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Liouville’s theorem and quantum mechanics — time
quantization and reality

C. Syros, G. S. Ioannidis and G. Raptis
The Science Laboratory & the Laboratory of Nuclear Technology
University of Patras, P.O. Box 1418, 261 10 Patras, Greece
E-mail: gsioanni@upatras.gr

Abstract

The chrono-topology, as introduced axiomatically in a different context, is also
supported by Liouville’s theorem of statistical mechanics. It is shown that, if time
is quantized, the distribution function (d.f.) becomes real. An elementary solution,
g, of the classical Liouville equation has been found in phase-space and time,
which can be used to construct any differentiable d.f, F(g), satisfying the same
Liouville equation. The conditions imposed on F(g) are reality and additivity. The
reality requirement, (Im F(g)=0) quantizes: (i) F(g) and makes it time-
independent. (ii). The time variable. (iii) The energy. As a verification of chrono-
topology, the Planck constant # has been calculated on the basis of the time
quantization. The d.f. F(ig) becomes, after the time quantization, a real generalized
Maxwell-Boltzmann d.f, F(g) = exp[g(p, g; 11, I2,...In)], depending on N quantum
numbers. These facts are significant for quantum theory, because they uncover an
intrinsic relationship between Liouville’s theorem and quantum mechanics.

Keywords: Liouville theorem, chrono-topology, time quantization
PACS: 03.65.Bz, 05.30.-d, 34.10.+x.

1 Introduction

It has already been observed [1] that Liouville’s classical equation admits
solutions with quantized time and energy. That first hint served as an incentive for
the search of a rigorous definition of the time element, 7; , as in reference [2-7].
The conditions for the appearance of quantization in time have been shown to be:
(a) That the distribution function be real, and

(b) Satisfy a certain additivity condition similar to one of the basic requirements
of C*-Algebra [8] in statistical mechanics.

If there were no observable changes in nature, then the time notion would be
neither useful nor definable. The underlying principle of chrono-topology is that
interactions are the exclusive agents of physical changes in the universe and that
time has a part neither in the interactions nor in their results. Time does not
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produce physical changes, but it is just useful to a human observer for the

description of them'.

This simple observation is used to give (mathematically) an operational time

space definition. The time elements, 7;, are considered as a regular injective map

of an observed change of an observable induced by means of a fundamental

interaction process. These time elements are called interaction proper time

neighbourhoods (IPN) and characterized in the following fundamental definition.

Definition 1.

An IPN, 7), is and injective map, f. (a) into observer’s brain through one of his

five senses or (b) into an appropriate device by means of a convenient detector,

during observation of the A-th change, AO) , of the j-th physical observable, O':
£:004- 1(a0)=rieT?.

Definition 1 enables us to characterize the microscopic system time by the

following:

Definition 2.

The microscopic system time, T, of a particle system is defined as the union of

a set of time elements, {z]|ieAc 7%},
) A 4
T3 =lUlrﬁ,ACZ

for a finite ACZ" of interaction processes.

The union of all {1—{ } corresponding to the j-th observable’s change and
belonging to a closed particle system is a disconnected topological space [9],
satisfying the separation axioms of 7~ gj ) (See Appendix). It can be used define the

Newtonian universal time, N -and this in fact is its physical origin. This in fact is
the physical origin macroscopic time. This time, known from classical mechanics
and from every-day life, comes about as the union of a set {7~ gf )} which,

although it is denumerable, many of its consecutive elements, 7, , are subjectively

not discernible in all cases. This is due to human brain physiology (finite
computing power resulting from finite speed, resulting to finite time resolution).

If the number of observable systems in the universe is S, the number of particles
of the s-th system is K{(s) the number of changing observables of the x-th particle
is j and the number of interactions of the s-th system of the x-th particle changing
the j observable is A, then the Newtonian time in this universe is characterized by
the following definition.

Definition 3.
Newtonian universal time space, N} , is the union of the maps {7£x}

! The clock hands do not show time. They present a varying angle due to the intersection of the spiral spring
with the appropriate wheels. The successive maps of the varying angle in observer brain, or in any angle
detector, are perceived (by him) as time. Similar is the case with all chronometers.
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N=U U U 7Y
se§S xeK(s)jel(x,s)
for S, K(s), J(x, 5), AG.x, s)cZ".
The time, 7~ gj), as defined in chrono-topology, satisfies the following axioms

which are deduced from operational observation:

Axiom I.

All time measurements, classical or quantal, are based on an interaction process
implementing a change of a physical observable that generates, if observed, a
corresponding IPN. The generated IPN is a regular into map of just this change.
The change map is stored either in observer’s memory through one of his five
senses or in the memory of an appropriate device.

Axiom II.

Every fundamental interaction process is associated with finite changes of the
involved observables. Map sets, {r]} of observables’ changes have an
intrinsically stochastic character, as regards their embedment in the Newtonian

time space, N}. Different , {z-{ } start and end at irregular Newtonian times ,
{r{ {}, and have, within limits, stochastically distributed durations, {5(z])}-
7, is (for living observers and for detectors incorporating a Newtonian
universal timer) embedded in the time space, N} , but it does not, in general, have
the N'! topology.

Axiom III.

The elements of the empty set, @, of a class of map, (] } of {Ad }, withj, Ae Z",

of physical observables, {0}, are not observable, and their values are identically
equal to zero.

The above definitions and axioms describe time quantization in a rigorous way.
They are all basic, not yet deduced formally from any theory but they are the
result of operational observation.
However, surprising though as it may appear, time as well as energy quantization
follow formally from an elementary solution, g(g, p, ¢), of the classical Liouville
equation describing N interacting particles. The quantization in question follows
only if two conditions are imposed which are naturally related to physical reality:
a) The d.f,.Fy(g(g_#1), must be real (and therefore Im

Fn(e(g 7.t)=0).

b) The d.f.,F ), must be form invariant with respect to the number of the
system particles, N.

The condition b) corresponds to the experimental fact that by adding two systems

of identical particles one gets a system identical to the initial ones independently
of the particle numbers:

2 If S,K,J,A are ale large numbers, then some or all of {r'js 2} may overlap partially or totally and give a
time set compact in itself.
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F(g (& 2K (g Ny (G 2:0) = F(g p1 (G _2:1) + 8 No (G 251))-

This expresses one of the main requirement of the C*-Algebra in statistical
mechanics.

