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Correlated charge form factors and densities
of the sd-shell nuclei

S.E.Massen

Department of Theoretical Physics.University of Thessaloniki
Thessaloniki 54006, Greece

ABSTRACT: The expression of the two body term in the fac-
tor cluster expansion of the charge form factor of 4°Ca isg
derived.It contains the harmonic oscillator (HO) parameter
bas and the parameter A which originates from the Jastrow
correlation function. This expression together with the
corresponding one of %0 nucleus helps to find a mass de-
pendence of A and an approximate and fairly simple expres-—
gion of the two body term of open shell nuclei 1n the
region 16<A<40 which contains one free parameter, the HO
parameter b,. The fitting to the corresponding experimen-—
tal charge form factor is quite improved in comparison to
the HO one without correlations.

1. INTRODUCTION

The factor cluster expansion of Ristig et al (1971) (Clark
1981) has been used by Nassena (1979,1981) and a generalized
expression for the charge form factor,Fenh(q),of light closed
shell nuclei was derived. This formula was simplified (Mas-.
sen et al 1988) using normalized correlated wave functions
of the relative motion and was applied to the 180 nucleus.
Finally in a recent paper (Massen et al 1989) various appro-
ximations to +the two-body term of the cluster expansion of
the Feh(q) have been used and an approximate expression of
it for the 4He and 180 nuclei has been derived. That formula
was extended approximately to the other p shell nuclei.

The purpose of the present work is to extend the previous
works to the 40Ca nucleus and to the other s-d shell nuclei.
This extension seems to be necessary for two reasons. First
it is worth seeing 1if the correlation parameter (blz/?\)”2
remains constant in the s-d shell nuclei as it was the case
in the p shell nuclei. On the other hand the work of finding
the two body term of the cluster expansion of Feh (q)* for
each nucleus in the s-d shell is a laborious one, so it is
worth to find a simple treatment of the correlated charge
form factor in this region of nuclei. For these reasons the
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"exact" formula of Feh(q) for 40Ca nucleus,which is a sum of
the one and two body-term in the cluster expansion of it,

has been found. This formula which is more complicated than
the corresponding one of 180 nucleus has two free parameters,
the HO parameter bi and the correlation parameter A. These
parameters have been determined by fitting to the experimen-
tal data of the charge form factor. In the next step an ap-
proximate formula of Feh(q) for 40Ca has been found which is
similar to the corresponding one of 180. This approximate
formula has the advantage that it can be used in finding a
mass dependence of the correlation parameter A which is re-
lated to the dependence of the HO parameter b1 on the mass
number. Finally from the approximate expression of Fech for
180 which has been found in our previous work and the one of
40Ca an approximate expression of Fch(q) for the s-d shell
nuclei has been found by making some reasonable assumptions.

This expression has one free parameter,the HO parameter b1,

which can be determined for each nucleus separately by fit-
ting to the experimental Fch(q). Such a procedure has the
advantage of simplifying the calculations very considerably.

In section 2 the "exact” expression of Fch for 40Ca (which
is a sum of one and two body terms) is derived while in gec-
tion 3 an approximate expression of Fech for this nucleus is
derived and results are reported and discussed in both cases
In section 4 the approximate expression is extended to other
s-d shell nuclei and results for 20Ne,24Mg,285i,31P,325 and
39K are also given and discussed. In section § +the charge
densities of these nuclei are given and compared with the

experimental ones. Concluding remarks are made in section 6.

2. THE EXPRESSION OF THE CHARGE FORM FACTOR OF 40Ca NUCLEUS

In a previous work (Massen et al 1988) a general expression
of the charge form factor of light closed shell nuclei was
derived by using the factor cluster expansion of Ristig et
al (1971) by considering a normalized correlated wave func-
tion of the relative motion. This expression has the form

Fop(a) = fp(q)fCM(Q)[Fl(q)+F2(Q)] (1)
where fp(q) and fcM(q) are the corrections due to the finite
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proton size and the center of mass motion (Massen et al

1988) and

4n§1521i+1)<n111|jo(qu)|n11i> (2)

Bl

1
Fl (q)= K <0>1 =
is the contribution of the one body term to Fen(q) while the
contribution of the two body term to Feh(q) is

