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Systematic study of the effect of short range 
correlations on the form factors and densities 

of s-p-d shell nuclei 

H.C. Moustakidis, S.E. Massen 

Department of Theoretical Physics, Aristotle University of Thessaloniki, 
GR-54006 Thessaloniki, Greece 

Abstract 

Analytical expressions of the one- and two-body terms in the cluster expansion of 
the charge form factors and densities of the s-p and s-d shell nuclei with N=Z are 
derived. They depend on the harmonic oscillator parameter 6 and the parameter 
β which originates from the Jastrow correlation function. These expressions are 
used for the systematic study of the effect of short range correlations on the form 
factors and densities and of the mass dependence of the parameters ò and β. These 
parameters have been determined by fit to the experimental charge form factors. 
The inclusion of the correlations reproduces the experimental charge form factors 
at the high momentum transfers (q > 2 fm_1). It is found that while the parameter 
β is almost constant for the closed shell nuclei, 4He, 1 6 0 and 40Ca, its values are 
larger (less correlated systems) for the open shell nuclei, indicating a shell effect in 
the closed shell nuclei. 

1 Introduction 

The calculation of the charge form factors, F^q), and density distributions, 
Pch{r) of nuclei, is a challenging and appealing problem. A possibility to face 
this problem is by means of an independent particle model. This approach, 
which is particularly attractive because of its simplicity, fails to reproduce the 
high momentum transfer data from electron scattering in nuclei [1-8]. For this 
reason a modification of the single particle (SP) potentials has to be suitably 
made. In fact a short range repulsion in this potential seems advisable for light 
nuclei [9]. For example, with an harmonic oscillator (HO) potential having in 
addition an infinite soft core, the Fch{q) of 4He can be well reproduced, but 
for the heavier nuclei, such as 1 2 C and 1 6 0 , state dependent potentials seem 
necessary and even then the fit is not so good for higher q-values [9]. Another 
way is the introduction of the short range correlations (SRC) in the Slater 
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determinant. Many attempts have been made in this direction, concerning 
mainly light closed shell nuclei in the framework of the Born-approximation 
[1-8,10]. Ciofi Degli Atti, using the "single pair approximation" [1] and the 
Iwamoto-Yamada cluster expansion [2] in s-p shell nuclei, showed that the 
elastic electron scattering at high momentum transfers seems to give a strong 
indication of the presence of SRC in nuclei. Bohigas and Stringari [5] and Dal 
Ri et al [6] evaluated the effect of SRC on the one- and two-body densities by 
developing a low order approximation (LOA) in the framework of the Jastrow 
formalism. Stoitsov et al [8] generalized the model of Jastrow correlations, 
suggested by Bohigas and Stringari [5] within the LOA of Ref. [4], to heavier 
nuclei like 1 60, 36Ar and 40Ca reproducing very well the experimental data. 
The motivation of the present work is the systematic study of the effect of SRC 
on the s-p and s-d shell nuclei by completely avoiding the approximation made 
in earlier work [10] for open shell nuclei. General expressions for the FCh{q) and 
Pch{f) were found using the factor cluster expansion of Clark et al [11-13] and 
Jastrow correlation functions [14] which introduce SRC. These expressions 
are functionals of the SP wave functions and not of the wave functions of 
the relative motion of two nucléons as was the case in many previous works 
[1,7,10]. Because ofthat, it is easy to extrapolate them to the case of open shell 
nuclei and use them either for analytical calculations with HO wave functions 
or for numerical calculations when more realistic SP wave functions are used. 
An advantage of the present method is that the mass dependence of the HO 
parameter b (with the presence of correlations) and the correlation parameter 
β can be studied. These parameters have been determined, for the various s-p 
and s-d shell nuclei by fit of the theoretical FCh(q) to the experimental ones. 
It is found that while the parameter β is almost constant for the closed shell 
nuclei, 4He, 1 6 0 and 40Ca, it takes larger values (less correlated systems) in 
the open shell nuclei, indicating a shell effect for the closed shells. 

