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Microscopic Study of the Response of Nuclear Matter i

E. Mavrommatis* and J. W. Clark'

*Physics Department, University of Athens, Panepistimioupoli, 15771 Athens, Greece
fDepartment of Physics and McDonnell Center for the Space Sciences,
Washington University, St. Louis, Missouri 63130

ABSTRACT: The correlated random-phase approximation (CRPAj), which
provides a description of the linear response and elementary excitations of nuclear
matter, is summarized. The density-density response functions of symmetrical
nuclear matter and pure neutron matter are calculated using a local version of
CRPA; (LCRPA) based on the v, model nucleon-nucleon interaction. Although
simple, the calculation establishes some significant qualitative trends. It constitutes
a prelude to calculations of response functions of realistic nucleon matter both with
CRPA| and with theories that go beyond it.

1. INTRODUCTION

The dynamical response of nuclear systems carries vital information about their
excitations, about the role of short-range dynamical correlations, and possibly about
relativistic effects and nonnucleonic degrees of freedom. The aims of microscopic
calculation of the response within conventional nuclear many-body theory are (a) to give
a more realistic description beyond mean-field approximations and (b) to determine the
extent to which nuclei can be described as systems containing nucleons alone,
interacting via two-, three-, ... body interactions constrained by few-body data and
meson-exchange theory. While many-body theories of ground-state properties of
strongly interacting Fermi systems have reached a high degree of quantitative reliability,

microscopic prediction of dynamic structure is at a relatively early stage.
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This work is part of a research program that deals microscopically with the
excitations and response functions of symmetrical nuclear matter and pure neutron
matter (with level degeneracy v =4 and v = 2 respectively), using methods within the
correlated-basis-functions theory (CBF) that are based on the correlated random-phase
approximation CRPA| (Chen er al. 1982; Krotscheck 1982). CRPA; takes into account
explicitly only 1p-lh excitations and performs  the  ring sum-

mation within CBF.

We will report here calculations of the density-density response function

1 1 1
(q,) = — ¥ <olpf(-q)In><nlp(-q)lo> - 1
(@)= 4 Z <Rl e e e o e T Ee|
and dynamic structure function
S(q,w) = —71; Im Il(q,w) = —3: > l<olp(q)In>1? 3(hiw—E,+E,) . 2)

n=0

In the above, q and ® are the momentum and energy transferred by the probe, lo> and

In> are the ground and excited eigenstates that correspond to E, and E, energy

eigenvalues and p(q) is the density fluctuation operator (=X eiq'r*).
1

Impetus for microscopic calculation of I1(q,w) and S(q,®) for nuclear matter comes
primarily from the current generation of electron-scattering experiments on medium and
heavy nuclei in the quasielastic energy regime (Meziani er al. 1984; Blaichley et
al. 1986; Deady et al. 1986) and the inability of independent-particle models to explain
the available data on the longitudinal response function S;(q,). If one attempts to
understand these experiments within the conventional nuclear picture, it appears that
contributions from many-body effects of increasing complexity must be -investigated
(Meziani 1985). Microscopic calculation of S(q,w) for infinitely extended nuclear
matter is expected to yield valuable insights into the nature and importance of these
complicated many-body processes. This expectation rests on an assumed proportionality
of the measured S;(q.,®w) and the infinite-matter S(q,w) (Fantoni and
Pandharipande 1987, Fabrocini and Fantoni 1989), as well as on the relationship of

nuclear matter results with those of finite nuclei that has been established recently with
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the extraction of a nuclear-matter response function from the response of finite nuclei
(Day er al. 1989).

A second motivation is that a microscopic evaluation of I'l(q,w) for nuclear matter,
together with consistent evaluation of the self-energy Z(k,E), contain fundamental
information about the elementary excitations of the system. The properties of collective
modes, typified by the zero-sound dispersion relation, may be extracted from Il(q,w),
while the nature of single-particle excitations is revealed by X(k,E), from which one
may derive an energy-dependent effective mass. These properties have obvious
importance for a deeper understanding of nuclei. They are likewise basic to a
description of the structure, dynamics and thermal history of neutron stars, being
essential to the evaluation of such quantities as the specific heat, viscosity, superfluid
gap, etc. (Maxwell 1979; Flowers and Itoh 1979; Chen er al. 1986). Since empirical
constraints on the properties of neutron-star material are limited in the extreme, such
astrophysical applications make it doubly important to develop our many-body

calculations.

