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Abstract 

A method for calculating the generalized momentum distribution in finite nuclear 
systems is presented and discussed within the context of the independent particle 
shell model. Application to the light closed-shell nuclei 1 6 0 and 40Ca is included. 

1 Introduction 

During the last few years great effort has been put in the treatment of final-
state interactions (FSI) aiming to properly interprete the experimental data 
of quasi-elastic inclusive scatterings (e,e') [1], (ρ,ρ') [2], exclusive scatterings 
(e, e'iV)[3], (p,2p)[4], (7, N)[5] etc. and to extract reliable values for quanti
ties like momentum distribution η(ρ), spectral function S(k, E), transparency 
Τ and other quantities. The half diagonal two-body density matrix (2DM) 
p2h(^i->T2,fi>) and its Fourier transformation in the variables f\ — fy and 
rv — f2, namely the generalized momentum distribution η(ρ, Q) (GMD), have 
received increasing interest in this context, as they appear into quantitative 
microscopic treatments of the FSI of struck nucléons propagating through the 
nuclear medium. (See for example refs. [6,7] in the case of inclusive (e, e') 
scattering.) They are also key descriptors of the nucleon-nucleon correlations 
prevailing in the nuclear medium and are involved in fundamental sum rules 
that furnish insight into the nature of elementary excitations [8]. 

Both quantities t](ß,Q) and Ρ2Λ(ΓΊ,Γ2>Π')
 n a v e D e e n calculated for the sys

tem of nuclear matter (NM) by considering short-range correlations within 
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the framework of variational theory [9,10]. In this work we are presenting a 
simple method for calculating the GMD of finite nuclear systems. It is a first 
step towards a more realistic calculation including correlations. The method 
has been applied to the magic nuclei 1 6 0 and 4 0Ca. A comparison of our cal
culations with the results for NM and for an infinite, non-interacting Fermi 
gas (FG) of appropriate wave number will reveal the role of the finite size of 
the nuclei and of the statistical correlations present in the model. 

The method is reliable at certain kinematical regions of the momentum vari
ables ρ and Q. That was the case when a similar method was applied for the 
calculation of the momentum distribution η (ρ) and the charge form factor 
F(Q). It can also be used to calculate other two-body quantities, such as the 
two-body momentum distribution η{ρ\,Ρ2) [11]. 

2 Brief description of the formalism for the GMD 

In a system of A (A > 2) identical particles in a unit-normalized state |Φ) 
the generalized momentum distribution η (ρ, Q) is defined as the expectation 
value 

·»« Q) = (»Ι Σ Σ « U ? a U A A V Ι*>· (D 
s,s' k 

An alternative expression is obtained as the Fourier transform of the half-
diagonal 2DM P2/i(7rij7:2,r1/) which is given by: 

p2h(ri,r2,rv) = A(A-l) ζ f V* (xi, x* > ·.,**) 
Sl,S2 

ΧΦ(ΐΐ ' , ΐ2 , · - • ,XA)ÔX3 . . .ÔXA (2) 

yX{ •=. Vi, S{). 

Î ? « Q) = 7Λ3 / P»(n,r 2 i f îOe-^^-^^-^^ ' -^Vr^rr^ra . (3) 

The role of η(ρ, Q) in the description of the FSI becomes more clear if we 
rewrite this quantity as 

η(β, Q) = WQûJ^ûf I*) - η(ρ) (4) 

where PQ denotes the density fluctuation operator, pQ = Σ * a\ nak' 
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From the definitions οΐη(ρ, Q), and p2h{n, r2, rv) we can deduce the following 
properties for the GMD. 

• If fi = fv then p2h{ri,r2,fi) = p2(riìr2)ì where p2{ruf2) is the two-body 
distribution function. From eq. (3) we obtain the p-sum rule 

jfv(p,Q)6*p = AF2(Q) + S(Q) - 1 (5) 

where F(Q) and S(Q) are the elastic form factor and the static structure 
function respectively. 

• The sequential relation for the half diagonal 2DM, /ps*(fi»f?3>ffi')l3r2 = 
(A — l)pi(fi,fi/), where Ρι(?ι,Τι>) is the one-body density matrix, yields 
the corresponding relation for the GMD: 

η(ρ,<3 = 0) = (Α-1)η(ρ). (6) 

In eq. (6) η(ρ) is the momentum distribution. We use the normalization: 
(2^r / η(ρ)δ3ρ = A. 