Fp(@)= § <0>,= 3 [<0>4!) - (A-1)<0>,] (3)
where:
1
0. V=5 3 3 F <AmLM|Aw><1’mL’M|Aw><nlNLA| ni Linj 152
2 njlj nl N A
njlj n’1* N'L’'’mM

x<n’1*N’L*A|ni Linj1§A><NLM| eia "R | N'L’M>B(nlm,n’1’m)  (4)

The matrix element B(nlm,n’1’m) depends on the wave function
of the relative motion and the operator which introduces the
correlations. If +the operator F 1is spin independent the

matrix element B has the form

B(nlm,n’1’m) = [16-4(-1)!" 1<nlm|F}, &' T T/?F ,|n'1'm>

The application of the above formula to the 4He is straight
forward while for 160 is more difficult but still it is easy
to be handled (Massen et al 1988). For the case of 40Ca it
is extremely difficult to find the expression of the two
body term F2(q) by hand because the possible combinations of
the quantum numbers nl,NL,A, mM are about 2000. For this
reason a computer program which calculates.F2(q) was made.In
this way we have found that the two body term, F2(q), of the
Feh (q) has the form

F2(a) = F2(q) + Fz(q) (5)
where
Fo (q)=
1 185 . "
To[12[ (252 -40y+23y% -ay® +gy* YA, (30 )+ (AT - 2ydly? A, (5,
27 . 3 o 2 .
ao Uo) + (B - Byedy® ) o)+ B2, (g )+ 350 (50)

_10 .20 2

(237 +537" VA, (3,)+ 970 Ag, (3,)] +20[(30-35y+11y% -y ) Ay, (5,)

21 _ 7 . ' j
+(2_" —Z_Y)A03 (JO )+(g = gY)All (jo )+(_g%y+8y2 —ya )AOI (Jz)
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. - e Az, -
1oy, (g )= LvBos (3)]]e7Y - 391 - 2y + gy )e ?T (5a)

and

EZ(q) =

o[ 6(-25y. +165%-25° )ALS (35)+ 2N30y2AZS (3,0~ BY14VALS (34)

+124327 %AV E (3,)+ J9p(-2ly+6y7)ASY (5,)+ 4910(ay+y®)Ay] (3,)
-298va0% (5,)+ BRN1ayAE (5,)- a42yAld (5,)+ 2410(8y-y* )Ag ) (4,)
+12418yA3} (3, )~2435YAL 2 (5, ) +36450v A0 8 (3,)+ Z52v?A32 (5,0] e
(5b)
where
y = b2q®/8 , b, =(H/mw)l/2
and
AR5 = <y de(ar/2) [ wne g, >, ARI(E) = AL (G)  (6)
The one body term Fi1(q) has the form:
Fo(a) = (1-2y + gy2)e 27 (7

If we approximate the correlated relative wave function by the

nrormalized correlation functions

ny (1) = N\ [1 - exp(-Ar?/b?) 1o, (r) (8)

»

the matrix elements Anl (jk) and 3;1 (jk) can be found analyti-
rally.In expression (8) A 1is the correlation parameter which is
saken to be state independent,Nn,: are the normalization factors
pn2 (r) 1s the HO radial wave function and b=J§b1 15 the HO pa-
~ameter for the relative motion. The expressions for some of
Jn1. An1 (Jx) and A:;lkjk) are given in Massen and Panos 1989
vhile the others are similar.

telation(l) can be used now for numerical calculations with the
nave function (8).considering only two free parameters,
-he correlation parameter A and the HO parameter b;.The fitting
.0 the experimental data of F.n for 40Ca (Sinha et all 1973)
rives bai=1.860fm,A=13.915 and x2=19930 (case I).In the case
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Figure 1. The charge form factors, |Fch(q)|, of nuclei: a)

40Ca and b) 39K versus momentum transfer. For the cases I,II

and HO see text. The experimental points and errors are

from Sinha et al 1973.
of no correlations (A—>», case HO) the fitting gives bi1=1.950fm
and x2=26847.From these values of x2 we note that the introduc-
tion of correlations improves the overall fitting about 30% in
comparison with the HO case, while from fig. la we can see that
in case 1 the three diffraction minima are reproduced in the
correct position while in case HO, only the position of the two
diffraction minima are well reproduced and the overall fitting
is worse. This 1s a general feature of wave functions Qith
short-range correlations which reproduce theoretical Feon at
high momentum transfer better than those obtained with usual
single particle potentials. A strong repulsion in the single
particle potential may ,however K improve tﬁé results considerably
(Gibson et al 1968, Grypeos et al 1989).Also, form factors ob-
tained with wave functions derived from usual Hartee-Fock
calculations,are not expected to fit well the experimental