Previous microscopic treatments of S(q,®) include the calculation of Butler and
Koonin (1988), based on the Brueckncr—Goldstoncl theory and the Reid and Paris
interactions, and the calculation of Fantoni and Pandharipande (1987) which is
performed essentially at the Tamm-Dancoff level within a suitably developed correlated

basis theory and which uses the v;4+TNI interaction. (We should also call attention to

the more phenomenological calculations of Alberico et al. 1980 and Pines et al. 1988).

In this paper we present an initial application of CRPA; theory to the calculation of
S(q,w) in infinite nuclear systems (Mavrommatis er al. 1987, Mavrommatis and
Clark 1990). We use primarily a simplified model of the nucleon-nucleon interaction,
namely, the v, potential (Pandharipande et al. 1975) and a simplified, local version of
CRPA; (LCRPA) that has proven successful in applications to spin-polarized liquid 3He
(Krotscheck er al. 1983), the electron gas (Krotscheck 1984) and spin-polarized
deuterium (Davé er al. 1990). It will emerge that this initial application already leads to
results of qualitative or semi-quanttative significance. Improvements of various aspects

of the LCRPA calculation are currently being implemented.
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We begin with a review of the theoretical basis of the correlated random-phase

approximation CRPA; and its local version LCRPA.

2. CORRELATED RANDOM-PHASE APPROXIMATION

The correlated random-phase approximation (CRPAj) uses correlated-basis-functions
(CBF) theory (Clark 1981) to extend the ordinary (first-order) random-phase
approximation (RPA;) to the case of strongly interacting systems like liquid 3He, nuclear
matter, and nuclei. The ordinary RPA; may be extracted as the small-amplitude limit of
time-dependent. Hartree-Fock theory. To adapt this derivation to strongly-coupled
systems (Chen er al. 1982) requires a replacement of all energy eigenstates 10> of the

noninteracting Fermi system by the corresponding correlated basis states
> =Flop>lnn . Inm = <0nlF'Flog> (3)

where F is a suitable static correlation operator, e.g., of Feenberg or Jastrow form. One

obtains the following set of supermatrix equations in place of the usual RPA; equations:

v 5] e

Here, x and y are column matrices and A, B, and M are square matrices whose elements

A B
B* A*

carry particle-hole (p-h) labels, e.g., x = (xph) and A = (Aph;p.h:). The solutions of these
equations yield approximate excitation energies hw and amplitudes x;h,yp'h for finding a
given p-h pair present in or absent from the corresponding excited states. The matrices
A and B (respectively Hermitian and symmetric) are now constructed in terms of the
CBF effective interaction vertex V(12) and the CBF single-particle energies e(p) and
e(h) assigned to particles and holes, while the matrix M is constructed in terms of the

CBF nonorthogonality vertex N(12). Explicitly,
Ay = [e(P)—e)1B By + <ph’lV(12)Ihp">, ,
Bt = <pp’IV(12)Ihh™>,

Mot = OOy + <ph’IN(12)lhp’>, 5)
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wherein V(12) is in turn determined by W(12) (the CBF interaction vertex), N(12), and
e(k). At nuclear densities, these CBF ingredients may be evaluated rather accurately by
Fermi-hypernetted-chain (FHNC) procedures in the case of the Jastrow correlation factor

Fy = I f(r;), which is adopted here in specific calculations.
i<j

The CRPA; equations (4) can be solved, with considerable effort, by standard
diagonalization techniques on a suitable mesh (Kwong 1982). However, the
nonorthogonality of the correlated basis, which is responsible for the appearance of the
nontrivial metric matrix M, introduces an awkward energy dependence which is not
present in ordinary RPA;. Fortunately, most of this energy dependence can be
transformed away by rewriting the theory in terms of a p-h imreducible effective p-h
interaction (Krotscheck 1982). The reformulation is accomplished as follows. First, one
defines a correlation supermatrix