2 Correlated density distributions and form factors 

If we denote the model operator, which introduces SRC, by T, an eigenstate Φ 
of the model system corresponds to an eigenstate Φ = ΤΦ of the true system. 
Several restrictions can be made on the model operator T, as for example, that 
it depends on (the spins, isospins and) relative co-ordinates and momenta of 
the particles in the system, it is a scalar with respect to rotations e.t.c. [15]. 
Further, it is required that Τ is translationally invariant and symmetrical in its 
argument 1 · · · i · · · Â and possesses the cluster property. That is if any subset, 
ii • • · ip, of the particles is removed far from the rest, ip+i · · · ΪΑ, Τ decomposes 
into a product of two factors, JF(1 •••A) = F{ii • · · ip) T(ip+\ •••ÌA) [13]. In 
the present work Τ is taken to be of the Jastrow-type [14]: Τ = Xlf^ f{fij) ? 
where /(r^) is the state-independent correlation function of the form: 

/(r i y ) = 1 - exp[-/?(ri - r,·)2] . (1) 
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The charge form factor of a nucleus, in Born-approximation, can be written: 
Fch{q) = fP(q) fDFÎq) fcM{q) Fp{q) , where fp{q) and fDF(q) are the cor
rection for the finite proton size and the Darwin-Foldy relativistic correction, 
respectively [16], fcM{q) is the Tassie-Barker [17] center-of-mass correction 
and Fp(q) the point form factor of the nucleus which is the expectation value 
of the one-body operator, 

A A 

That is, 

(Φ|Φ) 
F^i) = ( ! !T?if } = ΛΓ(Φ|0,|Φ) = iV(Oç> , (3) 

where Ν = (Φ(ΓΙ, Γ2, · · ·, τ·Α)|Φ(ί*ι, r2, · · ·, r A ) ) _ 1 is the normalization factor 
which is determined so that FCh(Q) = Fp(0) — 1 or 4π /0°° p(r)r2dr = 1. 
The point density distribution has the form 

PP(T) = { * ^ ] = iV<*|Or |*> = iV(Or> , (4) 

where 
A A 

Or = J>(i) = E^- ri)· (5) 
i = l z = l 

In order to evaluate the point density distribution, pp(r): we consider, first, 
the generalized normalization integral, 

Ι(α) = (Φ|βχρ[α/(0)ΟΓ]|Φ>, (6) 

corresponding to the operator O r , from which we have, 

'dln/(a)" 
(Or) = 

da (?) 
a = 0 

For the cluster analysis of equation (7), following the factor cluster expansion 
of Ristig and Clark [11-13], we consider the sum-product integrals, Ii{a), ly (a), 
• · ·, for the subsystems of the A-nucleon system and a factor cluster decom
position of these integrals. The expectation value of the density distribution 
operator is written in the form, 

<Or) = (Or>! + (Or>2 + • · · + ( O r ) A , (8) 
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where 

A r 
< ο Γ > , = Σ 

i = l 

dìnlija)' 
da 

= £ < i I ^ 0 , ( 1 ) ^ ! I i) , (9) 
Q = 0 1=1 

(Or>2 = E 4- M<*(«) - ln/,(o) - 1η/»]ΰ = 0 
(10) 

= £ < y I ^î2(or(l)+o r(2))^1 2 I y ) . - £[(< | 0,(1) | i)+(j | 0,(2) | j)], 
i<3 i<j 

and so on. ^ Ί is chosen to be the identity operator. The cluster expansion 
establishes the separation of one-body, two-body, · · ·, Α-body correlation 
effects on the density. Three- and many-body terms will be neglected in the 
present analysis. After some algebra the density pp(r) takes the form: 

pp(r) « ΛΓ[<ΟΓ>! - 2022(r,ß) + 022(r, 2/3)] (H) 

