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Abstract

A method for calculating the generalized momentum distribution in finite nuclear
systems is presented and discussed within the context of the independent particle
shell model. Application to the light closed-shell nuclei 1*0 and 4°Ca is included.

1 Introduction

During the last few years great effort has been put in the treatment of final-
state interactions (FSI) aiming to properly interprete the experimental data
of quasi-elastic inclusive scatterings (e, €’) [1], (p,P') [2], exclusive scatterings
(e,€'N)[3], (p,2p)[4], (7, N)[5] etc. and to extract reliable values for quanti-
ties like momentum distribution 7(p), spectral function S(k, E), transparency
T and other quantities. The half diagonal two-body density matrix (2DM)
pon (71,72, 71/) and its Fourier transformation in the variables 7, — 71» and
7 — 75, namely the generalized momentum distribution 5(7, @) (GMD), have
received increasing interest in this context, as they appear into quantitative
microscopic treatments of the FSI of struck nucleons propagating through the
nuclear medium. (See for example refs. [6,7] in the case of inclusive (e,e’)
scattering.) They are also key descriptors of the nucleon-nucleon correlations
prevailing in the nuclear medium and are involved in fundamental sum rules
that furnish insight into the nature of elementary excitations [8].

Both quantities 7(p, Q) and pon (71,72, 71r) have been calculated for the sys-
tem of nuclear matter (NM) by considering short-range correlations within
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the framework of variational theory [9,10]. In this work we are presenting a
simple method for calculating the GMD of finite nuclear systems. It is a first
step towards a more realistic calculation including correlations. The method
has been applied to the magic nuclei O and “°Ca. A comparison of our cal-
culations with the results for NM and for an infinite, non-interacting Fermi
gas (FG) of appropriate wave number will reveal the role of the finite size of
the nuclei and of the statistical correlations present in the model.

The method is reliable at certain kinematical regions of the momentum vari-
ables p and Q. That was the case when a similar method was applied for the
calculation of the momentum distribution 7(p) and the charge form factor
F(Q). It can also be used to calculate other two-body quantities, such as the
two-body momentum distribution 7(p1, p2) [11].

2 Brief description of the formalism for the GMD

In a system of A (A > 2) identical particles in a unit-normalized state |¥)
the generalized momentum distribution 7(p, @) is defined as the expectation
value

05 @) = (UL Y ab 5 0% 585505510). 1)

An alternative expression is obtained as the Fourier transform of the half-
diagonal 2DM pop (77, 7o, 71) Which is given by:

pon(T1, T2, 71) = A(A - 1) Z /‘Il*(svl,zz, ey Ta)
51,52
X\I’(Z‘If,l‘z,...,.’Z'A)ls.’l,';;...(sxA (2)
(xi = ﬁag’t)

o 1 o (P F) B —F
n(P, Q) = Z_Q_y_.-)_3/p2h(rl’r2’ﬁ')€ (A1) QT =) 3 637,837, (3)

The role of 7(5,Q) in the description of the FSI becomes more clear if we
rewrite this quantity as

n(7,Q) = (¥lbeay_sa5¥) — n(p) (4)
where pg denotes the density fluctuation operator, g = X a;%

+§%:
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From the definitions of n(7, Q), and pop, (71, 72, 71) we can deduce the following
properties for the GMD.

o If 71 = 7y then pon(71, 72, 71) = pa(Fi, T2), where po(71,72) is the two-body
distribution function. From eq. (3) we obtain the p-sum rule

5 [ 1696 = AF*Q) + (@) - 1 )

where F(Q) and S(Q) are the elastic form factor and the static structure
function respectively.

e The sequential relation for the half diagonal 2DM, [ pox (71, 72, 71/ )83Te =
(A = 1)py(71,71), where py(71,71) is the one-body density matrix, yields
the corresponding relation for the GMD:

(5, @ = 0) = (4 - 1)n(p). (6)

In eq. (6) n(p) is the momentum distribution. We use the normalization:
@ J 1(p)o°p = A.