(Cph;p'l'l')(cph;h'p')
(Chp;p'h') (Chp;h'p')

(<ph’IN(12)Ihp'>,) (<pp’IN(12)Ihh’>,)
= | (<hh’IN(12)Ipp’>,) (<hp’IN(12)Iph’>,) ©)

and a corresponding interaction supermatrix W in which the vertex N(12) is replaced by
W(12). The p-h irreducible components of these matrices, denoted respectively by X

and X', are then extracted via the relations
C=X+-,1,—CX , W=(1+%C)X’(1+—;-C) ) @
It can be checked that neither X or X’ so determined contains any diagrams which can

be visually identified as p-h reducible (i.e., separable into two disjoint parts by cutting a

single pair of p-h lines). In partiéular, no chain diagrams appear in X. Setting

[e(p) — e(h) — hw — N8, By 0
@= 0 e(p) — e(h) + N + iN]S By @®

(where 7 is positive infinitesimal), we may then form a supermatrix

U@ =X - 1 XX, ©)

which plays the role of a p-h irreducible p-h interaction. In terms of Q and U(w), the

CRPA| equations (4) may be rewritten as
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batl

[Q+U(m)]{9] =0 , ' (10)

HREEN

Apart from a minor residual energy dependence of U (henceforth ignored), these

where

>

<

equations are formally identical with those of ordinary RPA; and can be studied with
quite conventional procedures. Their detailed solution is a computationally demanding
task, which we have just started to pursue. Here we report on the results of the
application of a simple local approximation scheme, called local CRPA; (LCRPA),
which allows ready comparison with semiphenological approaches, notably the

polarization-potential description (Pines et al. 1988).

3. LOCAL CORRELATED RANDOM-PHASE APPROXIMATION

The local approximation that we have used was proposed by Krotscheck (1982). Here
“‘local”” implies that the pertinent matrix elements of the p-h channel of N(12) and
W(12), and indeed the composite quantity U of Eq. (9), become functions only of the
momentum transfer q = Ip—hl in the direct p-h channel (apart from momentum-

conserving delta functions). In particular,
Upnpre = A7 U@3(p+p’-h-h") ¢8))

where A is the particle number and U(q) is the local p-h force. The latter is constructed
assuming a Jastrow correlation factor Fj, and requiring (a) that the approximation to the
N(12) matrix elements preserves the relation of these matrix elements to the static
structure factor S(q) of the Jastrow ground-state trial function Fyy and (b) that the
approximation to the W(12) matrix elements preserves their analogous role in the
optimization condition for the Jastrow two-body correlation function f(r),

&<H>,

———-———-‘:‘A :0 5 12
3 1n f2(r) W il
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where <H>, is the energy expectation value in the Jastrow trial ground state Fydg. The

proposed U(q) is simply
5 iy -5
U@ = A@S™(q) + - [57%(@) - Sg"@)] 13)

where Sg(q) is the static structure factor of the noninteracting Fermi system and

.

252
5@ = pf ar explanam = TLS@-11+ 5@ (14)

The Jastrow S(q) entering (13)-(14) may be evaluated with good accuracy (near nuclear
densities) by solving the FHNC/C equations, while its graphical derivative S’(q)
appearing in (14) may be obtained by solving the FHNC/C’ equations (Krotscheck et
al. 1981). The vanishing of A(q) is equivalent to the optimization condition. Hence, for
optimal Jastrow correlations the p-h force U(q) depends only on S(g) and properties of

the noninteracting system.

With a local p-h force, one has quite standard algebraic RPA formulas (see, e.g.,
Brown 1972), which lead to the familiar RPA; expression of the density-density

response function

H( (D) — _—H_O(S_,_O—J_)_— (15)
q, B 1- U(Q)HO(Q:U)) ’

The response function I1 (q,w) is the p-h propagator of the free Fermi system, i.e., the

Lindhard function.