The terms (Or)i and 022{r,z) and the density pp(r) can be expressed also in 
the convenient form: 

(Or)i = PSD(T) , 

ΟκΟ", z) = j g{r, r2, z)[pSD(T)psD{r2) - p2

SD(r, r2)]dr2 

Pp(r)~N PSD(r)+J[g(r,r2,2ß)-2g{r,r2,ß)}[pSD(r)psD{r2)-p
2

SD(r,r2)] 

(12) 

(13) 

dr2(14) 

where PSD(*I, r2) is the uncorrected density matrix associated with the Slater 
determinant, 

PsD(ri,r2) = γ/φ*{τι)φί{τ2) (15) 
i = l 

and 

g(ri, r2, z) = exp[-zr2] exp[-zrl] exp[2zrir2 cosa;i2] , ζ = β, 2β . (16) 

The diagonal elements of this gives the one body density distribution, PSD(*I) — 

ftSD&U *l) • 

It should be noted that, a similar expression for pp{r), given by equation (14), 
was derived by Gaudin et al. [4] in the framework of LOA. This expansion 
contains one- and two-body terms and a part of the three-body term which 
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was chosen so that the normalization of the wave function was preserved. Ex
pression (14) of the present work has only one- and two-body terms and the 
normalization of the wave function is preserved by the normalization factor 
N. In the above expression of pp(r), the one-body contribution to the density 
is well known and given by the equation, 

(Or)i = 4 j > n / ( 2 Z + 1)±-φ*η1(τ)φη1(τ) , (17) 
ni 4 7 Γ 

where ηηι is the occupation probability of the state nl (0 or 1 in the case of 
closed shell nuclei) and φηι{τ) is the radial part of the SP wave function. 
An expression for the two-body term is usually found by making a transforma
tion to the relative and the center-of-mass coordinates of the two interacting 
nucléons [1,7,10]. This is because the Jastrow function / (r^) depends on the 
relative coordinates of the two nucléons. Here, the expression for the two-
body term, that is of the term 022(7", z), will be found by expanding the factor 
exp[2zrir2C0scJi2] in spherical harmonics. That is 

exppzrjfacoswia] = 2π £ C/fc(2^r1r2)rfc*mfc(Q1)yfcmfc(fì2) , (18) 
krrik 

where Uk(2zrir2) = / I j exp^zr^cosu^Pj^cosu^dtcosu ;^ ) = 2ik(2zrir2), 
ik{x) is the modified spherical Bessel function. Using the algebra of spherical 
harmonics, the term: 022(7", z) takes the form: 

022{r,z)=4 £ r?niiir7niii(2ii + l)(2/ i + l ) x 
TiilijTijlj 

4 < ! $ f (r,z) - Σ W> I fc0)2<t$'fr*) 
k=0 

(19) 

where 

Alfiï%"(r,z) = fe&fe^&Wgl! Jφ^{χ)φηύι(χ)Ε—\,(2ζτχ)χ*άχ (20) 

Thus the expression of the term 022(r, z) depends on the SP wave functions 
and so it is suitable to be used either for analytical calculations with the 
HO potential or for numerical calculations with more realistic SP potentials. 
Expressions (17) and (19) were derived for the closed shell nuclei with N=Z, 
where ηηι is 0 or 1. For the open shell nuclei (with N=Z) we use the same 
expressions, where now: 0 < ηη\ < 1. In this way the mass dependence of 
the correlation parameter β and the HO parameter 6 can be studied. Finally, 
using the known values of the Clebsch-Gordan coefficients and provided that 
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ΦηΜ = Mr), i-e.: A$gff(r,z) = A$$$k(r,*), equation (19), for the 
case of s-p and s-d shell nuclei, takes the form: 