In the case of an infinitely extended, non-interacting boson gas being in its
ground state, we have

n8 (3, Q) x A(A — 1)8g0650. (7)

Similarly for an infinite, non-interacting fermion gas in the ground state with
level degeneracy v and Fermi wave number kr we get

G imr e 1
P (F1, P2, ) = p*{€(kpr1v) — ;e(kFrlz)f(kFrm)} (8)
and

k). 7 (5, @) = Al(A ~ D)oaob(ke —p) -

~(1 = 8qo)8(kr — p)8(ke — |7 — Q)] 9)

(p is the particle density and (z) the Slater function). The second, negative-
signed terms in egs. (8), (9) reflect the antisymmetric character of the wave-
function. In the case of an infinite gas of bosons at non-zero temperature T
occupying the same states as the fermions above one gets the same expressions
as (8), (9) with a positive sign on the right hand side. Selected values of the
GMD of an infinite, non-interacting fermi gas, as given by eq. (9) and of an
infinite non-interacting boson gas, as described above, for 7' || Q@@= QpD),
are displayed in Fig. la.
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As the GMD has been previously calculated in the case of Jastrow-correlated
infinite nuclear matter using Fermi-hypernetted chain (FHNC) procedures
[10], some results are shown for the sake of comparison in Fig. 1b.

3 Method of Calculation

Our method for calculating the GMD in the case of finite nuclear systems is
based on the one used in [12-14] for the study of the nuclear form factor, the
nuclear charge/matter and momentum distributions and the one-body density
matrix in closed sub-shell nuclei. At first, a compact analytical expression for
n(7, Q) is derived in the context of the independent particle model (IPM).
We consider a system of A identical non-interacting fermions in its ground
state. The fermions occupy the lowest single-particle energy eigenstates |n;)
(j =1,2,...,A/v) described by the wavefunctions ;. Then, (7, Q) is written
as:

-

15,0) = AFQm@5-Q) - - [m@EE+PmEr-ek ()
or:

n(5,Q) = AF(Q)m(ﬁ,ﬁ Q) -
2 S P, (5, (5~ Q) [ 3, (P, (T -

n;,ng

where 7, (71, 1) is the one-body density matrix in momentum space. In the
case of the nucleus, we have A = Z or N for protons or neutrons respectively,
and v = 2 for the degeneracy due to the nucleon spin. The second term on
the right in either eq. (1) or (2) is an exchange term that arises from the
statistical correlations among the non-interacting fermions, generated by the
Pauli exclusion principle.

In order to obtain closed analytical expressions for 7(7, @) we have assumed
that the nucleons move in an isotropic harmonic oscillator potential and that
the following approximations hold:

1. The center-of-mass and finite nucleon size corrections are small.
2. The Coulomb interaction (relevant for protons) is small.

First, we have ignored the spin-orbit coupling. For 7 parallel to § (Q Qub)
the expression for 7(p, ) for protons (the calculation is similar for neutrons)
can be cast in the following form:
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@ ag ¥ S
NFQ)=pe T € T e T X
Nmax 2Nﬂllx
X Z (pb)* Z Z (Qp uu’ge — Cuup) (3)
=0 W= p=0

where W = p— g= wpp. K, and 92 are rational numbers that enter the cor-
responding expressions of 7, (P, pll) and F(Q) respectively. They are different
from zero when the indices u + y' and p are even. The coefficients Cy,, are
equal to zero for u+ g’ + p =odd. Npax = (27 + £)max is the number of energy
quanta of the highest occupied nf level. The corresponding expression for the
momentum distribution 7(p) is

b3 —p2b2 Nmax $i
16) = e S BHP . @)
A=0
It has been shown that eq. (3) for 7(7, Q) satisfies the property (6).

The above expression (3) has been generalized by considering p not parallel
to @ and including spin-orbit coupling. The result takes the form

- A -y b3 2p2 w2b? 2p2
n(p,Q) = AF@)m (P, @) — —ze 2 €7 € T X
Nm&x Nmax 4 2Nmax 2
X Z (pb)* z (wb)* Z (Qb)pcuu’p(ﬁv W, Q). (5)
pu=0 ©'=0 p=0

Analytical expressions can be found in ref. [15]. It is readily verified that
for ¢-closed shell nuclei, n(7, @) given by the above expressions equals the
corresponding one derived by omitting the spin-orbit coupling.