The dynamic structure factor and the properties of zero sound (if present) are

derived from the relation (15) in the usual manner. Thus

S(q) = - % Im I(q,®) (16)

while the zero-sound dispersion relation @ = w,,(q) is determined by the roots of the

denominator of (15), i.e., the roots of

1 — U(g)Re T (q,w) =0 a7
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in the region where Im Il (q,w) = 0. The strength Z,; of the zero-sound mode is given
by
-1 2, d
Zys (@) = U@ 7~ Re I1,(q.0) . (18)
W=,

With Z,, taken into account, LCRPA satisfies the @’ and @' sum rules.

A qualitative defect of LCRPA, evident in the form (15), is that the (q,®) domain
corresponding to individual 1p-lh excitations is the same in LCRPA as in the free
system. However, the RPA; denominator in expression (15) introduces nontrivial
correlation effe'cts in that region. Moreover, outside that region and in the region where
Im IT,(g,®) = 0, zero sound may emerge as a distinct collective mode, corresponding to

vanishing of the denominator.

LCRPA will also suffer, at a quantitative level, from the static nature of the
effective interaction U(q) entering (15). For example, one does not expect the
momentum dependence of the self-energy to be adequately reproduced within this
scheme, particularly in the very delicate case of unpolarized liquid 3He (Friman and
Krotscheck 1982). In spite of its deficiencies, LCRPA offers a simple and
straightforward underpinning for phenomenological "theories of comparable structure,

such as the polarization potential model (Pines et al. 1988).

4. RESULTS FOR MODEL NUCLEAR INTERACTIONS

Based on the LCRPA scheme outlined in Sec. 3, we have studied the dynamical
response of a simple model of nucleon matter in which the bare interaction between
nucleons is taken as the v, ‘‘homework-model’” potential shown in Figure 1
(Pandharipande 195). This potential consists of the central part of the 3S,—°D;
component of the Reid soft-core interaction (Reid 1968), assumed to act in all partial

waves. It has been widely used in tests of many-body methods (see, for example,

Clark 1979, Ramos ez al. 1989). Explicitly,
vo(r) = [9924.3 exp(—4.2r) — 3187 exp(-2.8r) + 105.468 exp(—1.4r)

- 10.463 exp(-0.7r)}/(0.7r) 19)
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Our calculations are based mainly on the parametrized Jastrow correlation factor

[denoted (C)]

f(r) = exp[—Ae'B'(l —e™Dyr) . (20)

Specific values of the parameters in (20) have been determined by Cepeley et al. (1977),
by minimizing the Jastrow ground-state energy Ej, using the Metropolis Monte Carlo
algorithm. Additionally, for v = 4 we have considered two versions of the correlation

function
f(r) = (1 — e TP 4 grm T @1)

studied by Benhar et al. (1976a,b). In this case the parameters have been determined by
minimization of the energy expectation value truncated at three-body cluster order. In
the simpler version of (21) [denoted (B1)], g has been set equal to zero, while in the
other [denoted (B2)], it has been fixed with the help of the normalization condition (see,

for example, Clark 1979).

For the sake of comparison, we also present nuclear matter (v = 4) results for the
case that the nucleon-nucleon interaction is replaced by a pure hard-core potential (HC)
of core radius ¢ = 0.5 or 0.4 fm. For this potential a simple choice of f(r) is used,

r<c ,

) ={ 1 —exp[-p@—<)] r>c , 22)
with | determined by minimizing the FHNC/C approximation to the ground-state energy
(Flynn 1984). Plots of some of the above correlation functions for nuclear matter
(v = 4) are given in Figure 1.

None of these correlation functions is optimal in the sense of being a solution of
the Euler equation, but it is expected that the C choice will not depart substantially from
the true optimal function except at large r. The discrepancy at large r will produce a
significant departure of A(q) from zero at low q values and will accordingly affect the
behavior of U(q) at small q. We have chosen to set A(q) equal to zero, since the

behavior of U(q) at small q is already suspect because of the local approximation itself.
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V(r) (MeV)

-100
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Figure 1. Nuclear matter (a) solid curves: the potential v, and the corresponding
correlation functions C and B2 at kg = 1.39 fm™ and 1.4 fm™ respectively, (b) dashed
curves: the hard-core potential of radius ¢ =0.5 fm and the optimized correlation
function of Eq. (22) at kg = 1.4 fm™.

