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Nuclear distributions, rms radii and form factors
with the harmonic oscillator shell model”

T.S. Kosmas and J.D. Vergados
Division of Theorstical Physics, the University of loannina, GR. 451 10 loannina, Greece

ABSTRACT : General expressions for calculating nuclear distributions (proton,
charge, matter and momentum), mean radii and nuclear form factors are derived by
extending recent related works. They are based either on the simple harmonic oscillator
shell model or on its modification in which fractional occupation probabilities of the
surface orbits are used to fit the experimental elastic electron scattering data. The
method Is applied to the spherical nucleus 40Ca and the values of the partial occupation
probabilities are compared with those determined from experimental reaction data.

1. INTRODUCTION

The distributions of the nuclear charge, momentum and nuclear matter are among
the most important nuclear properties. The radial charge distribution is now quite well
known [1-3] from model independent analysis of electron-nucleus scattering data (via
the nuclear form factors) and very precise measiurements of muonic x-ray transitions.
Also the most accurately known nuclear-size parameter, the root mean square radius
(rms) of the charge distribution along the valley of maximum stability, is extracted from
these data. Theoretically, the considered properties are extensively studied [4-15] (the
weakness of the interaction and the knowledge of the interaction mechanism being the
most significant reason) by using single-particle potential models [4-7] and other self-
consistent methods [8-10]. During the last decade the momentum distribution has
received much attention on the theoretical side [9,16].

Recently [6,9], the corrections to the single-particle results of the above properties in
the nuclear ground state, which come from different sorts of correlations, have been
taken into account by assuming fractional occupation probabilities for the valence
orbitals in light nuclei [4-6,9] or by including ground state correlations in the closed shell
configuration of the ground state [11,12].

In this work, first we derive expressions for the nuclear distributions and the mean
square radii similar to those found in ref. [15] for the form factor by using the simple
harmonic oscillator shell model. Second we generalize the method of ref. [6] and
calculate the nuclear densities and form factors in the framework of this model by
assuming however that the surface nucleons of a nucleus are distributed in the valence
orbitals (j-levels) with probabilities described by adjustable parameters. With this
method we can choose more than two j-levels. The number of the parameters (in this
* Presented by T.S. Kosmas.
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work we use three) depends on the assumed model space and can be determined by
those bound states for which the experimental data show significant occupancy. Their
exact values are determined by fitting to the experimental data of the elastic electron
scattering form factor. The method is applied to the double magic nucleus 4%Ca and the
resulting occupation probabilities are compared with those of ref. [4,5].

2. INDEPENDENT PARTICLE FORMALISM

2.1 Radial charge, matter and momentum distributions

In the framework of the single particle shell model the density distribution p(F) is
spherically symmetric for closed (sub)shell nuclei. If we assume that the ground state of
such a nucleus (A,Z), is adequately described by a Slater determinant constructed from
single particle wave functions, the proton (neutron) distribution is simgiy the sum of the
squares of the point-proton (neutron) wavefunctions, Tne more interesting radial proton
distribution p(r) is simply obtained by

1 ;
o0 =31 ( ; @+DIRyP ()
nl)j
occupied
where Ryfr) is the radial part of the smgle particle wavefunction with quantum numbers
n, | and j. Using the fact that |Ry{r)|" can be written as the product of e- (o) times a
polynomial of even powers in the quantity (r/b) [13,14], where b is the h.o. parameter,

after some further elaboration eq. (1) can be written in the simple form

1
p(r) = 31z € 11(2) @

with I1(Z) being the polynomial

Nmax

nE)= ;6 W, x="Ip ()

In eq. (3) Nqax is the number of quanta of the highest occupied proton (neutron) level in
the j-j scheme and the coefficients f) are defined by

T2{2j + 1) niCl
= 2 l, (3a)
.. VY 2 T(n+l+372)
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where the coefficients C?{,' are given in appendix A of ref. [15]. The usefulness of eq. (2)

becomes more clear by looking at table 1, which gives the exact values of f, for all
closed (sub)shell nuclei. They are all rational numbers and in the majority they are

