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Microscopìe Study of the Response of Nuclear Matter 

E. Mavrommatis* and J. W. Clark1" 

*Physics Department, University of Athens, Panepistimioupoli, 15771 Athens, Greece 
^Department of Physics and McDonnell Center for the Space Sciences, 
Washington University, St. Louis, Missouri 63130 

ABSTRACT: The correlated random-phase approximation (CRPAj), which 
provides a description of the linear response and elementary excitations of nuclear 
matter, is summarized. The density-density response functions of symmetrical 
nuclear matter and pure neutron matter are calculated using a local version of 
CRPAj (LCRPA) based on the v2 model nucleon-nucleon interaction. Although 
simple, the calculation establishes some significant qualitative trends. It constitutes 
a prelude to calculations of response functions of realistic nucléon matter both with 
CRPAj and with theories that go beyond it. 

1. INTRODUCTION 

The dynamical response of nuclear systems carries vital information about their 

excitations, about the role of short-range dynamical correlations, and possibly about 

relativistic effects and nonnucleonic degrees of freedom. The aims of microscopic 

calculation of the response within conventional nuclear many-body theory are (a) to give 

a more realistic description beyond mean-field approximations and (b) to determine the 

extent to which nuclei can be described as systems containing nucléons alone, 

interacting via two-, three-, ... body interactions constrained by few-body data and 

meson-exchange theory. While many-body theories of ground-state properties of 

strongly interacting Fermi systems have reached a high degree of quantitative reliability, 

microscopic prediction of dynamic structure is ât a relatively early stage. 

Presented by E. Mavrommatis 
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This work is part of a research program that deals microscopically with the 

excitations and response functions of symmetrical nuclear matter and pure neutron 

matter (with level degeneracy ν = 4 and ν = 2 respectively), using methods within the 

correlated-basis-functions theory (CBF) that are based on the correlated random-phase 

approximation CRPAr (Chen et al. 1982; Krotscheck 1982}. CRPAj takes into account 

explicitly only lp-lh excitations and performs the ring sum­

mation within CBF. 

We will report here calculations of the density-density response function 

1 1 
Π(ς,ω) = — Σ <olp t(-q)lnxnlp(-q)lo> 

n*0 hcu-En+E„+ie ίτω+Ε,,-Ε,,-ΐε 
(1) 

and dynamic structure function 

S(q,a>) = - — Im Π(ς,ω) = γ Σ l<olp(q)ln>l2 δ(ίτω-Εη+Ε0) . (2) 

In the above, q and ω are the momentum and energy transferred by the probe, lo> and 

ln> are the ground and excited eigenstates that correspond to E 0 and E n energy 

eigenvalues and p(q) is the density fluctuation operator (=Σ e i q ' r '). 
i 

Impetus for microscopic calculation of n(q,cu) and S(q,Cû) for nuclear matter comes 

primarily from the current generation of electron-scattering experiments on medium and 

heavy nuclei in the quasielastic energy regime (Meziani et al. 1984; Blatchley et 

al. 1986; Deady et al. 1986) and the inability of independent-particle models to explain 

the available data on the longitudinal response function SL(q,u)). If one attempts to 

understand these experiments within the conventional nuclear picture, it appears that 

contributions from many-body effects of increasing complexity must be investigated 

(Meziani 1985). Microscopic calculation of S(q,ü)) for infinitely extended nuclear 

matter is expected to yield valuable insights into the nature and importance of these 

complicated many-body processes. This expectation rests on an assumed proportionality 

of the measured Si/q.co) and the infinite-matter S(q,co) (Fantoni and 

Pandharipande 1987, Fabrocini and Fantoni 1989), as well as on the relationship of 

nuclear matter results with those of finite nuclei that has been established recently with 
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the extraction of a nuclear-matter response function from the response of finite nuclei 

(Day et al. 1989). 

A second motivation is that a microscopic evaluation of Π(ς,ω) for nuclear matter, 

together with consistent evaluation of the self-energy Z(k,E), contain fundamental 

information about the elementary excitations of the system. The properties of collective 

modes, typified by the zero-sound dispersion relation, may be extracted from Π(ς,ω), 

while the nature of single-particle excitations is revealed by Z(k,E), from which one 

may derive an energy-dependent effective mass. These properties have obvious 

importance for a deeper understanding of nuclei. They are likewise basic to a 

description of the structure, dynamics and thermal history of neutron stars, being 

essential to the evaluation of such quantities as the specific heat, viscosity, superfiuid 

gap, etc. (Maxwell 1979; Flowers and Itoh 1979; Chen et al. 1986). Since empirical 

constraints on the properties of neutron-star material are limited in the extreme, such 

astrophysical applications make it doubly important to develop our many-body 

calculations. 

