 

is extremely difficult to find the expression of the two 

body term F2(q) by hand because the possible combinations of 

the quantum numbers ηΙ,ΝΙ^,λ, mM are about 2000. For this 

reason a computer program which calculates.F2(q) was made.In 

this way we have found that the two body term, F2(q), of the 

Fch(q) has the form 

F2(q) = F2(q) + F
2
(q) (5) 

where 

F
2
 (q) = 

l i - - o r , 1 8 5 , n i r 8 3 2 . 3 j 4 , A . . v.,,175 50 _,31 2 , . , . . 

• ^ | A 0 4 ( J 0 ) + (1 | - i 0 y + | y

2

) A l 0 ( J 0 ) + i | A l 2 ( J 0 ) + f ^ U , ) 

+ {~^7+¥iy2 ) A 0 2 < J 2 >+ | ^ 2 Α 0 2 < J4 )] + 2 0 [ ( 3 0 - 3 5 y + l l y 2 - y 3 )A Q 1 ( j 0 ) 

+ ( ! Γ _ 2 - y ) A 0 3 ( J 0 ) + ( | - f y i A n ( j 0 ) + ( - " y + 8 y 2 - y 3 ) A 0 1 ( j 2 ) 
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- I | ^ 1 ( J 2 ) - | y A 0 3 ( J 2 ) . ] ] e - y - 3 9 ( 1 - 2y + | y 2 ) e " 2 y ( 5 a ) 

and 

F 2 ( q ) = 

T J [ V 6 ( - 2 5 y . + 1 6 y 2 - 2 y 3 ) A j o ( j 0 ) + | ^ 3 0 y 2 A2° ( j 0 ) - 5 4 1 4 y A j 2 ( j 0 ) 

+ 4 ^ 1 0 ( - 5 y + y 2 ) A j ; ( j 0 ) - 2^5yA2Q ( j 0 )+^15 ( -50y + 3 2 y 2 4y 3 ) A ° 2 ( J 2 ) 

+ 1 2 ^ y 2 A j 2 ( J 2 ) + | - § - g ( - 2 1 y + 6 y 2 ) A j 3 ( J 2 ) + 4ΛΓ10 ( 4 y + y 2 ) A J J ( j 2 ) 

- I . 0 8 y A 0 4 ( J 2 ) + 2 0 ^ 1 4 y A i J ( j 2 ) - 4 ^ 2 y A 2 ° ( J 2 ) + 2^10 ( 8 y - y 2 ) A J ° ( j 2 ) 

+ 1 2 ^ 1 4 y A ^ ( J 2 ) - 2 ^ 3 5 y A 1

1 2 ( J 2 ) + 3 6 ^ - 3 - | y 2 A 2 0

4 ( j 4 ) + £ § § y 2 A0°
3 ( j 4 )] e" y 

( 5 b ) 
where 

y = b 2 q 2 / 8 , ^ = ( ? ί / π ) ω μ / 2 
and 

A ^ U ) = <Ψ»ι | J k < V / 2 > l * η · ΐ ' > , A ^ ( j k ) = A n l ( J k ) ( 6 ) 

The one b o d y t e r m Fl ( q ) h a s t h e form: 

F ^ q ) = d - 2 y + | y 2 ) e ~ 2 y ( 7 ) 

If we approximate the correlated relative wave function by the 

normalized correlation functions 

Ψηΐ (
r
) =

 N
ni t

1
 * exp(-Ar

2
/b

2
)]$

nl
 (r) (8) 

n' 1" 
bhe matrix elements Anl(jk) and Ani ( jk ) can be found analyti-

:ally.In expression (8) λ is the correlation parameter which is 

:aken to be state independent,N„i are the normalization factors 

Pni(r) is the HO radial wave function and b=\f2bi is the HO pa

rameter for the relative motion. The expressions for some of 

r̂.i · Ani (j-κ) and A
n
i ( J* ) are given in Massen and Panos 1989 

vhile the others are similar. 