Highest
y4 occupied f| A=0} A=1 A=2 A=3 =4 A=5
j-level
2 oslio 2
6 | opd2 || 2| 83
8 opli2 2| 4
14 0d5/2 2| 4 8/5
16 | 1sV2 || 5| o | 44115
20 | 0d3/2 5| o0 4
28 | offiz | 5| o 4 64/105
32 | %2 || 5 | 203 -43 1761105
38 0f5/2 5 | 20/3| -4/3 64/3
40 | Y2 | 5| 10 -4 8/3
50 | 0g% || 5| 10 -4 8/3 32/189
58 | 0g7i2 || 5| 10 -4 8/3 32/105
64 | 152 || 5| 10| 85 -8/15 16/21
68 | 1d%2 || 5| 10 | 163 -8/3 16/15
70 | 2sY2 fl354] o 14 -16/3 4/3
82 | on'iz lasia| o 14 -16/3 413 128/3465
92 | on%2 fl354| o 14 -16/3 4/3 64/945

Table 1. The exact coefficients f,, which give the proton (neutron) density and momentum

distributions for all closed (sub)shell nuclei up to 208Pb by using expressions (2), (3), (3a) and (4), are
listed in the form of rational numbers.

simple numbers. The sequence of the single particle j-levels assumed (second column
in table 1) is that of ref. [13]. '
It is evident that the determination of the polynomial I1(Z) is essential since its

knowledge is sufficient in order to find the density distribution (1). Up to now II(Z) have

been explicitly calculated [6,7,16] only for light nuclei. The knowlenge of coefficients
f,(2) (table1) enables us to write explicit expressions of the form of eq. (2) for all closed
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(sub)shell nuclei of the periodic table. Thus, in the case of v , for example, we can
write simply

o) = oms {5+ 10 ) -4 )"+ 5 ™ o)

The same coefficients f, of table 1 can be also used for the calculation of the proton
(neutron) momentum distribution which is given by the expression (see ref. [17])

n(k) = 8 1323 e-(kb)? [1(Z) 4

(where k is the momentum transfer). For example, the proton (neutron) momentum
distribution of 160, is written as

n(K) = 81%2p3e (0 {2+4 kb))  (4a),

result compatible with that of ref. [16a] p. 50. { We use the normalization relations of ref.
[16a] p. 50 separately for protons and neutrons in p(r) and n(k). See also ref. [9] ).

We should mention that f,(Z) have been derived under the assumption that the
filling numbers of the states for closed (sub)shell nuclei are those predicted by the
simple oscillator shell model, namely, 2j+1 for occupied states and zero for unoccupied
ones. In the present work we shall also see how these coefficients can be helpful in
order to describe approximately the proton density distribution of all ( closed (sub)shell
or open (sub)shell ) nuclei with fractional occupation numbers of the surface orbits (see
section 3 below).

2.2 Mean radii and root mean square radius
The mean radial moment of order m for a nucleus is defined as follows

p(r) rm+2dr
<rms> = - 5)

J‘p(r) r2 dr

The simplified form for the radial distribution p(r), eg. (2), enables us to write eq. (5) after
integration as

Nmax

pm
<rm> = - f) Gy (5a)
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where

q,= B 2HE L mogy and qu=200+ pet)l, me= 2t (5b)

(u is a positive integer). In the case of the mean square radius (m=2 and p=1), which is
one of the more interesting radial moments, eq. (5a) takes the simple form

N X
b2 (@r+ 3 S
<r2> =—> S et = B2g (5¢)

where the sum S for all the closed (sub)shell nuclei is an integer number (see table 2).

4 2 | 6|8 |14|16 | 20| 28] 32| 38] 40| 50] 58| 64) 68) 70| 82] 92

S 3 |13 118 [39 |46 |60 |96 [114]|141]150] 205] 249| 282} 304] 315 393] 458

Table 2. The integer numbers S of eq. (5) determining the mean square radii for all closed (sub)shell

nuclei.

As examples we find using table 2, the root mean square radius of 40Ca, which is
<r2>1/2 = 4f3, and that of 90Zr, whichis <r2>12=p /3.75.

