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Systematic study of the effect of short range
correlations on the form factors and densities
of s—p—d shell nuclei

H.C. Moustakidis, S.E. Massen

Department of Theoretical Physics, Aristotle University of Thessaloniki,
GR-54006 Thessaloniki, Greece

Abstract

Analytical expressions of the one- and two-body terms in the cluster expansion of
the charge form factors and densities of the s~p and s—d shell nuclei with N=Z are
derived. They depend on the harmonic oscillator parameter b and the parameter
B which originates from the Jastrow correlation function. These expressions are
used for the systematic study of the effect of short range correlations on the form
factors and densities and of the mass dependence of the parameters b and 8. These
parameters have been determined by fit to the experimental charge form factors.
The inclusion of the correlations reproduces the experimental charge form factors
at the high momentum transfers (¢ > 2 fm~!). It is found that while the parameter
B is almost constant for the closed shell nuclei, *He, 160 and #°Ca, its values are
larger (less correlated systems) for the open shell nuclei, indicating a shell effect in
the closed shell nuclei.

1 Introduction

The calculation of the charge form factors, F,,(g), and density distributions,
per(r) of nuclei, is a challenging and appealing problem. A possibility to face
this problem is by means of an independent particle model. This approach,
which is particularly attractive because of its simplicity, fails to reproduce the
high momentum transfer data from electron scattering in nuclei [1-8]. For this
reason a modification of the single particle (SP) potentials has to be suitably
made. In fact a short range repulsion in this potential seems advisable for light
nuclei [9]. For example, with an harmonic oscillator (HO) potential having in
addition an infinite soft core, the F,;(q) of *He can be well reproduced, but
for the heavier nuclei, such as *2C and 60, state dependent potentials seem
necessary and even then the fit is not so good for higher g—values [9]. Another
way is the introduction of the short range correlations (SRC) in the Slater
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determinant. Many attempts have been made in this direction, concerning
mainly light closed shell nuclei in the framework of the Born—approximation
[1-8,10]. Ciofi Degli Atti, using the ”single pair approximation” [1] and the
Iwamoto-Yamada cluster expansion [2] in s—p shell nuclei, showed that the
elastic electron scattering at high momentum transfers seems to give a strong
indication of the presence of SRC in nuclei. Bohigas and Stringari [5] and Dal
Ri et al [6] evaluated the effect of SRC on the one- and two-body densities by
developing a low order approximation (LOA) in the framework of the Jastrow
formalism. Stoitsov et al [8] generalized the model of Jastrow correlations,
suggested by Bohigas and Stringari [5] within the LOA of Ref. [4], to heavier
nuclei like 60, %€ Ar and “°Ca reproducing very well the experimental data.
The motivation of the present work is the systematic study of the effect of SRC
on the s—p and s—d shell nuclei by completely avoiding the approximation made
in earlier work [10] for open shell nuclei. General expressions for the F,;(g) and
pen(r) were found using the factor cluster expansion of Clark et al [11-13] and
Jastrow correlation functions [14] which introduce SRC. These expressions
are functionals of the SP wave functions and not of the wave functions of
the relative motion of two nucleons as was the case in many previous works
[1,7,10]. Because of that, it is easy to extrapolate them to the case of open shell
nuclei and use them either for analytical calculations with HO wave functions
or for numerical calculations when more realistic SP wave functions are used.
An advantage of the present method is that the mass dependence of the HO
parameter b (with the presence of correlations) and the correlation parameter
B can be studied. These parameters have been determined, for the various s-p
and s—d shell nuclei by fit of the theoretical F,,(g) to the experimental ones.
It is found that while the parameter 8 is almost constant for the closed shell
nuclei, “He, 10 and *°Ca, it takes larger values (less correlated systems) in
the open shell nuclei, indicating a shell effect for the closed shells.