In the case of an infinitely extended, non-interacting boson gas being in its 
ground state, we have 

77B(p,Q)ocA(^-l)(5g05po· (7) 

Similarly for an infinite, non-interacting fermion gas in the ground state with 
level degeneracy ν and Fermi wave number kp we get 

Ä W . ft» fv) = p2{e(kFrlv) - -i(kFr12)£(kFr1/2)} (8) 

and 

^trf(f} Q) = A[(A _ i)ÔQOe{kF _ p) _ 

- ( 1 - 6Qo)e(kF - p)6(kF - \p - Q\)} (9) 

(p is the particle density and £(x) the Slater function). The second, negative-
signed terms in eqs. (8), (9) reflect the antisymmetric character of the wave-
function. In the case of an infinite gas of bosons at non-zero temperature Τ 
occupying the same states as the fermions above one gets the same expressions 
as (8), (9) with a positive sign on the right hand side. Selected values of the 
GMD of an infinite, non-interacting fermi gas, as given by eq. (9) and of an 
infinite non-interacting boson gas, as described above, for ρ \\ Q (Q = Qpp), 
are displayed in Fig. la. 
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As the GMD has been previously calculated in the case of Jastrow-correlated 
infinite nuclear matter using Fermi-hypernetted chain (FHNC) procedures 
[10], some results are shown for the sake of comparison in Fig. lb. 

3 Method of Calculation 

Our method for calculating the GMD in the case of finite nuclear systems is 
based on the one used in [12-14] for the study of the nuclear form factor, the 
nuclear charge/matter and momentum distributions and the one-body density 
matrix in closed sub-shell nuclei. At first, a compact analytical expression for 
η(β,0) is derived in the context of the independent particle model (IPM). 
We consider a system of A identical non-interacting fermions in its ground 
state. The fermions occupy the lowest single-particle energy eigenstates \rij) 
(j = 1,2,..., Afv) described by the wavefunctions ipnj. Then, η(ρ, Q) is written 
as: 

7?(p,Q) = AF(Q)m(p,$- Q) -lJm(p,k + $)n(kyp- Q)63k (1) 

or: 

V&Q) = AF(Q)m(p,p-Q)-

— Σ ^ m:k (P- Q) [ rnj ( O K PV -̂Vr (2) 
V na,nk

 J 

where ηι{ρι,Ρν) is the one-body density matrix in momentum space. In the 
case of the nucleus, we have A = Ζ or Ν for protons or neutrons respectively, 
and ν — 2 for the degeneracy due to the nucléon spin. The second term on 
the right in either eq. (1) or (2) is an exchange term that arises from the 
statistical correlations among the non-interacting fermions, generated by the 
Pauli exclusion principle. 

In order to obtain closed analytical expressions for η(ρ, Q) we have assumed 
that the nucléons move in an isotropic harmonic oscillator potential and that 
the following approximations hold: 

1. The center-of-mass and finite nucléon size corrections are small. 
2. The Coulomb interaction (relevant for protons) is small. 

First, we have ignored the spin-orbit coupling. For ρ parallel to Q (Q = Qpp) 
the expression for η (ρ, Q) for protons (the calculation is similar for neutrons) 
can be cast in the following form: 
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i*max •''max 2iVmax 

x Σ W Σ ( V)M ' Σ {QpbYiK^ - Ομμ/β) (3) 
μ=0 μ'=0 /0=0 

where it/ = ρ — (3 = IL?PJ5. Ä"MAi> and 0£ are rational numbers that enter the cor
responding expressions of fh(ßi,Pv) and F(Q) respectively. They are difTerent 
from zero when the indices μ 4- μ' and ρ are even. The coefficients Ομμ>ρ are 
equal to zero for μ + μ' + ρ =odd. iVmax = (2ra + £)max is the number of energy 
quanta of the highest occupied ni level. The corresponding expression for the 
momentum distribution η(ρ) is 

A3 „ . •'»max 

' 2 C 

λ=0 
dp) = ^ € _ , , ν Σ Μ 2 Λ / Λ . (4) 

It has been shown that eq. (3) for η{ρ,0) satisfies the property (6). 

The above expression (3) has been generalized by considering ρ not parallel 
to Q and including spin-orbit coupling. The result takes the form 

rtp,Q) = AF{Q)^(p,w)- -j^e * e™* e * χ 

•'''max " m a x 2/Vmax 

χ Σ W Σ W Σ ( W W ^ , Q ) . (5) 
μ = 0 μ ' = 0 p = 0 

Analytical expressions can be found in ref. [15]. It is readily verified that 
for ^-closed shell nuclei, v(p,Q) given by the above expressions equals the 
corresponding one derived by omitting the spin-orbit coupling. 