23 Form factors

In the independent particle model the proton and neutron nuclear form factors,
which are functions of the square of the momentum (k2), can be obtained from the
radial density (1) by using the relation

F(k?) = 4n Jp(r) jotkr) r2 dir (6)

(i(x) is the zero order Bessel function). It has been found [15] that for closed (sub)shell
nuclei these form factors are given by a simple expression of the form

-o2/4 Nmax
F(¢) =5 Ll A):)e;\ a2\ | a=kb @)

where the dependence on the momentum k is contained in the parameter a. The
coefficients 0, are defined in ref. [15] and their exact values are given in table 3. We see

that they are also rational numbers as the respective coefficients for p(r). Equation (7)
can also be written in the form of eq. (2) as
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where again the knowlegde of ®(2) is sufficient for the calculation of the form factors

F(k3).

Highest

Zz occupied =0 =1 2=2 A=3 A=4 =5
j-level

2 os1/2 2

6 op3/2 6 -2/3

8 oplsz 8 R

14 0d5/2 14 -3 1710

16 1s1/2 16 -11/3 | 11/60

20 0d3/2 20 -5 1/4

28 of’12 28 -9 13/20 | -1/105

32 1p3/2 32 -11 | 61/60 | -11/420

38 015/ 38 -14 | 79/60 | -1/30

40 1pl/o 40 -15 3/2 -1/24

50 0g9%/2 50 -65/3 | 5/2 -5/56 | 1/1512

58 0g7/2 58 -27 | 33/10 |-107/840| 1/840

64 1d5/2 64 -31 17/4 |-173/840| 1/336

68 1d3/2 68 | -101/3 | 293/60 | -31/120 | 1/240

70 251/ 70 -35 21/4 -7/24 1/192

82 onllsp 82 -45 29/4 | -73/168 | 37/4032 | -1/27720

92 0n9/2 92 | -160/3 | 107/12 | -31/56 [151/12096 -1/15120

Table 3. The exact coefficients 6, which determine the proton and neutron form factors for all
closed (sub)shell nuclei up to 208Pb by using eq. (7).

At this point we should mention several corrections that have to be made to the
simple formalism described in this section. They are the corrections inserted if we take
into account: (i) the nucleon finite size, (ii) the center of mass motion and (iii) relativistic
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effects. As it was shown in ref. [6,18] these corrections signifficantly improve the results
obtained with egs. (2) and (7). We shall not discuss this paint any further here (see ref.
[17]). However, we must stress that, if we take into account the finite size of the
nucleon and the centre of mass motion by using the folding method, we can obtain

similar expressions to those of egs. (2) and (7a) for p(r) and F(k?), respectively, but in
this case we need more coefficients f, and 6, in order to describe the polynomials I1(Z)

and ®(2). Also the definitions of f, and 6, are more complicated [15,17].
3. STUDY WITH PARTIAL OCCUPATION PROBABILITIES

In the previous section we assumed that the occupation probabilities of the states
are unity ( ap; =1 ) for states below the Fermi level and zero above it (mean field
approximation). It is well known that even the spherical nuclei 160 and 40Ca do not
have good closed shells. In this section we will exploit the form of egs. (2), (4) and (7a)
in order to construct general expressions for calculating the nuclear (proton and
neutron) distributions (charge density and momentum), form factors and rms charge
radii in the case when the filling numbers of the states are not integers.

In this way we include to some extent configuration mixing and various sorts of
correlations by inserting a number of parameters describing the occupation numbers of
the surface levels.

This method generalizes the approach, which has been developed [6] in the
framework of shell model with harmonic oscillator potential by introducing fractional
occupation probabilities to the surface orbits for light nuclei up to 48Ca. The parameters
are chosen, as usually, so that some observed nuclear properties are reproduced. This
is done here by first taking occupation probabilities from one-nucleon transfer reactions
(see ref. [4-7]) and then making any neccessary adjustments in order to obtain
agreement with the experimental data for the charge form factor.