Previous microscopic treatments of S(q,co) include the calculation of Butler and 

Koonin (1988), based on the Brueckner-Goldstone theory and the Reid and Paris 

interactions, and the calculation of Fantoni and Pandharipande (1987) which is 

performed essentially at the Tamm-Dancoff level within a suitably developed correlated 

basis theory and which uses the v 1 4+TNl interaction. (We should also call attention to 

the more phenomenological calculations of Alberico et al. 1980 and Pines et al. 1988). 

In this paper we present an initial application of CRPAj theory to the calculation of 

S(q,Cû) in infinite nuclear systems (Mavrommatis et al. 1987; Mavrommatis and 

Clark 199<J). We use primarily a simplified model of the nucleon-nucleon interaction, 

namely, the v2 potential (Pandharipande et al. 1975) and a simplified, local version of 

CRPAj (LCRPA) that has proven successful in applications to spin-polarized liquid 3He 

(Krotscheck et al. 1983), the electron gas (Krotscheck 1984) and spin-polarized 

deuterium (Davé et al. 1990). It will emerge that this initial application already leads to 

results of qualitative or semi-quantitative significance. Improvements of various aspects 

of the LCRPA calculation are currently being implemented. 
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We begin with a review of the theoretical basis of the correlated random-phase 

approximation CRPAj and its local version LCRPA. 

2. CORRELATED RANDOM-PHASE APPROXIMATION 

The correlated random-phase approximation (CRPAj) uses correlated-basis-functions 

(CBF) theory (Clark 1981) to extend the ordinary (first-order) random-phase 

approximation (RPAj) to the case of strongly interacting systems like liquid 3 He, nuclear 

matter, and nuclei. The ordinary RPAj may be extracted as the small-amplitude limit of 

time-dependent Hartree-Fock theory. To adapt this derivation to strongly-coupled 

systems (Chen et al. 1982) requires a replacement of all energy eigenstates l<|)m> of the 

noninteracting Fermi system by the corresponding correlated basis states 

l V m > = F l 0 m > I ^ , ^ „ ^ « U F + F l « ^ , (3) 

where F is a suitable static correlation operator, e.g., of Feenberg or Jastrow form. One 

obtains the following set of supermatrix equations in place of the usual RPAj equations: 

A Β 

Β* A* 

X 

. y . 
4w 

M 0 

0 - M * 

χ 

. y . 

Here, χ and y are column matrices and A, B, and M are square matrices whose elements 

carry particle-hole (p-h) labels, e.g., χ = (Xph) and A = (Α?ίί;ρ^). The solutions of these 

equations yield approximate excitation energies frco and amplitudes Xph.yph for finding a 

given p-h pair present in or absent from the corresponding excited states. The matrices 

A and Β (respectively Hermitian and symmetric) are now constructed in terms of the 

CBF effective interaction vertex V(12) and the CBF single-particle energies e(p) and 

e(h) assigned to particles and holes, while the matrix M is constructed in terms of the 

CBF nonorthogonality vertex N(12). Explicitly, 

Aph;p'h' = [ e ( p ) - e ( h ) ] 5 p p ^ + <ph'IV(12)lhp'>a , 

Bph;p'h' = <PP'IV(12)lhh'>a , 

Mph;p<h' = δρρ-cW + <ph'lN(12) lhp'>a , (5) 
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wherein V(12) is in tum determined by W(12) (the CBF interaction vertex), N(12), and 

e(k). At nuclear densities, these CBF ingredients may be evaluated rather accurately by 

Fermi-hypernetted-chain (FHNC) procedures in the case of the Jastrow correlation factor 