Fen(q) for large values of q (Friedrich et al 1986).
3. DERIVATION OF AN APPROXIMATE EXPRESSION FOR THE CHARGE
FORM FACTOR OF 40Ca. )

In our previous work(Massen and Panos (1989» an approximate ex-
pression of the two body term, F2(q), of the charge form factor
for 4He and 160 has been found which had the form

F, ()= A 2/2[A(y)e 7+ B(y)e 71+ C(y)e 72 |7 (9)
where
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y=b2a?/8 ,  y = y/(1+A) .y, = y/(1422) (10)

and A(y), B(y), C(y) are polynomials of second order, with

coefficients given in table 1.

Table 1. The values of the coefficients ai, Bi, 7ri (i=0,...,4)
which appear in the approximate expression of Fz for nuclei
4He, 160, 40Ca.

[o! o o4 o a
0 1 2 3 4
4
He[4.939 0. 0. 0.
16O 9.570 | -8.644 0. :
40
Ca[15.011|-27.475[10.434|0.
‘30 ‘31 ‘32 63 64
4
He| -6. 0. 0. 0. 0.
-]
' 0 |-11.625)10.5 -1.5 0 0
40
Cal-18.234|31.125]-15.675|2.7]-0.15
TO Tl 72 73 Y4
4 -
He|1.061] O. 0. 0. 0.

0 |2.055|-1.856/0.265]0. ;
Cal|3.223]|-5.502]|2.789]|-0.477/0.027

Following the same procedure for 4°Ca we found that the ap-
proximate expression Fz(q) 1is given again by expression (9),
the only difference is that A(y), B(y) and C(y) are now polyno-
mials of fourth order, that is

2 3 4 & 3 4
A(y)=a,* oy + o,y +a,y + a,y, B(y)=By+ B,y + B,y +B,y + B,y
- 2 3 4
Cy)=rot 71 ¥ + 17 + 73V + 1,¥ (11)

where the coefficients ai, @i, 17ri (i=0,1,2,3,4) are given in
table 1. From these values we can see that

F2(q) = O for q=0 or/and »> ® (12)
and

o + Bo + Yo = O (13)
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Tt 1nstead of expression 5) we use expression (9) for Fz 1n
fitting the F.y, for @49Ca te the experimental data we obtain,

with hy=1.860fm and A=12.915. the value x=2=21109 (case II).

This wvalue of x® differs less than 6% from the corresponding
value of x2 which haz been found in case I. From figure la we

can see that the fitting with the approximate expression of Fao
reproduces again the three diffraction minima 1n the correct
position  and  the averall fitting 15 almost as good as in case

I. Thus the above approximate expression of Fz 1s reasonable

and can be used instead of the "exact" one.

4. THE APPROXIMATE EXPRESSION OF F2(q) FOR s-d SHELL NUCLEI

Having found the approximate expression of Fz for 40Ca in sec=
tion 3 and for 1860 in Massen et el (1989) it is worth seeing if
we can make a reasonable estimate of the two body term in the
cluster expansion of Feh for the other s-d shell nuclei so that
it is not necessary to make the same laborious work for these
nuclei separately.For this reason we make the following assump-
tions:

1)The expression of the two body term,F2,in the factor cluster
expansion of Feh for the open s-d shell nuclei has +the same
structure as in expression (9) as it should -be expected.

ii) The values of the parameter (bf/?\)l/2 which were found

in the fitting of Fen with the "exact" expression of F2 for
4He, 160 and 49Ca are nearly equal as can be seen from table 2,
that is

(bf/%)l/zaconstant (14)
This relation together with the fact that the leading term of
the expansion of b1 in powers of A is Al1/8 (Bertsch 1972, Das-
kaloyannis et al 1983) leads to A=A1/3. It should be noted that
this relation indicates that the leading term of A in an expan-
sion of A is Al/3. For the sake of simplicity we take the A de-

pendence of A to be
A= Ao+ ALA1/3 (15)

where the values of Ao and A1 can be found from the known
values of A for 180 and 40Ca.
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iii) For the coefficients ci, RBi, 7vi (i=0,1,2,3,4) of the s-d
shell nuclei we make a linear interpolation, between the cor-
responding values of 160 and 40Ca, of the form

o= ol + ot (z-8), B, = B0+ BT (2-8), vy = (T + 0T (2-8)

i i
where Z-8 is the number of protons in the s-d shell. (18}

In the case of s-d shell nuclei it is not easy to find an A de-
pendence for the coefficients oo, PBo, as we found in the case
of p shell nuclei (Massen and Panos 1989) because the contribu-
tion of the two body term to the second moment of the density,
<r2>z, for 490Ca does not depend only on the parameters ao and
Bo but depends also on the parameters ai, Bi1, 7r1. The expres-
sion of <r2>z is now