îelation(l) can be used now for numerical calculations with the 

rfave function (8),considering only two free parameters, 

:he correlation parameter λ and the HO parameter b
x
.The fitting 

:o the experimental data of F
c h
 for *°Ca (Sinha et all 1973) 

fives bi-1.860fm,X«13.915 and χ
2
=19930 (case I).In the case 
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Figure 1. The charge form factors, |Fch(q)|, of nuclei: a) 
4 0
Ca and b)

 3 9
K versus momentum transfer. For the cases 1,11 

and HO see text. The experimental points and errors are 
from Sinha et al 1973. 

of no correlations (λ— ><°, case HO) the fitting gives bi=1.950fm 

and χ2=26847. From these values of χ2
 we note that the introduc

tion of correlations improves the overall fitting about 30% in 

comparison with the HO case, while from fig. la we can see that 

in case I the three diffraction minima are reproduced in the 

correct position while in case HO, only the position of the two 

diffraction minima are well reproduced and the overall fitting 

is worse. This is a general feature of wave functions with 

short-range correlations which reproduce theoretical Fon at 

high momentum transfer better than those obtained with usual 

single particle potentials. A strong repulsion in the single 

particle potential may%however(
improve the results considerably 

(Gibson et al 1968, Grypeos et al 1989).Also, form factors ob

tained with wave functions derived from usual Hartee-Fock 

calculations,are not expected to fit well the experimental 

Fcn(q) for large values of q (Friedrich et al 1986) . 

3. DERIVATION OF AN APPROXIMATE EXPRESSION FOR THE CHARGE 

FORM FACTOR OF «<>Ca. 

In our previous work (Massen and Panos (1989)jan approximate ex

pression of the two body term, F2(q), of the'charge form factor 

for * He and 160 has been found which had the form 

F
2
(q)= λ"

3/2
[Α(7)β

_3Γ
+ B(y)e"

y
i+ C(y)e~

y
2 ]

e
~

y
 (9) 

where 
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y=b
2
q

2
/8 , y

x
 = y/d+λ) , y

2
 =

 7
/(1+2λ) (10) 

and A(y), B(y), C(y) are polynomials of second order, with 

coefficients given in table 1. 

Table 1. The values of the coefficients ai , (3i , ri (i = 0, ... ,4) 
which appear in the approximate expression of F2 for nuclei 
4He, 160, toca. 

4 
He 

1 6 
0 

40 
Ca 

α 
0 

4 . 9 3 9 

9 . 5 7 0 

1 5 . 0 1 1 

α 
1 

0. 

- 8 . 6 4 4 

- 2 7 . 4 7 5 

α 
2 

0. 

0 . 

1 0 . 4 3 4 

α 
3 

0. 

0. 

0 . 

α 
4 

0. 

0. 

0. 

4 
He 

1 6 
0 

40 
Ca 

β ο 

- 6 . 

- 1 1 . 

- 1 8 . 

625 

234 

0> 

0. 

1 0 . 5 

3 1 . 1 2 5 

β

2 

0. 

- 1 . 5 

- 1 5 . 6 7 5 

ρ

3 

0. 

0. 

2 .7 

β 4 

0 . 

0 . 

- 0 . 15 

4 
He 

1 6 

0 
40 

Ca 

r o 

1 . 0 6 1 

2 . 0 5 5 

3 . 2 2 3 

Τ ι 

0 . 

- 1 . 8 5 6 

- 5 . 5 0 2 

r 2 

0. 

0 . 2 6 5 

2 . 7 8 9 

r 3 

0. 

0 . 

- 0 . 4 7 7 

r 4 

0. 

0 . 