The df. F(g) may be any non-constant, differentiable function of g satisfying
condition (b) above. Also, g(g,p,t) possesses first-order partial derivatives with

respect to the components of g(") eQ,of /(") eP, forn=12,... Nez" and of t.

Empirically, all interactions induce finite changes. Consequently, the interaction
proper time neighbourhoods, {r;}, as continuous and regular, injective maps of

such changes have in all cases finite diameters, 5(z ).

Also, considering that all interactions come about by means of quanta exchange
between interacting particles, the interaction time is necessarily finite, because
every quantum change is finite. It becomes evident from this fact that the time
variable for atomic and sub-atomic systems can only be a sectionally continuous
variable.

The present work consists of 7 sections and one appendix: Since the assertion
according to which time does not flow may appear to some readers as rather
strange, two demonstrations based on chrono-topology are given in section 2. In
section 3 an elementary solution, g(g,p,t), of Liouville equation is presented. It is
shown that every differentiable function, F(g), satisfies also the Liouville

equation, provided that g(g,p,?) is a solution of it. The fact that by requiring
ImF 5 (g)=0 the d.f. becomes time-independent and quantized, is considered as a
result of major physical significance. In section 4 it is demonstrated that the time
and the energy of the system particles are quantized.

In view of these quantizations it would be not too much of an exaggeration to say
that quantum theory might very well have been discovered long before Planck, by
Liouville himself or, €.g., by Boltzmann.

In section 5 a new type of Maxwell-Boltzmann d.f is presented. Its most striking
property is that it depends on a set {J;,.../5} of quantum numbers resulting from

the classical Liouville’s theory. It is also remarkable that its observability is a
consequence of the time and emergy quantizations which make Fy(g) time-

independent and, hence, observable’.

In section 4 the Planck constant is given, based on energy and time quantization.
Its theoretical value agrees with the experimental value 1.0544 x 10°Js. Finally,
in sect. 7 some conclusions are given, together with the discussion of the results,
while in Appendix useful topological definitions are given.

2 Time is discontinuous and does not flow

As stated in the introduction, the time space 7, may, but must not necessarily,
have the topology of the universal Newtonian time N'. This is because it is
composed of time elements {r;}, which are, in general, disconnected, small
subsets of an interval in R’.

3 Experimentally observable are only eigenvalues, and they are time-independent.
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A time element, 77, precedes another time element 77,74 <., if for every re 7]

and for every r'e 74, there holds #)z.
Remark 1
The successive maps, {74}, implemented by means of a sensory organ of the

observer create, as a matter of fact, the impression of a flow which is not the flow
of any physical fluid.
In an electronic or any other kind of device, used for the observation and storage

in succession of the observed observables’ changes {AQj |/, A€ Z*} as well as of

their maps of any regular type {r4|1e Z*}}, that is appropriate for the observation

and measurement of the flow process of real physical fluids, no flow
characteristics have ever been measured.

The basic principle in chrono-topology [6-8] is that interactions are the only
causes of any change in the universe. Changes not associated with an interaction
process do not exist. On the other hand, there may exist changes, whose
interactions processes are unknown to the observer.

With the advent of the special relativity, it should have become clear that nothing
in nature supports the metaphor of flowing time. This can be demonstrated either
by means of a reality-based gedankenexperiment or directly, by using the Lorentz
transformation: x'=y(x-v), €))

r=y(t- —'f—x) , )

where g=2,y =41- ,62 , v is the relative velocity of two frames of reference and ¢
c

the velocity of light.

According to the conventional view, time is mathematically, for every observer a
continuous parameter. Physically, time is a sequence of excitations in observer’s
brain which are implemented by means of observer’s brain nor outside it. What
really does flow in not time. Here is the first proposition to prove by means of a
‘gedankenexperimental’.

Propositionl

Given are a set of interaction proper time neighbourhoods, {r;,r,.;}such that

TaNTin=9.
Then the impression of a flow is implied by the properties t;nr,;, =@ and

{rl<rl+l,V2.EACZ+}.

Remark 2
We shall describe here some situations in which time cannot change continuously,
if it is to generate in observer’s mind the flow impression. The time discontinuity

and the fact that time is embeddable in the Newtonian time-space, )., where

observers live, produces psysiologically in observer’s mind an application of
Zermelo’s well-ordering theorem on the generated time elements {7 ;,7,,}.
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Proof

Let us consider the experiment of the laminar flow of a physical fluid, e.g., water.
This flows with no air bubbles in a fully transparent glass tube. To make the flow
observable solid pieces of any material (e.g., wood) are placed in it. The wood

pieces {p,|1=12,..J € Z*}, upon entering the appropriately delimited optical field
of the observer, create the maps {r,|1=12,../ € Z*}. Since the wood pieces pass
sequentially and ordered, there hold the relations 7,n¢;,,=@and

{r, <T;,+1’V'7-SZ+} .

The maps into observer’s brain {r,|1=12,..J € Z*} are structured in the same way
as the wood pieces are structured, {p JlA=12,.Je Z*}, in the flowing water. More
precisely, this means that the lengths {7, |1 =12,..J € Z*} and the relative distances,
{di1A=12,.JeZ"},0f the wood pieces (or, equivalently, the diameters,
{6(r),0(z 1) | YA€ Z*}, and the distances between the sets {7,|Vx e Z*}) are sets
of proportional numbers, provided the passages of all {p,|1=12,..J € Z*} have

been mapped onto {7, |VA e Z*} by the same f.

Since the observer observes the flow of a physical fluid, the flow impression is

created naturally in his mind by means of well-defined facts of brain physiology

which, being well known, are not repeated here.

Let us isolate and keep in mind the essential observational facts from this

physical flow experiment:

The physical observable whose changes are observed by the observer during the

experiment is luminosity. The observer is affected by the differences of:

@) Luminosity of each observed wood piece.

(ii) Luminosity of the transparent water between two successive wood pieces
as these are seen passing.

The passing of the wood pieces and the water in the between result in changes in

luminosity and create in observer’s brain the corresponding maps, the interaction

proper time neighbourhoods, [z, | VA € Z*}, of definite durations, {5(7,)|Vie Z*}.