-3 1+A/2 1+ 1 2,-3/2
<r'>p= 5 [ag* By “TERT * Yo Tiox T 5%t Bt 7] bIA (17)

This expression of <r2>2 remains the same (as in the casefor p
vshell nuclei) when the corrections due to the center of mass
motion and the finite proton size are included.

If the above assumptions are reasonable,we should obtain better
results with the approximate formula (9) for F2, compared to
those obtained with harmonic oscillator wave functions without
correlations. Indeed this is the case as we will see below.

The calculation of Fen for each s-d shell nucleus using the ap-
proximate expression (9) for Fz2(q) is as follows: First the
values of i ,Bi,ri (i=0,...,4) and the value of the correlation
parameter A are found from equations (16) and (15) and the cor-
responding values for 160 and 49Ca from tables 1 and 2. Secondly
the one body term of\Fch(q) is calculated by the formula

(18)

8(2-5) 4(Z2-8) 29 -2y
Fl(q)=[1- 37 y + 32 y]e

Finally Fen(q) is found from expression (1). It should be noted
that in this procedure the Fch(q) for each s-d shell nucleus is
a function of q with only one free parameter, the harmonic os-
cillator parameter bi.
We have used this procedure for the nuclei 20Ne, 24Mg, 2885i,
31P, 325 and 39K. The parameter b1 for each of these nuclei has
been determined by least squares fitting to the experimental

Fen(q). The experimental values of Feh for 20Ne, 24Mg and 288i
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are from Horikawa 1971.for 21!P and 32S are from Sinha et al
1972 and for 39K are from Sinha et al 1973. The values of b1,
(b2/A)1/2 and x2 for these nuclei are shown in table 2. From
this table we can see that the correlation parameter (b2/A)l1/2
remains almost constant.In most cases the difference between
the larger and the smaller values of this parameter is less
than 6%, but there is an exception for 20Ne where the dif-

ference is 8%. The values of b1 and x2 mentioned previously can

Table 2. The values of the HO parameter by, the correlation parameters A,
(D2 A=, the ¥2,the charge RMS radius 'r§h>1;f. the contribution to the
charge RMS radius from the two body terms <roh ;'@ and the eyperimental
EMS radius for the 2He,'®0 and s-d shell nuclel (distances in fm). For the
various cases sSee text.

Case|Nucl b, A JZ??K x* <r2h>12 <r:h>;2 <r39;:
I 4He 11.215] 5.967[0.497] 152.4] 1.578 0.514 [1.630a
IT |4He [1.215] 5.967]0.497] 392.5( 1.595 0.562
HO [4He [1.363 © 0 1592.8| 1.630 0.

I (1860 |1.679[12.767/0.470(6226. 2.659 0.654 | 2.728b
IT {1860 [1.679[12.767[0.470[7193. 2.655 0.639
HO {160 [1.786 © 0 9013. 2.728 Qs 5
IT 120N [1.659{13.016{0.460( 2.000{ 2.771 0.662 | 2.910¢
HO [20N [1.743 0 0.924| 2.816 0.

IT [24Mg[1.760]13.233/0.484| 9.366( 3.028 0.733 [ 3.03¢c
HO [24Mg[1.807 © 0 17.695] 3.011 0.
IT [2853(1.821(13.427/0.497{11.267( 3.201 0.788 [3.14¢c
HO ([289i{1.891 ® 0 16.974| 3.215 0.

IT [31P [1.746/13.560{0.474!9274. 3.105 0.767 [3.194
HO [31P [1.849 0 [11902.] 3.176 0.
IT (23295 |1.793/13.603]/0.486]2940. 3.210 0.804 | 3.2454
HO [325 [1.860 © 0 4664.2| 3.217 0.
IT [39K [1.866(13.879[/0.501|24848.| 3.399 0.876 [3.408e
HO [3%K [1.969 © 0 26122.( 3.456 0.