2 Correlated density distributions and form factors

If we denote the model operator, which introduces SRC, by F, an eigenstate ®
of the model system corresponds to an eigenstate ¥ = F® of the true system.
Several restrictions can be made on the model operator F, as for example, that
it depends on (the spins, isospins and) relative co—ordinates and momenta of
the particles in the system, it is a scalar with respect to rotations e.t.c. [15].
Further, it is required that F is translationally invariant and symmetrical in its
argument 1---7--- A and possesses the cluster property. That is if any subset,
i1 - - - 1p, of the particles is removed far from the rest, i, - - -4, F decomposes
into a product of two factors, F(1---A) = F(iy---ip) F(ipt1---1a) [13]. In
the present work F is taken to be of the Jastrow-type [14]: F = [Tix; f(ri;)
where f(r;;) is the state-independent correlation function of the form:

f(rij) =1 — exp[-B(r; — 1;)?] . (1)
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The charge form factor of a nucleus, in Born-approximation, can be written:

Fu(q) = fo(a) for(a) fom(q) Fp(g) , where fy(q) and fpr(g) are the cor-
rection for the finite proton size and the Darwin-Foldy relativistic correction,
respectively [16], foam(g) is the Tassie-Barker [17] center—of-mass correction
and Fy(q) the point form factor of the nucleus which is the expectation value
of the one-body operator,

A A
O, = D o0,(i) = > expliqry] . (2)
=1 =1
That is, (0, |¥)
R0 =505 = NIO¥) = N0y, )
where N = (¥(ry,79,-+,74)|¥(r1,72,--+,74))"" is the normalization factor

which is determined so that Fi;(0) = F,(0) = 1 or 47 f5° p(r)r?dr = 1.
The point density distribution has the form

_ (¥[0¥) _ _
por) = rgrgy - = N(¥IOY) = N(O,), )
where
A A
O, = Z:or(i) = Z:d(r—r,:). (5)

In order to evaluate the point density distribution, p,(r), we consider, first,
the generalized normalization integral,

I(e) = (¥|exp[al(0)O,)|¥) , (6)

corresponding to the operator O,, from which we have,

©) = [28e)
a=0

(7)

For the cluster analysis of equation (7), following the factor cluster expansion

of Ristig and Clark [11-13], we consider the sum-product integrals, I;(a), I;;(c),
-« -, for the subsystems of the A-nucleon system and a factor cluster decom-

position of these integrals. The expectation value of the density distribution

operator is written in the form,

(0;) =(0;)1+ (Or)2+ -+ (0p)a, (8)
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where

A A

p=y (2B = S Ha w9, ©)
(O,)2=Z % (InLij(a) = InIi(a) — InIj(a)] —, (10)
—Z(Ul 12(0-(1)+0,(2)) Fiz | ij)a Z[ lor(1) [ 9)+(5 | 0r(2) | 5)],

and so on. F; is chosen to be the identity operator. The cluster expansion
establishes the separation of one-body, two-body, ---, A-body correlation
effects on the density. Three— and many-body terms will be neglected in the
present analysis. After some algebra the density p,(r) takes the form:

pp(r) = N[{Or)1 — 202(r, B) + On(r, 28)] . (11)

The terms (O,); and Ox(r, z) and the density p,(r) can be expressed also in
the convenient form:

(O;)1 = psp(r) , (12)

Og(r,2) = _/9(7‘.1 ra,2)[psp(r)psp(r2) — pEp(r, T2)]drs (13)

Pp(r) zN[Psp(r)+ [9(r,72,28) —2g(r, 2, B)] [psp(r)psp(r2) — pEp(r, rz)]] drp(14)

where psp(r;, T2) is the uncorrelated density matrix associated with the Slater
determinant,
A

psp(ri,r2) =Y &5 (r1)di(r2) (15)

=1

and

g(r1,72, 2) = exp[—2r?] exp[—2r3] exp[2zriracoswia) , z= 4,28 . (16)

The diagonal elements of this gives the one body density distribution, psp(r;) =
psp(ri,T1) -

It should be noted that, a similar expression for p,(r), given by equation (14),
was derived by Gaudin et al. [4] in the framework of LOA. This expansion
contains one- and two-body terms and a part of the three-body term which
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was chosen so that the normalization of the wave function was preserved. Ex-
pression (14) of the present work has only one- and two-body terms and the
normalization of the wave function is preserved by the normalization factor
N. In the above expression of p,(r), the one-body contribution to the density
is well known and given by the equation,

(O = 42%1(21 £3 1) (M) Om(r) (17)

where 7, is the occupation probability of the state n/ (0 or 1 in the case of
closed shell nuclei) and ¢n;(7) is the radial part of the SP wave function.