Between the end of the A-th and the beginning of the (1+1)-th passages there is

also a definite duration which makes the maps, {r;|Vie z*}, of the passages

disconnected. Two successive passages correspond to two successive
neighbourhoods, 7 ;.<7 ;.. This makes the maps ordered.

The observation of the water flow supplies, of course, the observer’s brain with
additional (irrelevant) information concerning the environment of the flow
experiment. It causes adjacent excitations in observer’s brain not essential to the
flow information per se. They need not be considered in our case, because they do
not contribute to the creation of the flow impression. So much for the real water
flow impression.

Let us see next, what happens in the case of time ‘flow’ during the observation of
successive changes of any physical observable whatsoever, not related to a
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physical flow but structured identically to the wood pieces and water passages in
observer’s optical field of the water flow experiment.
The observables’ changes now create their corresponding interaction proper time

neighbourhoods, {z;N7,;,,=2}.
Every time neighbourhood, 7,. ‘observed’, follows any preceding ‘observed’ 7.,
such that 7,.>7,,4"4'. Every new map is added sequentially to the already

existing set {r;,A(A}in the brain. The disconnected set {r,|iez* the wood

pieces and the water between them in the water flow experiment.

The sequential creations of disconnected maps in the brain, corresponding to
observed observables’ changes (e.g., differences of luminosities or anything else
may be created by many, different physical processes) result in physical changes
in the brain physiology, which are identical to those resulting in the case of the
perception of physical water flow.

Other, non-relevant information may also accompany the perception process of
the observable’s changes, not related to any physical flow.

Therefore, an experimental measurement of the corresponding polarization sets in
the microtubles in observer’s brain, would give identical results in the two cases
of observation of identically-ordered changes of different physical observables,
the water flow in the one case and the changes of any other observable in other
cases.

Hence, two identical flow impressions are created through observation of any
different observables’ changes, which as maps in the brain, are identically
structured and ordered.

It would contradict the brain physiology and would also be a paradoxical
phenomenon, if, since the extraneous excitation sets are identical, different results
were implied in the brain and placed in the memory (e.g., if in the second of our
example no flow impression were created). Human brain excels in recognizing
patterns. These patterns in the two cases described are identical. It is, therefore,
only natural for the brain to conclude that the causes are identical too. This
represents an excellent example for possible differences between the ‘being’ and
the ‘phenomenon’.

Hence, the flow in the second case is the “time flow” and the proof that tome flow
is an impression is now complete.

Remark 3 .

The flow impression is, of course, not physical, nor does it exist outside the
observer’s mind. Time does not flow, which also in agreement with relativity as is
shown presently. The same process of Proposition 1 is considered from a
different point of view in the framework of relativity. Here time is considered as a
parameter te/c R'. This is in agreement with chrono-topology, because every T,
is a subset of L

The proof will be based on the empirical fact that space does not flow.

Proposition 2

Considered are two observers, one in S and one in S°, with relative velocity v.
Then the time t’ in S’ does not flow, if the space coordinate x in S does not flow.
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Proof
Let t=const. Any change At’, of the time, ¢’, in (2) is a linear map of the change 4x
inS:
ar=—L 3)
c

The converse is also true. It follows from (1) for x ~ const.. that 4x; is a linear
map of the change, 4t:

dx’ = -y vat. “)
Solving (4) for 4t gives

Adt=-dx’/yv “)
It follows from these relations that 4¢ flows, if and only if 4x’ flows. Since 47 is
an arbitrary part of the time ¢, ¢ does flow, if 4¢ does. However, according to all
evidence, space x does not flow and, hence, time does not flow too.
This is, obviously, true for both observers, in S and in S’, and" the proof is
complete.

Remark 4

The above result looks overly trivial indeed. Despite its trivial appearance, it
seems that this is probably the reason that, until now, impeded us to recognize that
time is a map of observed physical observables’ changes and it does not flow.

3 Liouville’s theorem and a distribution function

In the previous section, arguments were presented showing that time for atomic
and sub-atomic systems is a map of observed observables’ changes but not a
continuous mathematical parameter on R'. It is interesting to observe that the
truth of this result can also be demonstrated in a formal way based on the
Liouville theorem in statistical mechanics.

The fact that the Planck constant has been determined from an elementary
solution of Liouville’s equation is considered as a verification of chrono-topology.
A system of N particles will be considered, that interact via forces, which are
independent of the phase space coordinates, within each interaction proper time
neighbourhood.

This assumption appears -strictly speaking- as unphysical. However, the
conclusion that the system would cease to show quantum properties, because the
inter-particle forces depended on the phase space coordinates looks, in our view,
much more unphysical.

Furthermore, physical situations are imaginable in which the interaction forces
change during the motion smoothly and only slightly, when the distances of the
interacting particles of the system are allowed to change only slightly. A more
complete explanation is given in [4] in conjunction with the lattice space
discussed there.

With the above premises in mind, we shall demonstrate the following

Proposition 3

Let
1. PS =P XQ be the phase space.
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2. { _p(") €P, g(") €0,n=12,..N} be the phase space coordinates of an N-particle
system interacting via given forces { #”|n = 1,2,...N}.
3. The elementary solution for N particles be

N n n n n
g(i:ﬁ,f)=n§l[ilen’i£2l{f( g7+ g% F™

e P iy, FOP, (5
where {g,,4,,v,|n=12,...N} parameters to be determined and ,,the mass of the
n-th particle.

4. The Liouville operator be written in the form
N n n n n
L=+ Zl(ﬁ( 1y vE” + FO 0P )
5. F be a differentiable function satisfying the conditions
Jm F(g)=0 (reality). @)

F(g)F(g)=F(g,+g,) (additivity)  (8)
The, upon appropriate determination of /. and {g,, u,,v,|n=12,..N} the functions

g2 t,) and F(g) satisfy
(@ Le(g,pH=0 )
(b) £F(g)=0 (10)
(c) The time variable, t, takes values in J, given by
]
=200, 1,0- 2T Ae ). S lae 2" an
Proof of (9)

Application of £ on g(g,p;t) yields [2]
N n n n -
§1[M£ni%{f(")-j7( Vo p. gy -2

.y = -
+Tn{f(n)mn”2-(ﬁ(n)mn”2

iiv,,f(")); (ﬁ(")m;llzi_ivn f("))-f(")m;”z} (12)
If the n-th particle energy is given by the equation
£nt = vamy 2 Y (13)

then (12) vanishes identically and g(4,2, t) satisfies the Liouville equation. This

completes the proof of (9).