Fj = Π f(rjj), which is adopted here in specific calculations. 
i<j 

The CRPAj equations (4) can be solved, with considerable effort, by standard 

diagonalization techniques on a suitable mesh (Kwong 1982). However, the -

nonorthogonality of the correlated basis, which is responsible for the appearance of the 

nontrivial metric matrix M, introduces an awkward energy dependence which is not 

present in ordinary RPAi. Fortunately, most of this energy dependence can be 

transformed away by rewriting the theory in terms of a p-h irreducible effective p-h 

interaction (Krotscheck 1982). The reformulation is accomplished as follows. First, one 

defines a correlation supermatrix 

(Cph;pV)(Cph;h'p') 

[ (Chp;pV)(Chp;h'p') 

and a corresponding interaction supermatrix W in which the vertex N(12) is replaced by 

W(12). The p-h irreducible components of these matrices, denoted respectively by X 

and X', are then extracted via the relations 

C = X + y C X , W = (l + |C)X ' (1 + | C ) . (7) 

It can be checked that neither X or X' so determined contains any diagrams which can 

be visually identified as p-h reducible (i.e., separable into two disjoint parts by cutting a 

single pair of p-h lines). In particular, no chain diagrams appear in X. Setting 

Γ [e(p) - e(h) - ίιω - ίηίδρρ'δ^ 0 

Ω = [ 0 [eipi-eW + hœ+i^Spp^.J (8) 

(where η is positive infinitesimal), we may then form a supermatrix 

U(û>) = X' - | ΧΩΧ , (9) 

which plays the role of a p-h irreducible p-h interaction. In terms of Ω and U(co), the 

CRPAj equations (4) may be rewritten as 

(<ph' lN(12) lhp'>a) (<pp'lN(12) lhh'>a) 

(<hh'lN(12)lpp'>a) (<hp'lN(12)lph'>a) (6) 
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[Ω + υ(ω)] Λ = 0 , (10) 

where 

n + \c 

Apart from a minor residual energy dependence of U (henceforth ignored), these 

equations are formally identical with those of ordinary RPAj and can be studied with 

quite conventional procedures. Their detailed solution is a computationally demanding 

task, which we have just started to pursue. Here we report on the results of the 

application of a simple local approximation scheme, called local CRPAj (LCRPA), 

which allows ready comparison with semiphenological approaches, notably the 

polarization-potential description (Pines et al. 1988). 

3. LOCAL CORRELATED RANDOM-PHASE APPROXIMATION 

The local approximation that we have used was proposed by Krotscheck (1982). Here 

" local" implies that the pertinent matrix elements of the p-h channel of N(12) and 

W(12), and indeed the composite quantity U of Eq. (9), become functions only of the 

momentum transfer q = Ip—h i in the direct p-h channel (apart from momentum-

conserving delta functions). In particular, 

Uph;PV = A"1 U(q)ô(p+p'-h-h') , (11) 

where A is the particle number and U(q) is the local p-h force. The latter is constructed 

assuming a Jastrow correlation factor Fj, and requiring (a) that the approximation to the 

N(12) matrix elements preserves the relation of these matrix elements to the static 

structure factor S(q) of the Jastrow ground-state trial function Fj<|)0 and (b) that the 

approximation to the W(12) matrix elements preserves their analogous role in the 

optimization condition for the Jastrow two-body correlation function f(r), 

δ<Η>0 

- ^ - Ξ Δ(Γ) = 0 , (12) 
ôlnf2(r) 
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where <H>0 is the energy expectation value in the Jastrow trial ground state Fj<t)0. The 

proposed U(q) is simply 

U(q) = A(q)S-2(q) + ^ - [S"2(q) - Sp2(q)] , (13) 
4m 

where Sp(q) is the static structure factor of the noninteracting Fermi system and 

A(q) = pi dr exp(iq-r)A(r) = - ^ [ S ^ - 1 ] + S ' ^ · <14) 
J 4m 

The Jastrow S(q) entering (13)-(14) may be evaluated with good accuracy (near nuclear 

densities) by solving the FHNC/C equations, while its graphical derivative S'(q) 

appearing in (14) may be obtained by solving the FHNC/C equations (Krotscheck et 

al. 1981). The vanishing of A(q) is equivalent to the optimization condition. Hence, for 

optimal Jastrow correlations the p-h force U(q) depends only on S(q) and properties of 

the noninteracting system. 

With a local p-h force, one has quite standard algebraic RPA formulas (see, e.g., 

Brown 1972), which lead to the familiar RPAj expression of the density-density 

response function 

no(q,co) 
nM'.-mw ' (15) 

The response function u0(q,œ) is the p-h propagator of the free Fermi system, i.e., the 

Lindhard function. 