Π (r *\ — A h J 00000-2 • Zoo vi 01010 fi>i01012\_2 , 04IOIOO 2 , / Q C J 02020 

C22ÌT, ζ) — 4 [ o ^ 0 0 0 0 rçls + (ocJ^0101 - oA0101 J η1ρ + οΛι010 η23 -τ \^ΟΛ0202 

52 4 0 2 0 2 2 _ 2 ί ? 4 0 2 0 2 Λ η 2 4- Α θ / 1 0 0 0 1 0 4-124 0 1 0 0 0 - 6Α01001) η, m 
^"^0202 ^ Α 0 2 0 2 1 Vld + \^1 Ζ / 10001 + i z / i 0 1 0 0 Ο Λ 0 0 0 1 ) Vlsmp 

+ (20^SS°+ 2(MgS° - I M » ) fhsfhé + (60i4SS° + 6Mgî° 
- lîMgg1 - i^SS8) w&- + (4^8? + 4Aî88° - 2A$g>) ^ 

+ (2<M8}$° + 20A}Jg° - KMfflP) ifc,*,] , (21) 

where 4 $ * $ * Ξ 4 $ £ j f ( r , * ) . The point form factor Fp(ç) can be derived 
in two equivalent ways. The first one is to follow the same cluster expansion 
as in the case of the density distribution and the second one is to take the 
Fourier transform of the density distribution pp(r), Fp(q) = /exp[zq r]/?p(r)dr. 
In both cases, the form factor takes the following form: 

Fp(q) « AT[(Of>! - 2Ö22(q, β) + Ö22(q, 2/3)] . (22) 

In the above expression, the one-body term is given by the equation 

oo 

<Og>! = 4EVni(2l + l)J<f>*nl(r)<f>ni(r)jo(qr)r2dr , (23) 
ni g 

while the two-body term 022(9, z) is given by the right hand side of equations 
(19) and (21) by replacing the matrix elements Λ $ ^ * ( Γ , Ζ) by ÄS^fffa ζ) 
given by the equation, 

00 

0 
00 

/ Φ*η2ι2{τ2)φη^{τ2) exp[-zrl]ik(2znr2)rlar2 . (24) 

3 Analytical expressions 

In the case of the HO wave functions analytical expressions of the one-body 
term and of the matrix elements A J ^ ^ f (r, z) and A ^ ^ j f {q, z), defined by 
equation (20) and (24), can be found. From these expressions, the analytical 
expressions of the terms O22O", z) and 022(9,z), defined by equation (21), can 
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also be found. The expression of the one-body term of the density and form 
factor has the form: 

(O,)! = C e~? Σ C^2k > x = r> « > W 
jfc=0 

where for the (O r)i, ξ = r/b, C — ̂ fas and the coefficients C2k are: 

4 
Co = 2ηΐ3 + 37725, ^2 = 4(τ71ρ - r?2s), C 4 = -{2ηίά + η2δ) 

while for the <Ος)ι the corresponding quantities are: ξ — bq/2, C = 2 and 

4 4 
Co = 2(r/is + r/2S + 3r?ip + 5r?ld), C 2 = - -(3r?ip + Ktyid + 2r?2s), C 4 = - {2ηλά + r^s) 

The analytical expression of the matrix element Ajj}jjjjj*(r, z), which are given 
by equation (20), has the form: 

45KÄ*k*)- (Û*·*) Ϊ 6 ^ 3 ^1+'3+* ^ ( Λ ώ 3 % ν ^ 2 χ 

Ä Ä H O ü H («2 + Ì2 + 5 I Z^ + k + è 
u>=0s=0 " Λ ώ · V 722 — w I \ n^ — s 

(l(l2 + l4-k) + w + s)\ k+i (_^t__f2 ι (2] 