Proof of (10)

Since L is a linear superposition of first-order differential operators, it follows that
LBF(g) = Fo(2)xL2(4 _21)-

From the proof of (9) equation (10) follows immediately and the proof of it is

complete.
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4 Liouville’s time and energy quantization

In this section, we shall prove a number of propositions concerning the
foundations of quantum mechanics are implied by Liouville’s theorem as applied
in classical statistical mechanics.

Proof of (11)

An appropriate function fulfilling (8) is F(g) = exp[g]. Applying (7) one gets the
condition

N . ) i
sin 2 {450t ~ ol FO_ "+ g Feml? M =0.
n=
This is equivalent to
N —_
S (et~ F O 20+ P FONemy
n=

N
=—2”2=:lj,=iz”JN,jn,JNeZ+, (14)

where the factor ‘2’ in front of 7 insures that the d.f. is positive.

By adding to and subtracting from the expression in angled brackets ‘[]’ in the 1hs
of (14) the expression "]";';( Jvé"). FW, rm /(")), where /é") is the

momentum of the n-th pamcle just before its last interaction, i.e., before time
S(r)+ty foregoing expression can be simplified to the form

ﬂ Y n (
n“’; (_/”é) f(")+f(") }"))}

=82z Jy.JnveEZ. (14
The time ¢ is an interval of the Newtonian time ¢ ;< R,z 7 7, Separating -

N
S {Aept-
n=1

from 7*! when they are embedded in R!.
The interaction proper time neighbourhood’s diameter is &(z ;) and there the force
definition has been used

FO=( "= p ™8,

Having still the parameters {y,,v, |» =12,..N} free, we equate

kg F O FO g™ =sany,1,e 7

sz/z
and restrict the product of the free parameter set, { H, v} O the values
“H,vp= i4”lnm11/2'[f(n) _/y(()n)-"ﬁf)n) f(n)]-l’ln € Z+ (15)
From (14’) and (11) it follows that
N -
S (et ¥ 271,00, FOPFO pP+ pP. FOT 2221,) (16)
n=
N
=827 3 jn,

n=1

or for each n-value
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Agnt;2”1"5(1”)}-(@)2)([}-(’1)' (n)+ﬁ(") f(n)] ﬁ”(j,,"ln) (17)
We define time

sn=lF O p+ p FOx(FO)? (18)
which, as we see, it is a constant, characteristic of the n-th particle interaction, and
(17) can be written in the form

t=227{j, ~1,01-

S(z,) ”
N (Ae 11
4, —ENM A g,) - (117)

This completes the proof of (11).

Remark 5

The parameter A in (11), remains still undetermined. We shall calculate the value
of A in the next section with the help of {11’ ) and from experimental data in two
cases (see sect. 6, eq. 21) and we shall find

A71=1,0544x10734Us.
This entitles us, while anticipating the above value for 47!, to write (11°) in the
form

=12nﬁUn-[n[1—5(T" e, (117)

which shows that time is quant1zed following the premises of the present theory.

Remark 6
If it is assumed that §,=4(¢,), then (11°°) takes the particularly simple form
ta=227hj, /gy, 1)

The above result follows also from the relation 7| ﬁ(") )

Remark 7
Combining (11°”) with (12°) of sect. 5 and requiring ¢,=4(z,) we find for &(z,)
the expression
=L
I,+1
which proves both the time quantization and the possibility for the time to take

positive or negative values, just like in chrono-topology, where time can be
defined as a positive or a negative map of observed observables’ changes.

o(ry)= S,,

5 A quantum Maxwell-Boltzmann distribution

The d.f g(4,2 ?) (eq. 5) acquires, after the time and the energy quantization, a set
of quantum numbers one for each particle of the system and it becomes time
independent

N

= —(.z” ("))2 1 n) (n) (n) #nvi (n)\2 s
84 P = E{u Pl =t (F 0. g7+ g " F M=) ()
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Relation (15) shows that the d.f depends on a set of quantum numbers,
Ly =tly.15.-15}, precisely like a many-particle wave function absolute square

¥, . 1~|2 depends on the relevant quantum numbers.
If the product 4y, is restricted to the values given by (15) above, then (5°) takes

according to (18) the form
Flg)=exn( z 2L (P(")) £ f"‘) ™, Z® gy

jfn Pm f(") /gn) & ﬁén) f(n))—l»’ (5”)
where a set of N quantum numbers [ y ={/;./,..../ 5} enters the d.f .
From the general relation _# ™ - _ya”y( g(") g(") g(") and from its inverse
a g"")=f dg®™. FM-_fa g"‘) ve" ¥ ( g(") ﬂ g("’)

=y g(n) g(n) g(n))

we see that the second term in the d.f. is, up to an arbitrary constant of integration,
equal to the potential energy of the n-th particle.

Remark 8

It is observed that F(g) acquires an element of reality in the sense of EPR[10] after

the application of the condition JmF(g) = 0.

This condition (7) implies-surprisingly enough- the quantization of three

quantities:

) The time variable, t. It is even more surprising that the reality condition
leads to the quantization and the full elimination of the time variable in the
d.f . This makes F(g) accessible to experimental measurement and, hence,
an observable. This fact may be considered an indication that perhaps time
is not a physical quantity, and it cannot appear in an observable quantity®.

This is in accordance with quantum theory in which only eigenvalues are

observable, which are time-independent quantities. This is also in Keeping with

chrono-topology in which time is defined as a map of observed observable’s

changes, as in Definition 1, above.