The dynamic structure factor and the properties of zero sound (if present) are 

derived from the relation (15) in the usual manner. Thus 

S(q,co) = - — Im ri(q,co) , (16) 
π 

while the zero-sound dispersion relation ω = co^q) is determined by the roots of the 

denominator of (15), i.e., the roots of 

1 - U(q)Re Π0(ς,ω) = 0 (17) 
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in the region where Im Π0(ς,ω) = 0. The strength Z^ of the zero-sound mode is given 

by 

Z £ ( q ) = U2(q) - £ - Re Π0(ς,ω)| . (18) 
αω 

ω=ω„ 

With Z ö taken into account, LCRPA satisfies the ω° and ω 1 sum rules. 

A qualitative defect of LCRPA, evident in the form (15), is that the (ς,ω) domain 

corresponding to individual lp-lh excitations is the same in LCRPA as in the free 

system. However, the RPAj denominator in expression (15) introduces nontrivial 

correlation effects in that region. Moreover, outside that region and in the region where 

Im Π0(ς,ω) = 0, zero sound may emerge as a distinct collective mode, corresponding to 

vanishing of the denominator. 

LCRPA will also suffer, at a quantitative level, from the static nature of the 

effective interaction U(q) entering (15). For example, one does not expect the 

momentum dependence of the self-energy to be adequately reproduced within this 

scheme, particularly in the very delicate case of unpolarized liquid 3He (Friman and 

Krotscheck 1982). In spite of its deficiencies, LCRPA offers a simple and 

straightforward underpinning for phenomenological ' theories of comparable structure, 

such as the polarization potential model (Pines et al. 1988). 

4. RESULTS FOR MODEL NUCLEAR INTERACTIONS 

Based on the LCRPA scheme outlined in Sec. 3, we have studied the dynamical 

response of a simple model of nucléon matter in which the bare interaction between 

nucléons is taken as the v2 "homework-model" potential shown in Figure 1 

(Pandharipande 1975). This potential consists of the central part of the 3S1-3D1 

component of the Reid soft-core interaction (Reid 1968), assumed to act in all partial 

waves. It has been widely used in tests of many-body methods (see, for example, 

Clark 1979, Ramos et al. 1989). Explicitly, 

v2(r) = [9924.3 exp(-4.2r) - 3187 exp(-2.8r) + 105.468 exp(-1.4r) 

- 10.463 exp(-O.7r)]/(0.7r) (19) 
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Our calculations are based mainly on the parametrized Jastrow correlation factor 

[denoted (C)] 

f(r) = exp[-Ae~Br(l - e-r/D)/r] . (20) 

Specific values of the parameters in (20) have been determined by Cepeley et al. (1977), 

by minimizing the Jastrow ground-state energy Ej, using the Metropolis Monte Carlo 

algorithm. Additionally, for ν = 4 we have considered two versions of the correlation 

function 

f(r) = (1 - & - Λ ί } 2 ) η + gr™ Q-^ (21) 

studied by Benhar et al. (1976a,b). In this case the parameters have been determined by 

minimization of the energy expectation value truncated at three-body cluster order. In 

the simpler version of (21) [denoted (Bl)], g has been set equal to zero, while in the 

other [denoted (B2)], it has been fixed with the help of the normalization condition (see, 

for example, Clark 1979). 

For the sake of comparison, we also present nuclear matter (v = 4) results for the 

case that the nucleon-nucleon interaction is replaced by a pure hard-core potential (HC) 

of core radius c = 0.5 or 0.4 fm. For this potential a simple choice of f(r) is used, 

f 0 r < c , 
f ( r ) = [ 1 - expBtfr-c)] r > c , ( 2 2 ) 

with μ determined by minimizing the FHNC/C approximation to the ground-state energy 

(Flynn 1984). Plots of some of the above correlation functions for nuclear matter 

(v = 4) are given in Figure 1. 

None of these correlation functions is optimal in the sense of being a solution of 

the Euler equation, but it is expected that the C choice will not depart substantially from 

the true optimal function except at large r. The discrepancy at large r will produce a 

significant departure of A(q) from zero at low q values and will accordingly affect the 

behavior of U(q) at small q. We have chosen to set A(q) equal to zero, since the 

behavior of U(q) at small q is already suspect because of the local approximation itself. 
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r(fm) 

Figure 1. Nuclear matter (a) solid curves: the potential v2 and the corresponding 
correlation functions C and B2 at kF = 1.39 fm_1 and 1.4 fm_1 respectively, (b) dashed 
curves: the hard-core potential of radius c = 0.5 fm and the optimized correlation 
function of Eq. (22) at kF = 1.4 fm-1. 