0 . 0 2 7 

Following the same procedure for
 4 0
Ca we found that the ap

proximate expression F2(q) is given again by expression (9), 

the only difference is that A(y), B(y) and C(y) are now polyno

mials of fourth order, that is 

A(y)=oc
0
+ Ojy + cc

2
y

2
+a

3
y

3
+ a

4
yt B(y)=P

0
+ ß1 y + 32y +ß

5
3y + P̂ y 

C(y)=r0+ rxy + r2v
2 + rzy

z + rAyA (11) 

where the coefficients ai , ßi, ri (i=0,1,2,3,4) are given in 

table 1. From these values we can see that 

F2(q) = 0 for q=0 or/and λ-> » (12) 

and 

ao .+ 0o + 70 = 0 (13) 
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> 

If instead of expression i'51 we use expression f9) for F
2
 in 

fitting the F,-y. for
 4
°Ca to the experimental data we obtain, 

with bi-1.860fm and λ=13.915. the value x
2
=21109 (case II). 

This value of χ
2
 differs less than 6% from the corresponding 

value of y
2
 which has been found in case I. From figure la we 

can see that the fitting with the approximate expression of F
2 

reproduces again the three diffraction minima in the correct 

position and the overall fitting is almost as good as in case 

I. Thus th
c
 above approximate expression of F

2
 is reasonable 

and can be used instead of the "exact" one. 

4. THE APPROXIMATE EXPRESSION OF F2(q) FOR s-d SHELL NUCLEI 

Having found the approximate expression of F2 for
 4 0

Ca in sec

tion 3 and for ι»0 in Massen et el (1989) it is worth seeing if 

we can make a reasonable estimate of the two body term in the 

cluster expansion of Fch for the other s-d shell nuclei so that 

it is not necessary to make the same laborious work for these 

nuclei separately.For this reason we make the following assump

tions : 

i)The expression of the two body term,F2,in the factor cluster 

expansion of Fch for the open s-d shell nuclei has the same 

structure as in expression (9) as it should be expected, 

ii) The values of the parameter (b
2
/A)i/2 which were found 

in the fitting of Fch with the "exact" expression of F2 for 
4
He,

 1 6
0 and

 4 0
Ca are nearly equal as can be seen from table 2, 

that is 

2 1/2 
(b /λ) «»constant (14) 

This relation together with the fact that, the leading term of 

the expansion of bi in powers of A is A*/
6
 (Bertsch 1972, Das-

kaloyannis et al 1983) leads to λ«=Αΐ/3. It should be noted that 

this relation indicates that the leading term of λ in an expan

sion of A is Ai/3. For the sake of simplicity we take the A de

pendence of λ to be 

λ ~ λο+ λιΑΐ/3 (15) 

where the values of λο and λι can be found from the known 

values of λ for ISO and
 4 0

Ca. 
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iii) For the coefficients ai, ßi , ri (i=0,1,2,3,4 ) of the s-d 

shell nuclei we make a linear interpolation, between the cor

responding values of i60 and 40Ca, of the form 

ex,-- a< 0 )
 + a'V'iZ-S), &t = β<

0)

 +
 β ^ ί Ζ - δ ) , r, = r[0) + r[1} iZ-Q) 

where Z-8 is the number of protons in the s-d shell. 

In the case of s-d shell nuclei it is not easy to find an A de

pendence for the coefficients oto , βο , as we found in the case 

of ρ shell nuclei (Massen and Panos 1989) because the contribu

tion of the two body term to the second moment of the density, 

<r
2
 >2 , for 4 0 Ca does not depend only on the parameters cto and 

βο but depends also on the parameters αϊ , βι , γι . The expres

sion of <r
2
 >2 is now 

χ 2
V
 3 r

 L
 ο 1+λ/2 . 1+λ 1, , n , '

 N1
, 2^-3/2 ίΛΠΛ 

<r >2= •% [α
0
 + β

0
 -

ΊΤλ
~- + r

0 T+~^ - -§(«!+ 0
X
 + ^ ) ] ^ λ (17) 

This expression of <r2>z remains the same (as in the case for ρ 

shell nuclei) when the corrections due to the center of mass 

motion and the finite proton size are included. 

If the above assumptions are reasonable,we should obtain better 

results with the approximate formula (9) for F2, compared to 

those obtained with harmonic oscillator wave functions without 

correlations. Indeed this is the case as we will see below. 