(i)  The total energy, E y, of the system described by (5), as well as the energy

4 This would suggest thinking that, for example, the energy-time uncertainty relation AE.A#)%  (2)
may, after all, not be fundamental at all, as it could be derived from A px.Ax)h )

According to chrono-topology, every change is due to an interaction. Hence, Apx is the result of a force, 7

A
and it is related to it by Newton’s relation _# = —-'% The time, 4¢, is nothing else but the time given in

Definition 1 where there holds:
Ap .~ f(Ap)=tP=at. (0

By multiplying and dividing (b) by P+, the relation (a) follows. The above derivation is meaningful only, if
(c) is true.
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&, of each particle belonging to the same system, become quantized, (see

proof of eq. 12 below), after the elimination of the time variable.

(iii) The Maxwell-Boltzmann d].(,F (g), becomes a time-independent function.
The fact is in full agreement with quantum mechanics, of atomic and sub-
atomic systems, according to which only (time-independent) eigenvalues
and functions are experimentally measurable and observable. In addition,
it becomes dependent on a set, {/,,.../5}, of quantum numbers with a term

proportional to the temperature, an unexpected form of temperature
dependence,

N (JV("))2 Vg™, sxilm
F = + + niitn T 5,,,
(€:9) exp(,,E[ {F dmkal - kT 1 52| FOp ksThH (5°7)

Remark 9

The elementary d.f, g, equals the total energy (dimensionless though it is) plus a
quantum term which may be positive of negative. The expression is also
multiplied by x, , which has the inverse dimensions of energy.

Remark 10
By comparing the d.f F(g) with that of the classical statistical mechanics [11] it

becomes clear that putting u =(k BT)"‘ is one possibility to determine the
parameters {4 }. In this case it is noted that the rhs first and second terms of (5°)

are, of course, inversely proportional to the temperature and correspond to the
Maxwell-Boltzmann d.f. .

The last term, which is unknown to classical statistical mechanics, is proportional
to the temperature and represents a quantum term in the Maxwell-Boltzmann
distribution function.

Since the obtained d.f (5’ or 5°) depends on quantum numbers, it is natural to
expect that the energy be quantized. It will be shown presently that, indeed, this is
the case for the energy as well as for the time. We give first the

Proof of (12)
From (13) and from (15) it follows that
£,
Aey=2ad—; . e ==27ln! S»
j’f,)-f()"f”-ﬁf))

The last expression is the appropriate equation for the determination of A, where
&, 1s taken from experimental data for various real gases. Putting in anticipation

A7'=h, we find

&n=27hln! Sy (12°)
and the proof of the energy quantization is complete.
Remark 11
In the expression for §,, eq. (18), we write for the absolute values of the vectors
o™ - l jmml 7 coso = (2o e ~cos
A7e0rn
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we see that there exists an interval g,<6<g, for which indeed the equality
S,=0(r,) is satisfied. This equality is quite natural because if it is supposed that
the time required for the n-th gas molecule, starting from rest, to acquire the
momentum /o‘"’ is &(z,), then eq. (18) becomes an identity.
Remark 12
Based on (11°’) and (12°) below and requiring ¢, = é(z,,) we got
Sep) 27y~ 1o e i
Sy 27,1
Expression (11°”°) explains the émpin'cal fact that the higher the interaction
energy (higher ;, for given j ) the shorter the interaction proper time

Eq. (11°°) can be used to obtain the system-time. If we sum both sides of it over n
for 7, =0, we find either the average energy per particle, (), or the average

interaction time (z),, :

N N N
lent,,=(s,.>TN=ﬁﬂﬁ zljn=ﬂthN,TN= th,, (19.2)
n= n= n=

N N N
zlg,,t,,=(t,,)EN=_2nh zljn=ﬂ”hJN’EN=EN= S én (19.b)
n= n=

n=1

N N N N
where (g,) = 2] Entn! th" and (z,) = le,,t,./ 21 En-
It seems that nothing prevents from taking the total action of the system either as
positive, or as negative, but the total energy, g, is conserved. Eq. (19b) shows

that since the total energy is conserved, the time (;,) can change in steps
according to J, . This completes the proof of Proposition 1. The proofs of the

following Corollaries 1 to 6 are obvious:

Corollary 1

The fundamentals of quantum theory are implied by the Liouville equation and
conditions (7) and (8) of reality and additivity.

Corollary 2

Microscopic time, ¢,, cannot change continuously.

Corollary 3

The average interaction proper time, (t,), can change for constant E, only if

different partitions of {j } of Jy are possible according to (1 9b)°.

Corollary 4
If time changes for constant total energy, E ., it does so in steps, 4t, (Liouvillian

time) at least as large as given by ~ A(t,) 22270/ E .

Corollary 5
Quantum processes are the faster (shorter A(t,)), the higher their energies, E .,

are

5 J  can be the sum of N different positive integers J, .
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Corollary 6

g(4p, 1) is form invariant with respect to an increase of the particles number, N
(a C*-algebra property)

The second condition (8) is equivalent to: The action integral of the sum of two
particle systems interacting by means of constant forces is equal to the sum of the
action integrals of the separate particle systems, whose particles also interact by
means of constant forces.

The conditions (7) and (8) when imposed on the distribution functions, entail the
quantization of the time which then changes by steps.

These conclusions modify our picture of the time, even in a classical theory of
atomic systems. They indicate that quantization is a fundamental property of the
elements of matter as well as those of radiation (Planck black-body radiation).

6 Determination of Planck’s constant as a verification of chrono-
topology

In the present section we shall calculate the parameter A entering the elementary
df., g4, ). This will be found from experimental data and from the equation
(12°) for the energy quantization.
It will be shown that 1 equals the inverse Planck constant, ~'=#. This is a very
exciting finding, given that Liouville’s equation is a classical one.
We consider this fact not as mere accident and we believe that it entitles us to
think about it as an experimental verification of our chrono-topology. We use for
the calculation of the 1 ”/-value expression
-1_ %

42

where 7,is the smallest time element corresponding to the gas molecule. The

energy, ¢ |, is considered to be the thermal translation energy of the gas molecule

2

3
&1= Ekg T,
The following values for the natural constants are used:
e=1.602x10"'°C Rp=5297x10""'m
m,=9.109x107>'Kg m,=1.673x10"""Kg Kp=138x10"2J/K
ATOMIC HYDROGEN
Iinter©=2:906x10™'°m ‘9"=%k37'=6.21><10'21J
q=75.4860 v=[2g,/(my+m)]"*=2723.022m/s
T=300K Tintr.= Iatomic imrv/v =1.06688 XlO_IBS

11=1

In order to find the value of the interaction time, 7;,, , first for the atomic
hydrogen gas we put, n=I, and use the above atomic parameters. The atom’s
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interaction length, J;,, , is taken to be a multiple, g = 5.4860, of the Bohr radius

of the atom.
The average interaction time, z;,,, , is calculated from:

= m, (20)

Tintr. = v
where the denominator is the average thermal velocity, of the atoms with the mass

(chemical atomic mass unit = 1.007593).
The above parameters for the atomic hydrogen gas give for 1 the value

! =£"2’;f—lim'~=1.05446><10'3“1s, (21)
2

This value of 1 is, clearly, equal to Planck’s constant, and we put

A7 =h=1.05446x107* Js from atomic hydrogen

which is very close to the experimental value.