An expression for the two—body term is usually found by making a transforma-
tion to the relative and the center-of-mass coordinates of the two interacting
nucleons [1,7,10]. This is because the Jastrow function f(r;;) depends on the
relative coordinates of the two nucleons. Here, the expression for the two-
body term, that is of the term Oqo(r, 2), Will be found by expanding the factor
exp[2zrira cOSwy2] in spherical harmonics. That is

exp(22r173 coswip] = 27 Y U (22r179) Vi, (@) Yiem, (Q2) (18)

kmk

where Uy (2zr172) = [, exp(227172 c0s wi2) Pi(cos wyz)d(cos wiz) = 2ix(221173),
ix(z) is the modified spherical Bessel function. Using the algebra of spherical
harmonics, the term: Ox,(r, 2) takes the form:

022(7', Z) =4 Z nnd.;nnjlj (le + 1)(2l] + 1) X

nili,n;l;
An,-l,—njljk el 2 'n_,l_,n.,lk
4An n (r,2) — Z (1:01;0 | k0) Anll,n, (r,2)| , (19)
k=0
where
r ¢ r)e~’ _
Azsansek(r, ) = Zout () nse 1) / Bras () (£)e~ iy 2zr2)ad (20)

Thus the expression of the term Osy(7, 2) depends on the SP wave functions
and so it is suitable to be used either for analytical calculations with the
HO potential or for numerical calculations with more realistic SP potentials.
Expressions (17) and (19) were derived for the closed shell nuclei with N=Z,
where 7,; is 0 or 1. For the open shell nuclei (with N=Z) we use the same
expressions, where now: 0 < 7,; < 1. In this way the mass dependence of
the correlation parameter 8 and the HO parameter b can be studied. Finally,
using the known values of the Clebsch-Gordan coefficients and provided that
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(1) = bu(r), Le: AREna(r,2) = Azgfggﬁik(r, z), equation (19), for the

case of s—p and s—d shell nuclei, takes the form:

Onlr,2) =4 [SAONE, + (33431010 — 6ALY) 7, + 3AIIONE, + (54T
- Dz 2 ATR) o, + (124380 + 124500 - 6ARY) mum,
+ (20A3%+ 2042%%0 — 10AZ") muma + (60ABE + 60AZ
~ 12ATS — 18ATS) myma + (A4S + 441 — 24189) 11,7,
+ (124388 + 124180 ~6A48%) mym,
+ (20410 + 2041582 — 10439%) m,ma] (21)

where ARjsnaiak = Ansisnalak(r ) The point form factor Fp(g) can be derived
in two equivalent ways. The first one is to follow the same cluster expansion
as in the case of the density distribution and the second one is to take the
Fourier transform of the density distribution p,(r), Fp(g) = [ exp[iq r]p,(r)dr.

In both cases, the form factor takes the following form:
Fy(q) = N[(Og)1 — 205(g, B) + O2(q, 28)] - (22)

In the above expression, the one-body term is given by the equation

oo

(Og)1 =4 X (2 +1) [ Guu(r)gm(r)iolar)rar (23)
nl 0

while the two—body term O~22(q, z) is given by the right hand side of equations

(19) and (21) by replacing the matrix elements AZRR414 (r, 2) by AR3(3neie (g, 2)

given by the equation,

An;; langlsk

nimist (g, 2) = | &1, (11)bnats (1) exp[—2rijo(gr)ridry x

Gty (T2) Bty (2) exp[—2r3 ik (2271 72)radrs (24)

3 Analytical expressions

In the case of the HO wave functions analytical expressions of the one-body
term and of the matrix elements A7Em414% (r, 2) and ARSn4i¢¥ (g, z), defined by
equation (20) and (24), can be found. From these expressions, the analytical

expressions of the terms Ogy(r, z) and Oys(g, 2), defined by equation (21), can
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also be found. The expression of the one-body term of the density and form
factor has the form:

2
(Ox)l =C e_Ez Z Czkfzk , T=T1,4, (1)

k=0
where for the (O,);, £ =r/b, C = —% and the coefficients Cyy, are:

4
= =(2m4 + Nos)