4 Results and discussion

The analytical expression (3) has been applied to the calculation of the GMD
of protons in the magic nuclei 1*0 and “°Ca for the special case that 7 and §
are parallel and both lie on the z-axis. Consideration of £- § coupling does not
alter the results, since these nuclei have closed nf shells. The HO parameter b
for each nucleus has been determined in such a way as to reproduce the exper-
imental value of the charge r.m.s. radius, (r?)!/2 [16]. ((r*)exp = 2.737 fm and
3.45 fm for 10 and “°Ca respectively.) Some results are shown in Figs. 2 and
3. Comparing with the results for infinite homogeneous systems the following
remarks may be drawn.
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In the case of the systems of Fig. 1, one observes discontinuities at @, = 0
and at certain values of p, Q,. More particularly, due to the infinite size of the
systems, 1(p, Q) goes to infinity at @, = 0. For finite nucleon systems (see
Figs. 2 and 3) the discontinuities are removed, while there exists a positive
bump at @, = 0 for p = 0, shifted to higher values of @, for higher p.
The GMD of the infinite boson(T" # 0)/fermion systems of Fig. 1 exhibits a
finite positive/negative part at @, > 0 (Figs. 1a,b). It appears modified when
correlations are present (nuclear matter, Figs.1b,3). Similarly, in the case of
finite nuclei within the HO model, the second term in eq. (3) (the exchange
term) gives rise to a negative part at @, > 0. It seems that the positive bump
and the negative part at positive @, are bulk properties of the GMD and are
due to fermi statistics.

As it has already been mentioned, in our present calculation of the GMD we
have ignored the effect of dynamical correlations. The GMD of infinite nu-
clear matter has been calculated within a Fermi hypernetted-chain procedure
in ref. [10]. Departures from ideal Fermi gas behaviour in certain kinematic
domains provide signatures of the short-range correlations (namely, for p < kg
deviations from minus one or zero for @ < p + kr and @ > kp respectively,
and for p > kp deviations from zero). In Fig. 3 we make a comparison of
the GMD per particle of *0 and “°Ca calculated within the harmonic os-
cillator model and of infinite nuclear matter at density o™ = 0.182 fm™3
(kMM = 1.3915 fm™') as calculated in [10]. We have chosen the values of p = 0
and %kFM and present the GMD per particle as well as the exchange term per
particle as a function of Q. The effect of dynamical correlations is observed in
the above mentioned kinematical regions in the deviations of the results of 60O
and *°Ca in the harmonic oscillator model from the ones of correlated nuclear
matter (one should take into account that the values of the Fermi momentum
for °0 and *°Ca are equal to 1.1 fm~! and 1.2 fm~?! respectively).

The inclusion of correlations in our formalism can not be trivially done. One
way is to use as input the results in nuclear matter [10] over a range of densities
and apply a suitable local-density approximation. Another one is to consider
Jastrow correlations and evaluate the GMD using some low-order approxima-
tion.

5 Summary and conclusions

In summary, the generalized momentum distribution 7(7, Q), a momentum
space transform of the half-diagonal two-body density matrix of finite, closed-
shell nuclei in their ground state was studied in the independent-particle model
with a harmonic oscillator basis. Closed analytical expressions have been ex-
tracted. The results for two examples, the magic nuclei 0 and °Ca, exhibit
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Fig. 1. The generalized momentum distribution per particle of infinite homogeneous
systems. a) infinite, non-interacting fermi gas (solid lines) as compared to a gas
of bosons occupying the same momentum states (dotted lines); b)nuclear matter
(results of an FHNC calculation [10]).
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Fig. 2. The generalized momentum distribution of the *0 nucleus in the harmonic
oscillator model.
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Fig. 3. Comparison of the generalized momentum distribution per particle of the
160 and “°Ca nuclei in the harmonic oscillator model (thin solid lines: total; dot-
ted lines: exchange term) to that of nuclear matter (NM), as calculated in [10]
(kpM = 1.3915 fm~!), and of an infinite non-interacting fermi gas (FG) with
KEG = 1.1 fm™! (= fermi momentum of '°0) for p = 0 and 2.0873 fm~!. The
GMD of this FG for p = 2.0783fm™! (lower panel) equals zero and therefore is not
displayed.
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interesting features stemming from the finite size and the Fermi statistics.
They are expected to be valid in certain regions of momenta p and @ where
dynamical correlations do not play a significant role. Further investigations of
n(p, @) should consider in some way correlations.
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