I 40Cal1.860{13.915/0.499(19930.! 3.419 0.936 | 3.482e
IT [40Ca|1.860{13.915/0.499]21109.] 3.4086 0.887
HO ]40Cal1.950 © 0 26847.] 3.439 0.

a)DedJager et al 1974, b)Sick and McCarthy 1970
c)Horikava et al 1971,d)Sinha et al 1972, e)Sinha et al 1973
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be compared with the corresponding values of b1 and x2 when the
fitting to the experimental values of Fecn is made with A=

(case HO). From these values of x?2 which are
table 2

also shown in
we can see that for the above mentioned nuclei,except
for 20Ne, the values of x2 in most cases are more than 20% big-
ger éompared with the corresponding values of x2 of case II.
Finally it may be seen from figures 1b,2 and 3.,where Fen (in ca-
ses II and HO) is compared with the corresponding experimental
values of Fon,that for all nuclei the diffraction minima are in
the correct position while the overall fitting 1is Dbetter in

case II than in case HO,except for 20Ne .The above agreement in

= \\ ﬂp = 1 \\ "
IC v -—-—- Case II IC) h S
3] N Case HO 3 \ ~~-Case I
= 10 & Yyommmann Case HO
T 10 A 10 \
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Figure 2. The charge form factors, |Fch(q)|,

of nuclei: a) 31P
and b) 325 versus momentum transfer.

For the cases II and HO

see text. The experimental points and errors are from Sinha et
al 1972.
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Figure 3. The charge form factors, |Fech(q)|, of nuclei: a)
20Ne, b) 24Mg and c) 28Si, versus momentum transfer. For the
cases II and HO see text.

The experimental points

d
are from Horikawa 1972. an errors
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case II with the experiment indicates that the assumptions made
are reasonable and expression (9) of Fz2 can be used as a reaso-
nable approximation to include in a way short range correla-
tions in the s-d shell nuclei.The disagreement in the form fac-
tor of the case of 20Ne is not surprising because this nucleus
is a peculiar one in many shell model analyses and it maybe
that we need for its description other degrees of freedom such
as rotational or/and a cluster model treatment (Abgrall et al
1974).

5.THE APPROXIMATE EXPRESSION OF THE CHARGE DENSITY DISTRIBUTION

The above described method has the advantage that it offers the

possibility of finding the approximate correction to the un-
correlated charge densities analytically by the Fourier trans-

form of Fz(q) given by (9). That is:

1 ® sin(qr)

p,(r) = =—— ——q2Fz2 (q)fcm(q)fp (q)dq (19)
2 2n2 Jo qr
. n -a2q2/4 n
If for fp(q) we use a sum of n gau551ans,_21Aie i ,'ZlAizl
i= i=

pz(r) becomes:
n
P, (r)= Z Ap (r,a) , (20)

where pz(r,ai) has the form:

(r,a )= z'a/z[x( Je T+ J(x)e "1+ K(x )e 'z (21)
Py lbri®, Jor—per x x Je x )e

In the above formula of pz(r,a_), X, X and x, are:
1

_ 2 -2 2 62 2z 2
. X = r /b1 7 x =r / ) 3 X, =r /6z (22)
where
-2 1 2 2 2 1+A/2 1 .2 2 2 1+4A 1
b =(1- —=)b +a , & =( - =)b +a , & =( - =)b +a
1 A1 i 1 147 A 1L i 2 1427 AT 1 i
@3)
The function I(x) is:
2 4
1 3 b1 3 15 b1 3
I(x):——[Za + =-a — 1F1(-1;—=;x) + —a — 1F1(-2;—;%)
-3 o 21 -2 2 . 8 2 -4 2
b1 b1 b1
8 s 8 '
N 105a b1 LF1 (-3 3 v o+ 945 b1 F 1 3 )] (24)
s - —J;,—, X g i =gi=i
32 3 s 2 128 4 s 1R (tAigix
1 1
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while the function J(x1) or the function K(x2) can
from the function I(x) if instead of x, b

we put x1,

61 and Bi

or x2,02 and ri

be derived
(1i=0,1,2,3,4)
respectively.

and ai

The contribution of the one body term to the density is

n
px(r)—iglAipl(r,ai) (25)
where pl(r,a‘) has the form:
1
2 4
( ) ); [1 2(Z-5) b1 Fi (-1 3 ) 5(Z2-8) b Fy (-2 3 )]-x
r,ai)s= = —1F(-1;—;x)+————— —1F1 (-2;=—;
b i - Z -z 2 47 -4 it
n3/2b1 b1 b1
(26)
Expressions (20) and (25) have been used for calculations of

the charge densities of 180,

40Ca and for the other s-d

shell

nuclei

The calculated charge densities for

40Ca

mentioned in chapter

are

4 using the parameters of table 2.