Numerical results based on (20) have been obtained for symmetrical nuclear matter, 

i.e., ν = 4, at kF = 1.39 fm - 1, corresponding to a density ρ = 0.182 fm - 3 near nuclear 

saturation, and for pure neutron matter, i.e., ν = 2, at kF = 1.75, 2.25, 2.90 fm - 1, 

corresponding to three densities ρ = 0.182, 0.386, 0.822 fm - 3 of relevance in the study 

of neutron stars. For both level degeneracies, we have examined a range of wave-

number transfers q from 0 to about 4 fm-1. Results based on (21) are available only for 

symmetrical nuclear matter at Fermi wave number kF = 1.4 fm - 1, and hard-core results 

have also been obtained for this case using (22). (We should note hard-core results 

based on (22) with c = 0.4 fm, for both ν = 4 and ν = 2 systems, may be found in 

Mavrommatis et al. 1987.) 

Let us first discuss the results for symmetrical nuclear matter. The CBF p-h 

interaction appropriate to the v2 potential at kF = 1.39 fm - 1, for the C choice of f(r), is 

shown in Figure 2(a), along with the c = 0.5 fm hard-sphere result at the same density. 

Both potentials sustain a collective mode corresponding to zero sound. In both cases, 

this mode emerges from the p-h continuum around 0.3-0.4 fm - 1 and sinks back into it 

at about 1.53 fm- 1. The associated zero-sound dispersion relation and the strength of 

zero sound for the v2 potential are plotted against q in Figures 3(a) and 3(b), 
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respectively. The corresponding curves for the hard-core potential show a remarkable 

agreement with those for v 2 

We see in Figure 2 that the effective interaction derived from the soft-core v2 

potential is very close to that derived from the HC potential. This concurrence indicates 

that the two potentials are similarly effective in lifting particles from below to above the 

Fermi surface, at least when the momentum transferred to the p-h pair is not excessive 

and the density is near the saturation value for nuclear matter. In tum this observation 

suggests that a useful measure of the strength of the p-h force may be provided by the 

wound parameter κ (Clark 1979). Indeed, referring to Figure 2, we have κ = 0.232 for 

the C choice of f(r) and κ = 0.263 for the c = 0.5 fm HC choice of Eq. (22). One 

comes to the same conclusion upon comparing the p-h interaction derived from C and 

from the Bl and B2 choices of f(r). The substantial differences may be attributed to the 

different values of the wound parameters (which have the values κ = 0.146 and 0.143 

for Bl and B2 respectively). We also realize that the behavior of U(q) and ω κ ( ς ) for 

small q is not correct. As previously mentioned, this is due to the non-optimality of the 

correlation functions. 

(0) V = 4 

q Um"1) q (fm-1) 

Figure 2. (a) Wave-number dependence of local p-h interaction U(q) for v 2 model of 
nuclear matter at kF = 1.4 fm - 1, based on correlation functions C, Bl and B2 and for 
hard-sphere nucléons with c = 0.4 and 0.5 fm based on Eq. (22). (b) U(q) for v2 model 
of pure neutron matter, correlation function C and different densities (as labeled, in 
fm"3). 
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q (ΓηΓ1) 

Figure 3. (a) Zero-sound dispersion relation cozs(q) and (b) zero-sound strength Z ^ q ) , 
for v2 model of nuclear matter at ρ = 0.182 fm - 3 and of neutron matter at 
ρ = 0.182, 0.386, 0.822 fm - 3, based on correlation functions of C type. 