We consider molecular light hydrogen gas, where A yoiec =2M aomic» @nd the

degrees of freedom are 5.

MOLECULAR HYDROGEN
linter, "7 =3.184x1070m 5 =% kpT =1.035x10720
T=300K v=[2g,/2m,+2m,)]"* =2486.588m /s
=2 tiny, = {0l 1v=1.28x10""s
A7 1=1.05457x107**Js.
. XT;
Hence: A= g”Z;I';““ =h (22)

The values (20) and (21) agree for the selected data.

7 Conclusions and discussion

Indications that the topology of the Newtonian time space, cannot correspond to
systems of atomic, nuclear and sub-nuclear particles were available at least as
early as in 1974. It became clear, that quanta need not take notice of any observers
or anything else, except their own interactions with other quanta or particles.
What is, then, time for the quanta? If at all, should the particles not have, as Dirac
proposed [31], their own times?

The increasing number of paradoxes in theoretical physics generally and in
nuclear and sub-nuclear theory in particular, suggests the view that something
about the fundamental physical concepts should be revised. This view is enforced
while the experimental quantum techniques become more and more sophisticated
resulting in higher accuracy.

A systematic examination showed that most uncertainties in physics are
associated with the time concept. This variable, time, being interwoven with the
space through relativity, imposes its topology to the space-time. It determines, in
this way, the evolution in nuclear and sub-nuclear interactions among others.

A new space-time topology is proposed, the Chrono-topology. It is based on the
concept of the interaction proper-time neighbourhood, T (IPN). The space-time
topology on the quantum level is determined by the number of the interacting
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particles in every particular system. For small numbers of interacting particles the
new time space turns out to be a J; topological space.

The new space-times, Ar% , being in general xxi - fold in time, are defined as the

Cartesian products, R3x g%, of j%*. The later is a xx j, - fold cal space,
satisfying the separation axioms of a 7, space whose elements are the interaction

proper-time neighbourhoods, {r, |V 1,€Z%.

M* is not related to Hawking’s space-time foam, neither as regards to the cell

magnitude nor as to its creation process. While Hawking explains, as does
Wheeler for his space-time foam, creation by means of the field fluctuations in

Planck time-scale, Fis created as maps of observed changes of physical

observables, caused by fundamental interactions. They are mapped as /PNs into
the observer’s brain into the memory of an electronic device in every single case.

Although general relativity is not discussed in this paper, it is left, knowing the
results of chrono-topology, that general relativity, being based on the Newtonian
time space topology of N!, is per conmstruction a non-quantizable theory. A

reformulation of the field equations in the framework of chrono-topology may
lead to a quantum theory of space-time whose time average will give the Einstein
field equations of gravity for macroscopic space-time neighbourhoods.

Many famous authors have given various answers to the question about the nature
of time: Plato, Aristotle, Newton, Kant, Bergson, and many others. The quest for
the meaning of the time by the above researchers and philosophers was rather of a
knowledge-theoretical character, such that no direct physical judgement was
possible -except for a logical one- of the practical applicability to modem
problems of physics. Also, Eddington, Whitehead, Einstein, Dirac, Prigogine,
Wheeler and others have shown concern in the elucidation of the nature and
properties of time.

It is extremely interesting to verify, after a debate of many decades, Einstein’s
terrifically strong insight: Now, it is known that, in fact, God does not play dice
(Gott wuerfelt nicht) in matters of quantum theory. It has been shown, in fact, that
quantum mechanics is not per se a statistical theory. The statistical character of
quantum physics is imposed on the wave function mainly by the topology of the

space-time, M ;d . This would not be possible in the Minkowski space-time, M”.

Therefore, both Bohr and Einstein were fully right in their statements.

Meanwhile, new problems appeared in theoretical physics that are not solvable in
the frame of the classical understanding of time’s nature. Bell, Hawking, Penrose,
Unruh, Stamp, Legget, Douglas have published important works on this area, but
the time issue remained open.

The beautiful researches of all above authors are only a very small sample of the
world literature on time’s nature. However, there exist still some very serious
remaining problems, in particular in quantum theory,: which make this issue
central to the atomic, to the nuclear and to the elementary particle theoretical
physics.
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Some spectacularly successful results have been reached in these areas of physics
during the now century now coming to the end, and a high degree of maturity both
in experiment and in theory. Nevertheless, some important questions remained

open:
1) Can the wave packet’s decay be understood in absence of interactions?
i) Can the reduction of the wave function be understood in the framework of

the Schroedinger equation?

ili) Can quantum statistical mechanics (QSM) be derived rigorously, in
particular the Boltzmann factor, from quantum field theory (OFT)?

iv) Can the microscopic and the macroscopic irreversibility be explained,
starting from QFT?

V) Why is there a tunnel effect?

vi) Why is there an ergodicity?

vii)  Why is there a Poincare returning?

viii) Why quarks are not directly observable?

ix) Have the non-locality, related to the Bell theory, and the interpretation of
the Aspect et al. experiment to do with the topology of the time?. Etc., etc,

It became clear after the publication of Einstein’s relativity (and due to the
Lorentz transformation) than time and space are interwoven in the Minkowski
space-time, M*. The recognition was provided by relativity that each e-space point
is associated with its own time (event), the proper-time.

Accordingly, one would expect that these facts should, normally, impose the
replacement in modern physics of the universal Newtonian time, N;, by the new
Einsteinian time. This would make justice to Dirac’s early proposal that every
particle in the many-particle Schroedinger equation should have its own time
variable. Dirac’s proposal, being related to the topology of the space-time has not
yet found in physics the place that it deserves.