In the general case, even when there are not closed (sub)shells, we can make the
following approximation for the average total density ( see e.g. ref. [9] )

1 .
p(r) =7,;a“<§|) @+ an IRnji? ®)

where ap; are the proton (neutron) occupation probabilities for the orbit characterized
by the quantum numbers n,l,j. The sum in eq. (8) runs over all the quantum numbers
(n,l)j of the single particle states. For the orbits below the Fermi level of the nucleus, the
"core-orbits”, an;j=1 i.e. they are equal to the simple shell model predictions, but for the
active (surface) orbits ap; < 1. Also ay; # 0 for some orbits above the Fermi level. The
following sum-rules hold:
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(2+1) = ; @j+1) ay=2 (8a)
(n,l) jclosed. all(n,l) j

The differences of ay;; from 0 or 1 is an indication of how realistic is the used single
paricle potential model. The fractional filling numbers (2j+1) ap;, of each state are
known from experimental data.

From the data of tables 1 and 2 and from the egs. (2), (4), (5¢) and (7a) we shall
derive now simple parametric expressions with one, two or three parameters, describing
the deviation of filling numbers from those of the simple shell model ones.

For simplicity we consider as a first example the case where only two filling numbers
of the states are not integers i.e. 1) the highest occupied near the Fermi surface j-level,
which according to the simple shell modetl is fully occupied and 2) the first above it,
which according to the simple shell model is empty. In oder to find the one-parameter
formula for every closed (sub)shell nucleus (A,Z), which contains as special cases the
results of ref. [6] for light nuclei, we must use the polynomials II(Z) giving the density of
three adjacent closed (sub)shell nuclei i.e. the considered nucleus and two more with:

a) Z, < Z (which has as upper occupied level the one lying just below the Fermi level
of the nucleus in question) and

b) Z>2 (which has as upper occupied level the one lying just above the Fermi

level of the nucleus in question).
For nuclei with 20 < Z < 28, for example, we must use the polynomials I1(Z,=18),

I1(Z,=20) and I1(Z'=28) for the density p(r) ( and momentum distribution n(k) ), the
polynomials ®(Z,=16), ®(Z,=20) and ®(Z'=28) for the form factor and the sums
S(Z,=16), S(Z,=20) and S(Z'=28) for the mean square radius of the (point) proton
distribution. The result for the density can be written as

ZZC aq

Zoy) = Zy) +[TIZ,) - H(Z1)]“+[U(27 Zy] =5 ©

where the two last terms in eq. (9) give the contribution of the active (surface) levels with
occupation numbers Z.-Z,-a4 and Z-Z¢+aq respectively. We give here as an example,

the relevant expressions for 40Ca. For the density p(r) the polynomial I1(Z) is

112-20,00) = 5 + 27291 (1) 1 (0)° (10:)

For the form factor the polynomial ®(2) is

®@Z=20,04) = 20 - 2F St (k)2 + 15 2“1 (kb)* - gag ()8 (10.b)
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Eqgs. (3)-(11) of ref. [6] can be derived from our general egs. (2), (5¢c), (7a) and the
parametric eq. (9) if we use the sequence of the j-levels used in ref. [6]. For example, for
the derivation of eq. (3) of ref. [6] for the density of 160, we must use the polynomials
T1(Z4=6), I1(Zc=8) and II(Z'=10), which correspond to the sequence of j-levels: 0s1/p,
0p3/2, Opl/s, 1sl/2, 0d5/5, of the work of Gul'karov et al. [6]. From egs. (3) and (3a)
above we find [17]: TI(Z=10) = 5 + (4/3) x4 which, by using eq. (9), gives the eq. (3) of
ref. [6]. '

The important possibility offered by egs. (2), (5), (7) and (9) is the construction of
two, three et.c. parametric equations describing the properties discussed in section 2 for
a closed (sub)shell nucleus by means of the fractional occupation probabilities of the j-
orbitals. We assume now that the surface nucleons of such a nucleus are spread in four
partially occupied j-levels: two below the Fermi surface and two above it. Then the
three-parametric expression which describes the proton density of the nucleus is given
by eq. (2) with II(Z) given by

z-z
NE.a1.02.00)= T122) 705>+ T2 [0 5, - 7,551+ TICON 770 7007 7

]+

+ I S+ e g |+ I g (11)

( A= aq + a2 -ag ) where the parameters o; give the depletion of states below the Fermi
surface ( (2j+1)-ai = (2j+1)an)j ) and the occupation numbers above it ( aj = (2j+1)anjj ).
Also Zp <Zy<Zg <2Z'<2" forthe adjacent Z-closed levels (Z;<Z < Z'). The same
expressions hold for the ®(Z) giving the form factors and S(Z) giving the mean square
radii.