Numerical results based on (20) have been obtained for symmetrical nuclear matter,
ie,v =4, at kp=139 fm™!, corresponding to a density p = 0.182 fm™> near nuclear
saturation, and for pure neutron matter, ie., v =2, at kg=1.75, 2.25, 2.90 fm™!,
corresponding to three densities p = 0.182, 0.386, 0.822 fm™> of relevance in the study
of neutron stars. For both level degeneracies, we have examined a range of wave-
number transfers q from 0 to about 4 fm™!. Results based on (21) are available only for
symmetrical nuclear matter at Fermi wave number kg = 1.4 fm™!, and hard-core results
have also been obtained for this case using (22). (We should note hard-core results
based on (22) with ¢ = 0.4 fm, for both v =4 and v =2 systems, may be found in
Mavrommatis et al. 1987.) 4

Let us first discuss the results for symmetrical nuclear matter. The CBF p-h
interaction appropriate to the v, potential at kg = 1.39 fm™!, for the C choice of (r), is
shown in Figure 2(a), along with the ¢ = 0.5 fm hard-sphere result at the same density.
Both potentials sustain a collective mode corresponding to zero sound. In both cases,
this mode emerges from the p-h continuum around 0.3-0.4 fm™! and sinks back into it
at about 1.53 fm™!. The associated zero-sound dispersion relation and the strength of

zero sound for the v, potential are plotted against q in Figures 3(a) and 3(b),
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respectively. The corresponding curves for the hard-core potential show a remarkable

agreement with those for v,

We see in Figure 2 that the effective interaction derived from the soft-core vy
potential is very close to that derived from the HC potential. This concurrence indicates
that fhe two potentials are similarly effective in lifting particles from below to above the
Fermi surface, at least when the momentum transferred to the p-h pair is not excessive
and the density is near the saturation value for nuclear matter. In turn this observation
suggests that a useful measure of the strength of the p-h force may be provided by the
wound paramctér K (Clark 1979). Indeed, referring to Figure 2, we have k = 0.232 for
the C choice of f(r) and x = 0.263 for the ¢ = 0.5 fm HC choice of Eq. (22). One
comes to the same conclusion upon comparing the p-h interaction derived from C and
from the B1 and B2 choices of f(r). The substantial differences may be attributed to the
different values of the wound parameters (which have the values x = 0.146 and 0.143
for B1 and B2 respectively). We also realize that the behavior of U(q) and w,(q) for
small q is not correct. As previously mentioned, this is due to the non-optimality of the

correlation functions.

(a) v=4 (b) v=2
KOO 1000

800

600

U(q) (McV)

(64
o

400

200

q (l’m'l)

Figure 2. (a) Wave-number dependence of local p-h interaction U(q) for v, model of
nuclear matter at kg = 1.4 fm™!, based on correlation functions C, B1 and B2 and for
hard-sphere nucleons with ¢ = 0.4 and 0.5 fm based on Eq. (22). (b) U(g) for v, model

of pure neutron matter, correlation function C and different densities (as labeled, in
fm'3).
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Figure 3. (a) Zero-sound dispersion relation w,,(q) and (b) zero-sound strength Z,.(q),
for v, model of nuclear matter at p=0.182 fm™ and of neutron matter at
p = 0.182, 0.386, 0.822 fm™>, based on correlation functions of C type.

The remainder of the discussion pertains to the C choice of coirelations. We have
calculated S(q,w) as a function of energy transfer tw for several values of q, including
values for which cxpen’meﬁtal data are available. Results are presented here only for
q = 1.47 fm™! (Figure 4) and q = 2.76 fm™! (Figure 5), at kg = 1.39 fm™!. The figures
include, for comparison, the Fermi gas structure function Sg(q,0) as well as the
LCRPA result for the ¢ = 0.5 fm hard-core potential at the same density. We observe
the well-known quenching of the response at low energies compared to the
independent-particle-model result (Meziani 1985), but this effect is too emphatic in our
results at the lower q values. For a given g, the strength is shifted to values of hw
higher than the experimental peak energy. This effect, as well as the excessive
quenching at low ®, can presumably be attributed to the excessively repulsive character
of the v, and HC potentials, which act equally in all partial waves, in contrast to the
strong partial-wave dependence of realistic nucleon-nucleon interactions. Similar trends
seen in the results of Fantoni and Pandharipande (1987) and of Pines et al. (1988) are
much milder. The rather unphysical piling up of the strength at the high-w boundary
that is observed for the lower value of q can be attributed to LCRPA, which does not