It is important to note that, whichever is the topology adopted for the time space, a
transformation like

{x = Ly(x,0),t'= [,(x,0)};x € X c R', induces on the space-time the topology of that
time.

In the same way the Lorentz transformation {(x,#) ~ (x',#')} induces the topology of
the Newtonian time space, )., on each space point, x’, in the neighbourhood

associated with that time, ¢, and space point, x.

Space-time topologies resulting from solutions of the Einstein field equations
were not mentioned in this paper. However, one cannot tacitly bypass the fact
that, in general, relativity the proper-time is a function of the Newtonian time. For
example, in the Schwartzschild metric

2
ds? =CZ{1—%Jdt2—rZSiD2 0de* —-r* 49 - ——,

the time variable ¢ takes values as re T = R'.
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Also in some text books of general relativity, for example, one reads: “Any
monotonic parameter, increasing from the past to the future (i.e., ze[-ow,+])

might be used to measure time on the world line of a material particle”. This is
clearly correct for a macroscopic theory. Is it correct for the discontinuous
quantum phenomena?

Nevertheless, this attitude reflects the view of some researchers according to
which time had nothing to do with fundamental interactions and with the changes
induced by them in the different neighbourhoods of the universe.

This attitude has not been adopted in the present work.

In view of these facts one may speculate, if not reasonably conjecture, that the
well-known paradoxes themselves in relativity and quantum theory, as well as the
possibility for their appearance in physical theories are due to the space-time
topology imposed by the Newtonian time.

Despite the obvious necessity to replace the Newtonian time and its topology by
IPNs as defined precisely in the present work for each event, the Newtonian time
remains until today generally dominant in classical and in quantum theory.

The present paper is dealing with the derivation of some consequences of a new
type of time topology discovered earlier.

The new topology derives from the fundamental observation teaching that no time
would be definable, if nothing changed in the universe.

Since the universe for a non-interacting, structureless particle is the particle itself,
no time exists for it. Moreover, since the nuclear and sub-nuclear interaction
processes factually are, each one, of finite duration, i.e., they are related to finite
changes of the observables involved in the interaction, it is clear that /PN cannot
de identified with the Newtonian time.

Because the latter is homeomorphic to the whole R’ while IPN e TscR',and T,

is disconnected.

It is also important to remark, that the time for, e.g., a nucleon is related to its
corresponding interaction, and it does change as long as the interaction lasts. Just
this time emerged in this work for the Liouville equation in connection with
constant interaction forces. This time can ‘flow’ within the corresponding /PN as
long as the interaction is going on in the rest reference frame of the interacting
particle.

On the contrary, for an observer the reaction time (¢°) may, but must not, flow
further, depending, according to Lorentz transformation, on whether he changes
its position (x’) or not with respect to the rest frame of the particle. This stresses
the importance of the interaction for the changes in any system. A nucleon’s
reaction time, for example, cannot be identified with the universal time that
consists, according to chrono-topology, of the union of the maps of all individual
interactions occurring in the entire observable universe. On the other hand, the
free-field quantum equations of physics, mathematically so instructive they do not
provide us with information concerning physical changes due to dynamical
processes.

Interaction free quantum equations do describe fundamental particle properties.
Famous examples of such equations without interactions are the Dirac spinor
equation for the electron spin and the Klein-Gordon equation for the zero spin of
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the n-meson. However, the interaction free Dirac equation does not predict the
existence of positive charge particles. The charge conjugation transformation
reveals the positron existence only in the presence of the four vector potential.
One must stress, however, that macroscopic motion, and in particular inertial
motions, are correctly expressed either in terms of the Newtonian time or in terms
of unions of large numbers of /PNs ( |Jr,;) deriving from interactions in the
x,Aez*

observable neighbourhood of the universe.

It seems that the way to pave for general relativity towards quantization is to
redefine the space-time topology by taking into account the topology of the IPNs
corresponding to gravity and to reformulate the field equations in the topology of
t € J,. In such a case, the quantization of the theory can most easily be carried

out by means of the field-action-integral quantization.
It was judged worth reviewing some, in our view, important time topologies used
in the past of proposed recently to describe the phenomena or to explain the
interpretational problems in quantum theory.
Some researchers look for time traces in the past. They believe that time is
reversable, that this mathematical operation which proves so useful in
mathematics and in mathematical physics can be implemented in the physical
experiment. There is —from the standpoint of this work quite obviously- a small
misunderstanding. It may become clear by trying to answer the following
questions:
- If the time elements are positive (negative) maps into observer’s brain of
observed physical observables’ changes, could one make them negative (positive)
by changing the observable’s change sign?
- Could one get negative time by means of any action prepared for the future?
- Could one travel in the past, if every elementary action in the present is an
initial condition for the next action in future?
- Becomes time negative, if all clocks’ hands move the opposite way around?
Even if one succeeds in reverting a series of ordered events by which positive
(negative) time intervals have been defined —an operation physically perfectly
feasible- the time defined by the series of the reversely ordered events will still be
strictly correspondingly positive (negative) time intervals, provided one keeps the
same way of defining time.
Hence, time cannot be inversed in physical reality, and Aristotle was right in
teaching that time is a series of ‘nows’. Everything occurs at its corresponding
‘now’. Every process of observation by a given observer occurs at his
corresponding ‘now’; not earlier and not later that that. This is the reason why we
cannot change the past. Because an intention to change something, e.g., the past,
means exclusively to act at a future’s ‘now’.
Nor can we change the future, once the conditions for it have been fixed, without
acting at every ‘now’ before the ‘future’ in such a way as to create the new
conditions for the ‘changed’ future. Because to determine the future means to
prepare at every ‘now’ the conditions required for the next ‘now’.
These considerations, correct as they may be, do not change anything in the
mathematical correctness of, e.g., Goedel’s solution to Einstein’s equations. What
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probably should change is the belief that the time resulting from an elementary

physical interaction process might take all values form the ‘infinite past’ until the

‘infinite future’ or vice-versa.