Expressions (2), (5), (7), (9) and (11) can be used approximately even for nearly
closed (sub)shell nuclei. Also the nucleon momentum distribution n(k) for spherically
symmetric systems is given by means of expressions similar to (9) and (11).

* 4. RESULTS AND DISCUSSION

The method described above was applied to the core nucleus 40Ca. We assume
that the surface protons for 40Ca are distributed on the 1s1/5, 0d3/2, 0f7/5, and 1p32,
(sub)shells which are partially occupied. We use eq. (11) in order to obtain the
polynomials II(Z) containing the parameters a4, a2, a3 which describe the fractional
occupation probabilities of these four.levels and we determine the parameters by fitting
to the charge form factor F(k2). The result for the charge density distribution of 40Ca as a
function of r is shown and compared with the available experimental data on the
nuclear charge density in fig. 1. The agreement is very good with the values of the
occupation numbers for the active levels shown in table 4. The rms radius, which
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essentially determines the h.o,parameter b (b= 1.998 fm-1), is equal to <r2>'"2 = 3.4803
fm i.e. equal to the experimental value [10].

rifm)

Fig. 1. Plot of the proton density distribution in 40Ca as calculated with the simple harmonic oscillator
shell model (dashed-line) and with eq. (11) by assuming fractional occupation probabilities (solid line).
The experimental data (circles) of ref. [10] are also shown.

The occupation numbers found together with the experimental ones are listed in table 4.
We can see that the values of the parameters a2 and ag are in good agreement with
the experimental values [4,5] , but the value of oy we found is larger than the
corresponding experimental one. This also affects the occupation probability of the
1p3/2 shell for which our results show that it is 15% occupied while in ref. [4,5] it was
found to be 4.3% occupied.

Orbital (2j+1anj Exp. | (2j+1)an; Th. Table 4. Experimental and
1p3/2 0.15 0.60 theoretical occupation num-
0t7/2 0.56 0.75 bers for the active levels
0d3/2 3.59 3.75 of 40Ca.

1s1/o 1.70 1.35

in ref. [6] only one parameter was used and it was determined from the value of p(r)
in the centre of the nucleus although in this region the experimental uncertainty of p(r)
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is large. As it is obvious from egs. (10a) and (10b) none of aj can be determined in this
way.

In fig. 2 the calculated elastic charge form factor for 40Ca as a function of the
momentum transfer k is shown. For comparison the results obtained by putting «j =0 i.e.
the simple shell model results (dashed line) are also shown. The improvement because
of the fractional occupation probabilities is obvious. Beyond k= 3.0 fm"! our results
predict another diffraction minimum, not predicted by the simple shell model but existing
in the experimental data though in a different position. The elastic electron scattering
experimental data shown are from ref. [10].

R
o
BN

Y

/]
+

3
k (fm')

e =
N-

Fig. 2. Plot of the elastic charge form factor for 40Ca as calculated from the simple shell model
(dashed-line) and assuming fractional occupation probabilities (solid line). The prediction of the third
minimum by our method is evident. The experimental data shown (circles) are from ref. [10].

We note that in calculating the quantities p(r) and F(k2), the finite proton size and
centre of mass corrections have not been taken into account.

5. CONCLUSIONS

In the present work we have calculated the coefficients f; (eq. (3) and (3a)) and 6;,
(eq.(7)), which give the proton and neutron nuclear densities, rms radii and form factors
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for all closed (sub)shell nuclei in the harmonic oscillator shell model. With the aid of
them we generalized the method of calculating nuclear densities and form factors of ref.
[6]. This method takes into account approximately the different sorts of correlations and
configuration mixing found in many nuclei, by assuming fractional occupation
probabilities of the states.

The calculation of the charge density distribution and charge form factor of the
40Ca, gives good results for low and medium momentum transfers, but for k> 3.0 fm-1
various sorts of correlations must be explicitly introduced [9,12,16].
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