Co = 2m15 + 315, Co = 4(mp — as), Ci 3

while for the (O,); the corresponding quantities are: £ = bg/2, C = 2 and

4 4
Co= 2(ms + m2s + 3mp + 5M14), Co= —§(3U1p + 10714 + 2725), Cy= §(2ﬂ1d + 12s)

The analytical expression of the matrix element A7{374{¢*(r, z), which are given

by equation (20), has the form:

l + ls+ _ 142y 2
Azttt 2) = (1T Mo ) 55 €07 T (@) L@

ii (—1)e+s [no+la+5 ) (na+la+3 y

w=0 s=0 Cwls! Ng — W ng— 8

Gla+l—k)+w+s)! i o)
(1+ y)~21-(I2+l4+k+3)w+.s FlaHa—k)+w+s | 1 4 y

where £ = r/band y = 2b? (z = B3, 26) and Ny, = (2n!/T(n+1+3/2))*/2. The

above expression of ARPn44¥(r,2) is of the form: f(£?)exp[— l"‘—zﬂfz], where

f(£?) is a polynomial of £2. The substitution of the expression of A:f'fﬁ;f;k(r, z)
to the expression of Og(r, 2), which is given by equation (21), leads to the
analytical expression of the two—-body term of the density. This expression, for
the case of s-p and s—d shell nuclei, is again of the form f(£2)exp[— 11%_2552]
where f(£2) is a polynomial of £2 of order 4.

The corresponding analytical expression of the matrix element Agfﬁﬁ;i;k (g,2)
which are given by equation (24), has similar form with that of equation (2)
where £ = gb/2.

The analytical expressions of the form factor and the density, which were
found previously, will be used in section 4 for the fit of the theoretical charge
form factors to the experimental ones and for the calculations of the charge
density distributions for various N=Z (s—p and s—d shell) nuclei.
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4 Results and discussion

The calculations of the charge form factors for various s—p and s—d shell nuclei,
with N=Z, have been carried out on the basis of equation (22) and the analyt-
ical expressions of the one- and two-body terms which were given in section 3.
Two cases have been examined, named Case 1 and Case 2, which correspond
to the analytical calculations with HO wave functions without and with SRC
respectively. In Case 1 there is one free parameter, the HO parameter b, while
in Case 2 there are two free parameters, the parameter b and the correlation
parameter 3. The parameters, in both cases, have been determined, for each
nucleus separately, by least squares fit to the experimental Fi,(g). The best
fit values of the parameters as well as of the values of x?, are displayed in Ta-
ble I. In the same table the calculated root mean square (RMS) charge radii
(r%,)}/? and the contribution of the SRC to them, (r?); = (r%) — (r%)1/A,
are displayed and compared with the corresponding experimental RMS radii.
It is noted that (r?), is independent from the center—of-mass correction and
finite proton size.

From the values of x?, which have been found in Cases 1 and 2 (see Table I) it
can be seen that the inclusion of the correlations improves the fit of the form
factor of all the nuclei we have examined. Almost all the diffraction minima
which are known from the experimental data are reproduced in the correct
place. There is a disagreement in the fit of the form factor of the open shell
nuclei 2*Mg, 28Si and 32S for ¢ ~ 3.5 fm~! where it seems that there is a third
diffraction minimum in the experimental data, which cannot be reproduced
in both cases.

It is seen from Table I that the parameter b has the same behavior as func-
tion of the mass number A in the HO and the correlated model, while the
following inequality holds: b(HO) > b(SRC). This is due to the fact that the
introduction of SRC tends to increase the relative distance of the nucleons i.e.
the size of the nucleus, while the parameter b, which is (on the average) pro-
portional to the (experimentally fixed) radius of the nucleus, should become
smaller. It is also noted that the difference: Ab = b(HO) —b(SRC) , is almost
constant for the open shell nuclei and it is larger for the closed shell nuclei
4He, 10 and °Ca. This can also be seen from figure 1 where the values of Ab
versus the mass number A has been plotted. The behavior of Ab as function
of A indicates that the SRC are stronger for the closed shell nuclei than in
the open shell ones. In Figure 2 the values of the correlation parameter 3
versus the mass number A have been plotted. From this figure it is seen that
the parameter § is almost constant for “He, 0 and “°Ca and takes larger
values (less correlated systems) in the open shell nuclei. The behavior of the
two parameters, b and , indicates that there should be a shell effect in the
case of closed shell nuclei. That is, there is a shell effect not only on the values
of the harmonic oscillator spacing Aw, as has been noted in Refs. [23,24] but
also on the values of the correlation parameter 3.