The calculation of Fch for each s-d shell nucleus using the ap

proximate expression (9) for F2(q) is as follows: First the 

values of αί ,βί ,γί (i=0,...,4) and the value of the correlation 

parameter λ are found from equations (16) and (15) and the cor

responding values for 160 and
 4 0
Ca from tables 1 and 2. Secondly 

the one body term of Fch(q) is calculated by the formula 

r 8(Z-5) 4(Z-8) 2
Ί
 -2y 

Finally Fch(q) is found from expression (1). It should be noted 

that in this procedure the Fch(q) for each s-d shell nucleus is 

a function of q with only one free parameter, the harmonic os

cillator parameter bi . 

We have used this procedure for the nuclei 2 0N
e
, 24Mg, 28Si, 

31P,
 3 2
S and

 3 9
K. The parameter bi for each of these nuclei has 

been determined by least squares fitting to the experimental 

Fch(q). The experimental values of Fch for 20N
e
, 24Mg and 28Si 
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are from Horikawa 1971,for 3 ip and 32S a r e from Sinha e t al 

1972 and for 39K are from Sinha e t al 1973. The va lues of bi, 

(b2/A)i/2 and χ 2 for these nucle i are shown in t a b l e 2. From 

t h i s tab le we can see that the corre la t ion parameter (b 2 /A) 1 / 2 

remains almost constant .In most cases the d i f ference between 

the larger and the smaller values of t h i s parameter i s l e s s 

than 6%, but there i s an exception for 2<>Ne where the dif

ference i s 8%. The values of bi and χ 2 mentioned previously can 

Table 2. The values of the HO parameter bi. the correlation parameters λ, 
{\P-/\)X/"Z. the χ2, the charge RMS radius <r*i-.'>lx2. the contribution to the 
charge RM£ radius from the two body terms <r 0 ^^ 1 / ' 2 and the experimental 
RMS radius for the "*He,160 and s-d shell nuclei (distances in fm). For the 
various case;.-; see text. 

C a s e 

I 

I I 

HO 

I 

I I 

HO 

I I 

HO 

I I 

HO 

I I 

HO 

I I 

HO 

I I 

HO 

I I 

HO 

I 

I I 

HO 

N u c l 

4 He 

4 He 

4 He 

1 6 0 

1 6 0 

1 6 0 

20N 

20N 

2 4 Mg 

2 4 Mg 
2 » S i 

2 8 S i 

31 ρ 

31 ρ 

3 2 S 

3 2 S 

39K 

39K 

4 0 Ca 

4 o c a 

4 0 Ca 

\ 

1 . 2 1 5 

1 . 2 1 5 

1 . 3 6 3 

1 . 6 7 9 

1 . 6 7 9 

1 . 7 8 6 

1 . 6 5 9 

1 . 7 4 3 

1 . 7 6 0 

1 . 8 0 7 

1 . 8 2 1 

1 . 8 9 1 

1 . 7 4 6 

1 . 8 4 9 

1 . 7 9 3 

1 . 8 6 0 

1 . 8 6 6 

1 . 9 6 9 

1 . 8 6 0 

1 . 8 6 0 

1 . 9 5 0 

λ 

5 . 9 6 7 

5 . 9 6 7 

co 

1 2 . 7 6 7 

1 2 . 7 6 7 

co 

1 3 . 0 1 6 

1 3 . 2 3 3 

co 

1 3 . 4 2 7 

00 

1 3 . 5 6 0 

1 3 . 6 0 3 

co 

1 3 . 8 7 9 

00 

1 3 . 9 1 5 

1 3 . 9 1 5 

co 

•fbf/λ 

0 . 4 9 7 

0 . 4 9 7 

0 

0 . 4 7 0 

0 . 4 7 0 

0 

0 . 4 6 0 

0 

0 . 4 8 4 

0 

0 . 4 9 7 

0 

0 . 4 7 4 

0 

0 . 4 8 6 

0 

0 . 5 0 1 

0 

0 . 4 9 9 

0 . 4 9 9 

0 

2 
X 

1 5 2 . 4 

3 9 2 . 5 

1 5 9 2 . 8 

6 2 2 6 . 