The quest for the nature of time is almost three millennia old. Also, since the

sysfematic use of mathematical methods in physics started, (and reaching a peak

in more recent times) it was possible for physicists and mathematicians to find

various descriptions of the time idea, which are satisfactory to variable degrees

[12-20].

This was so not only in mathematics and physics where the correctness of the

definition of a physical quantity is more or less easily checked. Even in

philosophy [21-26], many different time descriptions have been given which

covered a considerable part of the physics requirements. All those time

descriptions, although they were descriptive and not definitions in the rigorous

sense, helped solve all problems of macroscopic technology and almost all

problems in physics.

However, there were a few problems, mainly in physics, which led to situations

characterized by some physicists and mathematicians as puzzling or as

paradoxical [27-28]. The puzzles and the paradoxes refer to classical as well as to

quantum theory and are well-known and described in the literature (See for

example [29]). Recently a rigorous definition was obtained [30] relating time to

observed changes of physical observables, and this admitted for the first time a

mathematical formulation. This mathematical definition of the time is in

agreement with and contains almost all time descriptions known to the authors to

the present paper.

Moreover, the new time definition give the same results in the case of all already

solved problems and, in addition, it helps to eliminate some puzzles and some

paradoxes in quantum theory. It also makes compatible the time reversal

invariance of the fundamental equations of physics compatible with the

irreversibility of the overwhelming majority of the physical phenomena.

The problems solved in the framework of chrono-topology or partially derived, in

this paper, from Liouville’s theorem are:

1) The discontinuity of the time [2,4,30].

2) The imaginary impression of the time flow [7,30].

3) The relativity proof that time does not flow [7,30].

4) The relation of the time with Zermelo’s well-ordering theorem [7,30].

5) The wave packet stability in absence of interactions [6,7].

6) The finite evolution of the wave packet as a consequence of an interaction
process [7,30].

7) The calculation of Planck’s constant ([30], and present work)

8) The measurement problem in quantum mechanics [7]

9) The Schroedinger’s cat paradox [8].

The calculation of Planck’s constant is considered as a major result (of [30] and of

the present paper) and it verifies in the authors view the correctness of:

a) The time definition.

b) The chrono-topology.

c) The stochasticity of the quantum fields.
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d) The existence of an evolution operator [7,8,30] implying time-asymmetric
evolution in quantum theory.
Having stated some advantages of the mathematical time definition, we cannot be
tacit about a restriction of the present paper: It solves the Liouville equation only
with interaction forces that are independent of the inter-particle distances. This is,
doubtlessly, a property of the method used, which is inapplicable to problems of a
more general nature.
However, although the calculated d.f’s form may change considerably for
systems involving non-constant forces, it is not expected that the gquantum
character of the obtained results would change and become classical. It would be
difficult to assert that time or energy would cease to be quantized, if the
interaction forces {#®|n=1,2,...N} depend on the inter-particle distances.
If that is right, it would not be an exaggeration to say that quantum theory together
with conditions (7) and (8) reveal the quantum character of the phenomena on the
atomic and sub-atomic scale.
Since (A) the time and energy quantizations transform a complex and, hence,
unobservable d.f to a real one and, hence, an observable one: Since (B) in
addition, they eliminate the time variable altogether from F(g): Since (C) they
spontaneously introduce a number 1.05446 X 10>* j.s. = », we, therefore, are
entitled to think that there exists a strong relationship between quantization and
observability on the atomic and sub-atomic scale of phenomena in nature.
Since all results presented follow directly from the classical Liouville theorem,
quantum theory might very well have been discovered by Liouville himself or
even by Boltzmann, long before Planck did it on the occasion of the black-body
radiation problem.
Finally, it is our intention to develop the present method further so that it becomes
applicable to systems with any type of interaction forces. We also aim to study the
relationship between the form of the various interactions and the corresponding
chrono-topologies deriving from them.

Appendix

To clarify the description and to facilitate understanding, it is useful to have
herein some definitions and fix the notation used in general topology, as these are
required for the presentation of the results. This should by no means be taken as a
substitute to reading a book on general topology, which is recommended to the
more interested reader.

Let a set J, called the space, be given together with a family {t} of subsets
r ¢ J together with the empty set @. The elements of J are called points of the
space and the elements 7 are called open sets.

Definition A1

A pair (1, i) of ] and 1 represents a topological space, if the following conditions
are satisfied:
i) @er and Jer.

(i) Ify,er,and [J,er, then J;nU,er.
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(i)  If A={A;, A,...}is a family of elements of t and I is a subset of the index
set J such that 4,e,Viel, then |J4;er.

iel

It is clear that the intersection () 4; of a finite subset {4,ie 7 c J}of open subsets

is open.

Definition A2

A space, J, is called refular if and only if for every xeJ and every neighbourhood
U of x in a fixed sub-base P there exists a neighbourhood U of x such that u U,

where u is the closure of U.

The topological spaces may be ordered in a hierarchy according to the restrictions

that are imposed on them. These restrictions are called axioms of separation. Here

are the axioms of separation concerning the fundamental interactions physics:

Definition A3

0. A topological space, J, is called a j,-space, if for every pair of distinct points
t1-to€J there exists an open T’ containing exactly one of these points.

1. A topological space, J, is called a J,-space, if for every pair of distinct points
t1-t2€J there exists an open ' J such that either ¢ et ,t,e1'0r 1 €7 t,€7.

2. A topological space, I, is called a J, space, or a Hausdorff space, if for every
pair of distinct points t,t,€J there exists open sets t,,7,<Jsuch that
heETHt €72 and riNry=0.

3. A topological space, J, is called a j,-space or a regular space, if it is a J,-
space and for every teJ and for every closed set F c Jsuch that te F there
exist open sels r,,r,Such that te r,,F c ¢, and r,n7,=0.

4. A topological space, J, is called a J,-space or a normal space, if J is a J,
space and for every pair of disjoint closed subsets t,,7, there exist open sets
Uand Vsuch that r,cU,rycVand UNV =@

Clearly, a j,-spaceis a J,-space so that the hierarchy holds:

Jo=h=J2=2J3=>J4-

There are still the axioms of separation for the spaces J, 1 Js5Js whose

definitions are not given here. The topology of the time mainly considered in this

paper is just that of j,. This time topology is generated by distinct finite
interactions.
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