(1 + y\${i2+u+k+3)w+8 |(i2+«4-*)+w+* y i + ^ ζ ι 

where ξ = r/6 and y = zò2 (ζ = β, 2β) and iVnZ = (2η!/Γ(η + / + 3/2))1/2. The 
above expression of Λ^Ι^^,ζ) is of the form: / ( ξ 2 ) ε χ ρ [ - ^ ΐ ί ξ 2 ] , where 

/(ξ2) is a polynomial of ξ2. The substitution of the expression of Ajjjjjj££*(r, z) 
to the expression of O^fcz), which is given by equation (21), leads to the 
analytical expression of the two-body term of the density. This expression, for 
the case of s-p and s-d shell nuclei, is again of the form /(£2)exp[— γ ^ ξ 2 ] 
where /(ξ2) is a polynomial of ξ2 of order 4. 

The corresponding analytical expression of the matrix element ÂJJfifJJafe W' z), 
which are given by equation (24), has similar form with that of equation (2) 
where ξ = qb/2. 
The analytical expressions of the form factor and the density, which were 
found previously, will be used in section 4 for the fit of the theoretical charge 
form factors to the experimental ones and for the calculations of the charge 
density distributions for various N=Z (s-p and s-d shell) nuclei. 
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4 Results and discussion 

The calculations of the charge form factors for various s-p and s-d shell nuclei, 
with N=Z, have been carried out on the basis of equation (22) and the analyt
ical expressions of the one- and two-body terms which were given in section 3. 
Two cases have been examined, named Case 1 and Case 2, which correspond 
to the analytical calculations with HO wave functions without and with SRC 
respectively. In Case 1 there is one free parameter, the HO parameter 6, while 
in Case 2 there are two free parameters, the parameter b and the correlation 
parameter β. The parameters, in both cases, have been determined, for each 
nucleus separately, by least squares fit to the experimental F^q). The best 
fit values of the parameters as well as of the values of χ2, are displayed in Ta
ble I. In the same table the calculated root mean square (RMS) charge radii 
(r2^)1/2 and the contribution of the SRC to them, <r2)2 = (r2

ft) - (r*h)i/A, 
are displayed and compared with the corresponding experimental RMS radii. 
It is noted that (r 2 ) 2 is independent from the center-of-mass correction and 
finite proton size. 
From the values of χ2, which have been found in Cases 1 and 2 (see Table I) it 
can be seen that the inclusion of the correlations improves the fit of the form 
factor of all the nuclei we have examined. Almost all the diffraction minima 
which are known from the experimental data are reproduced in the correct 
place. There is a disagreement in the fit of the form factor of the open shell 
nuclei 24Mg, 28Si and 32S for q « 3.5 fm_ 1 where it seems that there is a third 
diffraction minimum in the experimental data, which cannot be reproduced 
in both cases. 
It is seen from Table I that the parameter b has the same behavior as func
tion of the mass number A in the HO and the correlated model, while the 
following inequality holds: b(HO) > b(SRC). This is due to the fact that the 
introduction of SRC tends to increase the relative distance of the nucléons i.e. 
the size of the nucleus, while the parameter ό, which is (on the average) pro
portional to the (experimentally fixed) radius of the nucleus, should become 
smaller. It is also noted that the difference: Ab = b(HO) — b(SRC) , is almost 
constant for the open shell nuclei and it is larger for the closed shell nuclei 
4He, 1 6 0 and 4 0Ca. This can also be seen from figure 1 where the values of Ab 
versus the mass number A has been plotted. The behavior of Ab as function 
of A indicates that the SRC are stronger for the closed shell nuclei than in 
the open shell ones. In Figure 2 the values of the correlation parameter β 
versus the mass number A have been plotted. From this figure it is seen that 
the parameter β is almost constant for 4He, 1 6 0 and 4 0Ca and takes larger 
values (less correlated systems) in the open shell nuclei. The behavior of the 
two parameters, b and β, indicates that there should be a shell effect in the 
case of closed shell nuclei. That is, there is a shell effect not only on the values 
of the harmonic oscillator spacing Ηω, as has been noted in Refs. [23,24] but 
also on the values of the correlation parameter β. 
In the above analysis, the nuclei 24Mg, 28Si and 32S were treated as Id shell 
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Table 1 
The values of the parameters ò and β, of the χ 2, and of the RMS charge radii 
{r2