give response outside the (q,w) domain implicated for the free system. As we go to
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high q, the departure of the LCRPA results from those of the free Fermi system and
from those of the other theoretical predictions become less noticeable, as expected from

the decreasing importance of U(q) at large q.

o] o v=4
q =147 '
[
s |0
b3
> pe
2
X
3
&
78] 5 =5
s
| i i i e

OO 20 40 60 80 100 120 140
hw (MeV)

Figure 4. Dynamic structure function S(q,w) versus energy transfer hw at fixed wave
number transfer q = 1.47 fm™ and kg = 1.39 fm ). Solid curve: for v, model of
nuclear matter based on C correlation function of Figure 1. Dot-dashed curves: for
hard-sphere nucleons with ¢ = 0.5 fm and the dashed correlation function of Figure 1.
Dotted curves: for free nucleons. Zero-sound contribution in v, case is indicated by
vertical spike.

Generally speaking, the LCRPA results for neutron matter are qualitatively similar
to those of symmetrical nuclear matter. The corresponding p-h forces U(q), zero-sound
dispersion relations ,,(q), and strengths Z,(q) are plotted in Figures 2 and 3
respectively, for the three densities mentioned above. The features remarked previously
for S(q,w) at level degeneracy v = 4 are also seen at v = 2, and density dependences for
all relevant quantities are as expected. We should point out that although the Jastrow
description should be more accurate for neutron matter than symmetrical nuclear matter,
due to the absence of interaction in triplet-even states, the LCRPA must be less reliable

due to the increased importance of nonlocalities implied by the lower level degeneracy.
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Figure 5. Same as Figure 4, except q = 2.76 fm™! and there is no zero sound.

5. CONCLUDING REMARKS

The density-density response functions of symmetrical nuclear matter and pure neutron
matter have been studied with a simple theory, the local correlated random-phase
approximation LCRPA, and a simple model interaction, v,. Relative to an ordinary
local RPA treatment, LCRPA takes account, approximately, of important dispersive,
polarization, and geometrical effects arising from Lhé strong interactions. It has the
virtue of easy application and it establishes correctly some qualitative trends, but it has
shortcomings, mainly at low q. The latter deficiency may be due in part to the omission
of the A(q) term, which is strictly not justified because non-oﬁtirﬂal correlation functions
have been used. (A quantitative study of this point is currently in progress.): However,
it is likely that the shortcomings at low q are mainly due to the omission of
nonlocalities, as has been pointed out recently in a comparison of LCRPA and the self-
consistent Green’s function theory (Dickhoff 1988) in the case of spin polarized He.
We are therefore beginning calculations with CRPA| itself (in collaboration with N. H.
Kwong), solving numerically the full CRPA| equations on a suitgble grid in momentum
space, with techniques similar to those used earlier for OMY models of nucleon matter
(Sandler and Kwong 1984). Besides the soluton of the full CRPA;, a satisfactory

treatment of the response of realistic nucleon .matter obviously requires the use of
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realistic interactions and state-dependent correlation factors F. Initially, the v, and vg
models of nucleon matter will be considered. Since our goal is a truly quantitative
description of the response and elementary excitations in nuclear systems, theories are
required that go beyond CRPA7 and include extra correlated multipair effects. Two such
extensions are currently under investigation. The first (CFRPA) treats F as a dynamical
quantity, and the second (CRPAy) is the extension within CBF of the second-order RPA
(see, for example, Yannouleas et al. 1983). Finally, we should remark that our

calculations will be extended to spin and isospin-density response functions.
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