7 1 9 3 . 

9 0 1 3 . 

2 . 0 0 0 

0 . 9 2 4 

9 . 3 6 6 

1 7 . 6 9 5 

1 1 . 2 6 7 

1 6 . 9 7 4 

9 2 7 4 . 

1 1 9 0 2 . 

2 9 4 0 . 

4 6 6 4 . 2 

2 4 8 4 8 . 

2 6 1 2 2 . 

1 9 9 3 0 . 

2 1 1 0 9 . 

2 6 8 4 7 . 

, 2 . 1 2 
e η 

1 . 5 7 8 

1 . 5 9 5 

1 . 6 3 0 

2 . 6 5 9 

2 . 6 5 5 

2 . 7 2 8 

2 . 7 7 1 

2 . 8 1 6 

3 . 0 2 8 

3 . 0 1 1 

3 . 2 0 1 

3 . 2 1 5 

3 . 1 0 5 

3 . 1 7 6 

3 . 2 1 0 

3 . 2 1 7 

3 . 3 9 9 

3 . 4 5 6 

3 . 4 1 9 

3 . 4 0 6 

3 . 4 3 9 

. 2 v l 2 
e h 2 

0 . 5 1 4 

0 . 5 6 2 

0 . 

0 . 6 5 4 

0 . 6 3 9 

0 . 

0 . 6 6 2 

0 . 

0 . 7 3 3 

0 . 

0 . 7 8 8 

0 . 

0 . 7 6 7 

0 . 

0 . 8 0 4 

0 . 

0 . 8 7 6 

0 . 

0 . 9 3 6 

0 . 8 8 7 

0 . 

, 2 . 1 2 
< r c s > e x 

1 . 6 3 0 » 

2 . 7 2 8 b 

2 . 9 1 0 c 

3 . 0 3 c 

3 . 14e 

3 . 1 9 d 

3 . 2 4 5 d 

3 . 4 0 8 e 

3 . 4 8 2 e 

a)DeJager e t al 1974, b)Sick and McCarthy 1970 
c)Horikava et al 1971,d)Sinha e t a l 1972, e)Sinha e t a l 1973 
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be compared with the corresponding values of bi and χ
2
 when the 

fitting to the experimental values of Fch is made with λ=» 

(case HO). From these values of χ* which are also shown in 

table 2 we can see that for the above mentioned nuclei,except 

for 20Ne, the values of χ2
 in most cases are more than 20% big

ger compared with the corresponding values of χ2 of case II. 

Finally it may be seen fiora figures lb, 2 and 3,where F
c
*i (in ca

ses II and HO) is compared with the corresponding experimental 

values of Fcn.that for all nuclei the diffraction minima are in 

the correct position while the overall fitting is better in 

case II than in case HO.except for
 2
°Ne.The above agreement in 

1 ? 

i 
ci-

io -1-. 

10 

10 -: 

10 

ι T-

\ 

Case Π 
Case HO •Î 

V 9 ^ 

10 

i o - : 

i o - -

0.0 1.0 2.0 3.0 
q(fm-') 

10 

Case Π 
Case HO 

in 
V 

• il \ 
Κ 

J 0.0 1.0 2.0 3.0 

q(fm~l) 

Figure 2. The charge form factors, jFch(q)|, of nuclei: a) 3ip 
and b) 32S versus momentum transfer. For the cases II and HO 
see text. The experimental points and errors are from Sinha et 
al 1972. 