h)
ll2: contribution of the one body density (column HO), contribution of SRC 

(column SRC) and of the total RMS charge radii (column Total), for various s-p 
and s-d shell nuclei, determined by fit to the experimental Fch(q). Case 1 refers to 
the HO form factor, Case 2 when SRC are included. The experimental RMS charge 
radii are from Ref. [18], while the experimental Fch(q) for 4He is from Ref. [19], for 
12C and 1 6 0 from Ref. [20], for 24Mg, 2BSi and 32S from Ref. [21] and for mCa 
from Ref. [22]. 

Case Nucleus b [fm] β [fm"2] χ2 {r&)l/2 M 

HO SRC Total Exper. 

31 1.7651 - 1.7651 1.676(8) 

2.3126 3.5 1.5353 0.5277 1.6234 

177 2.4901 - 2.4901 2.471(6) 

3.7051 110 2.4463 0.2566 2.4597 

199 2.7377 2.7377 2.730(25) 

2.4747 120 2.5853 0.7070 2.6802 

188 3.1170 - 3.1170 3.075(15) 

6.6112 161 3.0823 0.3009 3.0969 

148 3.2570 - 3.2570 3.086(18) 

8.2245 114 3.2249 0.2438 3.2341 

320 3.4830 - 3.4830 3.248(11) 

9.1356 270 3.4497 0.2114 3.4561 

- 3.3270 - 3.3270 3.327(15) 

2.2937 - 3.1970 0.9470 3.3343 

229 3.4668 3.4668 3.479(3) 

2.1127 160 3.3353 1.1115 3.5156 

nuclei. We have also considered the Case 2* in which the occupation probabil

ity T?2S of the nuclei 2 4 Mg, 2 8 Si and 3 2 S is taken to be a free parameter besides 

the other two parameters b and β. We found that while the χ2 values become 

better, comparing to those of Case 2, the third diffraction minimum is not 

reproduced either and the behavior of the parameters b and β as functions of 

the mass number A remains the same. 

From the determined mass dependence of the parameters ό and β, the values 

of these parameters for other s-p or s-d shell nuclei can found. This has been 

done in the nucleus Z6Ar treated as Id closed shell nucleus. As there are no 

experimental data for Fch(q) for high q values, the value of the parameter β 
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S" 
ζ 
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Fig. 1. The difference Ab = 
b(HO) — b(SRC) versus the mass 
number A. b(HO) and b(SRC) are 
the HO parameter in Cases 1 (HO 
without SRC) and 2 (HO with SRC) 
respectively. 

— 6 

20 30 
A 

Fig. 2. The correlation parameter β 
versus the mass number A in Case 
2 (HO+SRC). 

is taken to be the mean value of the corresponding values of 1 6 0 and 4 0 Ca, 
that is : /?36 = 2.2937 fm~2, while the parameter b is determined assuming 
that Δ&36 = ΔΟ40 where AbA = bA(HO) - bA{SRC). Using the values of the 
parameters b40(HO) = 1.9453 fm, b40{SRC) = 1.8660 fm from Table I and 
choosing the parameter b36(HO) = 1.8800 fm in order to reproduce the ex
perimental RMS charge radius of 3 6 Ar (< r 2 > ^ 2 = 3.327 ± 15 fm [18]) the 
value b36{SRC) = 1.8007 fm was found. These values of β36 and b36(SRC) 

have been used for the calculations of the correlated F^q) and Pch{r) of 3 6Ar. 
The calculated RMS charge radius, < r 2 > 1 / 2 = 3.3343 fm, which was found, 
is within the experimental error. 
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