The remainder of the discussion pertains to the C choice of coiTelations. We have 

calculated S(q,co) as a function of energy transfer frco for several values of q, including 

values for which experimental data are available. Results are presented here only for 

q = 1.47 fm - 1 (Figure 4) and q = 2.76 fm- 1 (Figure 5), at kF = 1.39 fm"1. The figures 

include, for comparison, the Fermi gas structure function Sp(q,co) as well as the 

LCRPA result for the c = 0.5 fm hard-core potential at the same density. We observe 

the well-known quenching of the response at low energies compared to the 

independent-particle-model result (Meziani 1985), but this effect is too emphatic in our 

results at the lower q values. For a given q, the strength is shifted to values of frco 

higher than the experimental peak energy. This effect, as well as the excessive 

quenching at low ω, can presumably be attributed to the excessively repulsive character 

of the v 2 and HC potentials, which act equally in all partial waves, in contrast to the 

strong partial-wave dependence of realistic nucleon-nucleon interactions. Similar trends 

seen in the results of Fantoni and Pandharipande (1987) and of Pines et al. (1988) are 

much milder. The rather unphysical piling up of the strength at the high-ω boundary 

that is observed for the lower value of q can be attributed to LCRPA, which does not 

give response outside the (q,co) domain implicated for the free system. As we go to 

2 2 



high q, the departure of the LCRPA results from those of the free Fermi system and 

from those of the other theoretical predictions become less noticeable, as expected from 

the decreasing importance of U(q) at large q. 

Ο 20 4 0 6 0 8 0 100 120 140 
Πω (MeV) 

Figure 4. Dynamic structure function S(q,co) versus energy transfer ftcù at fixed wave 
number transfer q = 1.47 fm_1 and kF = 1.39 frrT1. Solid curve: for v2 model of 
nuclear matter based on C correlation function of Figure 1. Dot-dashed curves: for 
hard-sphere nucléons with c = 0.5 fm and the dashed correlation function of Figure 1. 
Dotted curves: for free nucléons. Zero-sound contribution in v2 case is indicated by 
vertical spike. 

Generally speaking, the LCRPA results for neutron matter are qualitatively similar 

to those of symmetrical nuclear matter. The corresponding p-h forces U(q), zero-sound 

dispersion relations œzs(q), and strengths Z ^ q ) are plotted in Figures 2 and 3 

respectively, for the three densities mentioned above. The features remarked previously 

for S(q,co) at level degeneracy ν = 4 are also seen at ν = 2, and density dependences for 

all relevant quantities are as expected. We should point out that although the Jastrow 

description should be more accurate for neutron matter than symmetrical nuclear matter, 

due to the absence of interaction in triplet-even states, the LCRPA must be less reliable 

due to the increased importance of nonlocalities implied by the lower level degeneracy. 
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50 100 150 200 250 300 
ίτω (MeV) 

Figure 5. Same as Figure 4, except q = 2.76 fin-1 and there is no zero sound. 

5. CONCLUDING REMARKS 

The density-density response functions of symmetrical nuclear matter and pure neutron 

matter have been studied with a simple theory, the local correlated random-phase 

approximation LCRPA, and a simple model interaction, v2. Relative to an ordinary 

local RPA treatment, LCRPA takes account, approximately, of important dispersive, 

polarization, and geometrical effects arising from the strong interactions. It has the 

virtue of easy application and it establishes correctly some qualitative trends, but it has 

shortcomings, mainly at low q. The latter deficiency may be due in part to the omission 

of the A(q) term, which is strictly not justified because non-optimal correlation functions 

have been used. (A quantitative study of this point is currently in progress.) However, 

it is likely that the shortcomings at low q are mainly due to the omission of 

nonlocalities, as has been pointed out recently in a comparison of LCRPA and the self-

consistent Green's function theory (Dickhoff 1988) in the case of spin polarized 3He. 

We are therefore beginning calculations with CRPAj itself (in collaboration with Ν. H. 

Kwong), solving numerically the full CRPAj equations on a suitable grid in momentum 

space, with techniques similar to those used earlier for OMY models of nucléon matter 

(Sandler and Kwong 1984). Besides the solution of the full CRPAT, a satisfactory 

treatment of the response of realistic nucléon matter obviously requires the use of 
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realistic interactions and state-dependent correlation factors F. Initially, the v4 and v6 

models of nucléon matter will be considered. Since our goal is a truly quantitative 

description of the response and elementary excitations in nuclear systems, theories are 

required that go beyond CRPAj and include extra correlated multipair effects. Two such 

extensions are currently under investigation. The first (CFRPA) treats F as a dynamical 

quantity, and the second (CRPAn) is the extension within CBF of the second-order RPA 

(see, for example, Yannouleas et al. 1983). Finally, we should remark that our 

calculations will be extended to spin and isospin-density response functions. 
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