1 r " ~ " % " Ν * 
"^>τ Case Π 

•*T Case HO 

A 

io -s 

IO 

κ 
10 

10 

10 

0.0 1.0 2.0 

q(ftO 

· - Case Π 
— Case HO 

0.0 1.0 2.0 

q(ftO 

ι -

io -s 

IO-*: 

i o •*• 

~^N. "s i 
X ^ Case Π 

x Case HO 

V 
* 

\ „ 
mi 
<»; \ 
''.' S 
''! \ 

0.0 1.0 2.0 
l i t a i - ) 

Figure 3. The charge form factors, |Fch(q)| , of nuclei: a) 
2 0Ne, b) 24Mg and c) 2 8Si, versus momentum transfer. For the 
cases II and HO see text. The experimental points and errors 
are from Horikawa 1972. 
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case II with the experiment indicates that the assumptions made 

are reasonable and expression (9) of F2 can be used as a reaso

nable approximation to include in a way short range correla

tions in the s-d shell nuclei.The disagreement in the form fac

tor of the case of
 2 0

Ne is not surprising because this nucleus 

is a peculiar one in many shell model analyses and it maybe 

that we need for its description othrr degrees of freedom such 

as rotational or/and a cluster model treatment (Abgrall et al 

1974). 

5. TBE APPROXIMATE EXPRESSION OF THE CHARGE DENSITY DISTRIBUTION 

The above described method has the advantage that it offers the 

possibility of finding the approximate correction to the un

corrected charge densities analytically by the Fourier trans

form of F
2
(q) given by (9). That is: 

1 Γ sin(qr) 

M
r
) = TT q2F2(q)fCM(q)fp(q)dq (19) 

2
 2π2 Jo qr 

η -a
 2
q

 2
/ 4 η 

If for fp(q) we use a sum of η gaussians, Σ Ai e ί , Σ Ai =1 
i =1 i =1 

ρ ( r ) becomes : 
Ρ, ( r ) = . Σ Α. ρο ( r , a . ) , ( 2 0 ) 

2 i = 1 i 2 i 

where ρ ( r , a ) h a s t h e form: 
2 i 

Ρ ( r , a )= λ" / 2 f l ( x ) e " X + J ( x ) e " * i + K(x ) e ~ * 2 ] (21) 
2 i 2π3/ 2 L 1 2 J 

In the above formula of p (r,a ), χ, χ and χ are: 
2 ί 1 - 2 

2 - 2 2 2 2 2 

χ = r /b χ =r /δ , χ =r /δ (22) 
1 1 1 2 . 2 

where 
- 2 , 1 2 2 2 1+λ/2 1 2 2 2 1+λ 1 2 2 
b = 1- - b +a , δ =( )b +a , δ =( )b +a 

1 A l i 1 l + λ A L A 2 1 + 2 λ A 1 

The function I(x) is: 

1 r 3 bi 3 15 b i 3 
I ( x = — 2cc + - a — i F i ( - l ; - ; x ) + — a — i F i ( - 2 ; - ; x ) 

-3 L 0 2 1 -2 2 8 2 -4 2 
bi bi bi 

105 bl 3 945 bi 3 Ί 

+ I T n = ^ l F l ( - 3 ; i i x ) +ÏSia< ri , F"-4 i i i X )] (24) 

bi bi 

{23) 
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while thè function J(χι ) or the function K(x2) can be derived 

from the function I(x) if instead of x, bi and ai (i=0,1,2,3,4) 

we put χι , δι and ßi or X2 ,02 and ri respectively. 

The contribution of the one body term to the density is 

ρ (r)= Σ A ρ (r,a. ) 

1 ι = 1 ι 1 ι 

(25) 

where ρ (r,a ) has the form: 
1 i 

P̂  (r,ai )=-

%3/2bi 
-Ϊ-

2(Z-5) bi 3 5(Z-8) bi 
— I F I (-l;-;x)+-
-2 2 
bi 

bi 3 -.-χ 
—iFi(-2;-;x) e 
-4 2

 J 

bi 

Ζ -2 '2' 4Z 
bi 

(26) 

Expressions (20) and (25) have been used for calculations of 

the charge densities of
 1 6

0 ,
 4 0

Ca and for the other s-d shell 

nuclei mentioned in chapter 4 using the parameters of table 2. 