4 Results and discussion 

The analytical expression (3) has been applied to the calculation of the GMD 
of protons in the magic nuclei 1 6 0 and 4 0Ca for the special case that ρ and Q 
are parallel and both lie on the z-axis. Consideration of £ · s coupling does not 
alter the results, since these nuclei have closed n£ shells. The HO parameter b 
for each nucleus has been determined in such a way as to reproduce the exper
imental value of the charge r.m.s. radius, ( r 2 ) 1 / 2 [16]. ({r2)e x p = 2.737 fm and 
3.45 fm for 1 6 0 and 4 0Ca respectively.) Some results are shown in Figs. 2 and 
3. Comparing with the results for infinite homogeneous systems the following 
remarks may be drawn. 
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In the case of the systems of Fig. 1, one observes discontinuities at Qp = 0 
and at certain values of p, Qp. More particularly, due to the infinite size of the 
systems, η(ρ, Qp) goes to infinity at Qp = 0. For finite nucléon systems (see 
Figs. 2 and 3) the discontinuities are removed, while there exists a positive 
bump at Qp = 0 for ρ = 0, shifted to higher values of Qp for higher p. 
The GMD of the infinite boson(T φ 0)/fermion systems of Fig. 1 exhibits a 
finite positive/negative part at Qp > 0 (Figs. la,b). It appears modified when 
correlations are present (nuclear matter, Figs.lb,3). Similarly, in the case of 
finite nuclei within the HO model, the second term in eq. (3) (the exchange 
term) gives rise to a negative part at Qp > 0. It seems that the positive bump 
and the negative part at positive Qp are bulk properties of the GMD and are 
due to fermi statistics. 

As it has already been mentioned, in our present calculation of the GMD we 
have ignored the effect of dynamical correlations. The GMD of infinite nu
clear matter has been calculated within a Fermi hypernetted-chain procedure 
in ref. [10]. Departures from ideal Fermi gas behaviour in certain kinematic 
domains provide signatures of the short-range correlations (namely, for ρ < k? 
deviations from minus one or zero for Q < ρ + k? and Q > k? respectively, 
and for ρ > k? deviations from zero). In Fig. 3 we make a comparison of 
the GMD per particle of 1 6 0 and 4 0Ca calculated within the harmonic os
cillator model and of infinite nuclear matter at density p N M = 0.182 fin-3 

[kpM — 1.3915 fin""1) as calculated in [10]. We have chosen the values of ρ = 0 
and §fcpM and present the GMD per particle as well as the exchange term per 
particle as a function of Qp. The effect of dynamical correlations is observed in 
the above mentioned kinematical regions in the deviations of the results of 1 6 0 
and 4 0Ca in the harmonic oscillator model from the ones of correlated nuclear 
matter (one should take into account that the values of the Fermi momentum 
for 1 6 0 and 4 0 Ca are equal to 1.1 fm_1 and 1.2 fm_ 1 respectively). 

The inclusion of correlations in our formalism can not be trivially done. One 
way is to use as input the results in nuclear matter [10] over a range of densities 
and apply a suitable local-density approximation. Another one is to consider 
Jastrow correlations and evaluate the GMD using some low-order approxima
tion. 

5 Summary and conclusions 

In summary, the generalized momentum distribution 77(p, Q), a momentum 
space transform of the half-diagonal two-body density matrix of finite, closed-
shell nuclei in their ground state was studied in the independent-particle model 
with a harmonic oscillator basis. Closed analytical expressions have been ex
tracted. The results for two examples, the magic nuclei 1 6 0 and 4 0Ca, exhibit 
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Fig. 1. The generalized momentum distribution per particle of infinite homogeneous 
systems, a) infinite, non-interacting fermi gas (solid lines) as compared to a gas 
of bosons occupying the same momentum states (dotted Unes); b)nuclear matter 
(results of an FHNC calculation [10]). 
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Fig. 2. The generalized momentum distribution of the 1 6 0 nucleus in the harmonic 
oscillator model. 
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Fig. 3. Comparison of the generalized momentum distribution per particle of the 
1 6 Ο and 4 0 C a nuclei in the harmonic oscillator model (thin solid lines: total; dot
ted lines: exchange term) to that of nuclear matter (NM), as calculated in [10] 
(kpU = 1.3915 fm - 1 ) , and of an infinite non-interacting fermi gas (FG) with 
fcp = 1.1 f m - 1 (= fermi momentum of 1 6 0 ) for ρ = 0 and 2.0873 fm" 1 . The 
GMD of this FG for ρ = 2.0783fm-1 (lower panel) equals zero and therefore is not 
displayed. 
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interesting features stemming from the finite size and the Fermi statistics. 

They are expected to be valid in certain regions of momenta ρ and Q where 

dynamical correlations do not play a significant role. Further investigations of 

η (ρ, Q) should consider in some way correlations. 
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