In the above analysis, the nuclei 2*Mg, 28Si and %2S were treated as 1d shell
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Table 1

The values of the parameters b and B, of the x?, and of the RMS charge radii
(r2,)1/2: contribution of the one body density (column HO), contribution of SRC
(column SRC) and of the total RMS charge radii (column Total), for various s-p
and s—d shell nuclei, determined by fit to the experimental F¢;(g). Case 1 refers to
the HO form factor, Case 2 when SRC are included. The experimental RMS charge
radii are from Ref. [18], while the experimental F,j(q) for *He is from Ref. [19], for
12C and 180 from Ref. [20], for Mg, Si and 325 from Ref. [21] and for °Ca
from Ref. [22].

Case Nucleus b [fm] B [fm™2% x? (r2,)1/2 [fm)

HO SRC  Total  Exper.
1 ‘He  1.4320 - 31 17651 -  1.7651 1.676(8)
2 ‘He 11732 23126 3.5 1.5353 0.5277 1.6234
1 2¢ 16251 - 177 24901 - 24901 2.471(6)
2 2 1.5923 3.7051 110 2.4463 0.2566 2.4597
1 160  1.7610 - 199 2.7377 - 2.7377 2.730(25)
2 80 1.6507 2.4747 120 2.5853 0.7070 2.6802
1 2Mg  1.8495 - 188 3.1170 -  3.1170 3.075(15)
2 Mg 1.8270 6.6112 161 3.0823 0.3009 3.0969
1 285 1.8941 - 148 3.2570 - 3.2570 3.086(18)
2 28gi 1.8738 8.2245 114 3.2249 0.2438 3.2341
1 328 2.0016 - 320 3.4830 -  3.4830 3.248(11)
2 326 1.9810 9.1356 270 3.4497 0.2114 3.4561
1 364r  1.8800 - - 33270 -  3.3270 3.327(15)
2 %4r  1.8007 2.2937 - 3.1970 0.9470 3.3343
1 “0Ca  1.9453 - 229 3.4668 -  3.4668 3.479(3)
2 0Ca  1.8660 2.1127 160 3.3353 1.1115 3.5156

nuclei. We have also considered the Case 2* in which the occupation probabil-
ity mps of the nuclei 2*Mg, 2Si and 328 is taken to be a free parameter besides
the other two parameters b and 5. We found that while the x? values become
better, comparing to those of Case 2, the third diffraction minimum is not
reproduced either and the behavior of the parameters b and 3 as functions of
the mass number A remains the same.

From the determined mass dependence of the parameters b and S, the values
of these parameters for other s—p or s—d shell nuclei can found. This has been
done in the nucleus * Ar treated as 1d closed shell nucleus. As there are no
experimental data for Fi;(g) for high ¢ values, the value of the parameter 3
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Fig. 1. The difference Ab =

b(HO) — b(SRC) versus the mass Fig. 2. The correlation parameter 3
number A. b(HO) and b(SRC) are  Versus the mass number A in Case
the HO parameter in Cases 1 (HO 2 (HO+SRC).

without SRC) and 2 (HO with SRC)

respectively.

is taken to be the mean value of the corresponding values of *0O and 4°Ca,
that is : B3¢ = 2.2937 fm~2, while the parameter b is determined assuming
that Absg = Abgy where Aby = by(HO) — ba(SRC). Using the values of the
parameters by(HO) = 1.9453 fm, by(SRC) = 1.8660 fm from Table I and
choosing the parameter b3s(HO) = 1.8800 fm in order to reproduce the ex-
perimental RMS charge radius of 36Ar (< r? >}/2= 3.327 + 15 fm [18]) the
value b3s(SRC) = 1.8007 fm was found. These values of B35 and bss(SRC)
have been used for the calculations of the correlated Fi;(g) and pes(r) of 36Ar.
The calculated RMS charge radius, < 72 >'/2= 3.3343 fm, which was found,
is within the experimental error.
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