The calculated charge densities for ι 60,24 Mg,28 si,32 s,38R and 
4 0
Ca are plotted and compared with the model independent 

charge distributions (Sick 1979) in figure 4. In the same figure 
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Figure 4. The charge distributions of nuclei:*60,24M
gi
28 Si,32S, 

39K and
 4 0
Ca. For the cases 1,11 and HO see text.The experimen

tal points are from Sick 1979 (See also Malaguti et al 1982) . 
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the approximate expression of p2(r) and the charge distribution 

of 1 60 and *°Ca calculated numerically from the "exact" exprès 

sion of Fch(q) are also shown. From this figure we can see that 

the introduction of the correlations in the uncorrelated charge 

densities in the "exact" (case I) or the approximate form (case 

II) gives better charge distributions compared with the ones in 

the case HO, while in the case of nuclei 160,32S,39K and 4<>Ca 

the agreement with the model independent charge densities is 

very good. We may also note that the introduction of the cor

relations leads to a decrease of the central part of the den

sity and an increase of the surface part of it. This is an ef

fect of the repulsion between the particles at small mutual 

distances and it seems that it contributes,to the charge den

sities in the right way Finally the RMS charge radii, <r2 >i/2, 

and the contribution of the two body term to it, <r2. >i/2, for 

the s-d shell nuclei are shown in table 2. 

6. SUMMARY AND CONCLUDING REMARKS 

In this paper an "exact" formula (in the two body approxima

tion) and an approximate one for the correlated charge form 

factor of 40Ca have been derived which reproduce quite well the 

experimental charge form factor. The two formulae give similar 

form factors for momentum transfers up to q**3. 5fm-i . Thus the 

assumption made for deriving the approximate formula is rea 

sonable. The correlation parameter (b2/X)i/2, which charac

terises the "strength" of the correlations,has a value which is 

almost the same with the one which was found for nuclei 4He and 

16 0. On the basis of this we obtain a mass dependence for the 

correlation parameter λ. This feature for λ together with some 

other reasonable assumptions is useful in extending the appro

ximate formulae of Fch(q) for ISO and 40Ca to other s-d shell 

nuclei so that we do not need to repeat the laborious work as 

in the case of 160 and 4 ο Ca. The approximate formula of Fch for 

the s-d shell nuclei derived using correlations (which has one 

free parameter, the HO parameter bi ) gives better χ2 for almost 

all the nuclei we considered than in the case without correlations 

Thus , this method has the advantage that it offers the possibi

lity of a simple treatment, in an approximate way,of the corre

lated charge form factor of open shell nuclei, not only in the 
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region 4<A<16 but also in the region 16<A<40. The present work 

has the limitation of not taking properly into account the ef

fect of long range correlations whose contribution is charac

terized by fluctuations with A.Because of this.it is natural to 

expect that there will be some deviations of the obtained va

lues of the parameters from their actual values and also that 

this should affect their A dependence to some extent. 

The correlated charge densities of these nuclei have been found 

analytically and compare quite well with the model independent 

charge densities. The introduction of the correlations has the 

feature of reducing the central part of the densities. We also 

note that the approximate expression of F2(q) was derived by 
n* 1' 

expanding the matrix elements Ani (jk) and the normalization 

factors Nni in powers of λ and keeping powers of λ up to λ
_ 3
/2. 

Our results show that,as a first approximation, only the s sta

tes depend on λ. Thus,if the correlation parameter is taken to 

be state independent, as it was assumed in the present work, 

short-range correlations are mainly important in the s-states. 

The question arises whether we can extend this method for A>40. 

In this case the degree of the polynomials A(y), B(y) and C(y) 

will be greater than four which means it will be very difficult 

to find the coefficients αί ,βϊ ,γί for heavy nuclei. 

There is also the possibility of using this method in the case 

where the uncorrelated wave function is not a HO one but a wave 

function coming from more realistic single particle potentials, 

such as Woods-Saxon or Skyrme type interactions. If this is 

difficult then perhaps the approximate expression of the two 

body term,F2 given by (9),could be used to include correlations 

in "a minimal way" when a more realistic single particle poten

tial is used, in the same way as one uses the correction due to 

the center of mass motion. 
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