160,24Mg,288i,325,39K and

plotted

and

compared

with the model independent

charge distributions (Sick 1979) in figure 4.In the same figure
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Figure 4. The charge distributions of nuclei:160,24Mg,2851,325,

38K and 4°Ca.

For the cases I,II and HO see text.The experimen-

tal points are from Sick 1979 (See also Malaguti et al 1982)
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the approximate expression of p2(r) and the charge distribution
of 160 and 49Ca calculated numerically from the "exact” expres

sion of Fch(gq) are also shown. From this figure we can see that
the introduction of the correlations in the uncorrelated charge
densities in the "exact" (case I) or the approximate form (case
I1) gives better charge distributions compared with the ones in
the case HO, while in the case of nuclei 180,323,39K and 49Ca
the agreement with the model independent charge densities is
very good. We may also note that the introduction of the cor-
relations leads to a decrease of the central part of the den-
sity and an increase of the surface part of it. This is an ef-
fect of the repulsion between the particles at small mutual
distances and it seems that it contributes,to the charge den-
sities in the right way Finally the RMS charge radii, <r%h>1/2,
and the contribution of the two body term to it, <r3nél/2’ for

the s-d shell nuclei are shown in table 2.
6. SUMMARY AND CONCLUDING REMARKS

In this paper an “"exact” formula (in the two body approxima-
tion) and an approximate one for the correlated charge form
factor of 409Ca have been derived which reproduce quite well the
experimental charge form factor. The two formulae give similar
form factors for momentum transfers up to q=3.5fm-1. Thus the
assumption made for deriving the approximate formula is rea
sonable. The correlation parameter (bz/A)1/2, which charac-
terises the "strength” of the correlations,has a value which is
almost the same with the one which was found for nuclei 4He and
180. On the basis of this we obtain a mass dependence for the
correlation parameter A. This feature for A together with some
other reasonable assumptions is useful in extending the appro-
ximate formulae of Fen(q) for 160 and 40Ca to other s-d shell
nuclei so that we do not need to repeat the laborious work as
in the case of 160 and 49Ca. The approximate formula of Fen for
the s-d shell nuclei derived using correlations (which has one
free parameter, the HO parameter bi) gives better x2 for almost
all the nuclei we considered than inthe cage without correlations
Thus, this method has the advantage that it offers the possibi-
lity of a simple treatment, in an approximate way,of the corre-
lated charge form factor of open shell nuclei, not only in the
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region 4<A<16 but also in the region 16<A<40. The present work
has the limitation of not taking properly into account the ef-
fect of long range correlations whose contribution is charac-
terized by fluctuations with A.Because of this,it is natural to
expect that -there will be some deviations of the obtained va-
lues of the parameters from their actual values and also that
this should affect their A dependence to some extent.

The correlated charge densities of these nuclei have been found
analytically and compare quite well with the model independent
charge densities. The introduction of the correlations has the
feature of reducing the central part of the densities. We also
note that the approximate express}on of F2(q) was derived by
expanding the matrix elements Anl (Bk) and the normalization
factors Nn1 in powers of A and keeping powers of A up to A-3/2.
Our results show that,as a first approximation, only the s sta-
tes depend on A. Thus,if the correlation parameter is taken to
be state independent, as it was assumed in the present work,
short-range correlations are mainly important in the s-states.
The question arises whether we can extend this method for A>40.
In this case the degree of the polynomials A(y), B(y) and C(y)
will be greater than four which means it will be very difficult
to find the coefficients Gi;ﬁi,Ti for heavy nuclei.

There is also the possibility of using this method in the case
where the uncorrelated wave function is not a HO one but a wave
function coming from more realistic single particle potentials,
such as Woods-Saxon or Skyrme type interactions. If this is
difficult then perhaps the approximate expression of the two
body term,F2 given by (9),could be used to include correlations
in "a minimal way" when a more realistic single particle poten-
tial is used, in the same way as one uses the correction due to

the center of mass motion.
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