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Abstract 

Multilayer feedforward neural networks are used to create global models of atomic 
masses and lifetimes of nuclear states, with the goal of effective prediction of the 
properties of nuclides outside the region of stability. Innovations in coding and 
training schemes are used to improve the extrapolation capability of models of 
the mass table. Studies of nuclear lifetimes have focused on ground states that 
decay 100% via the ß~ mode. Results are described which demonstrate that in 
predictive acuity, statistical approaches to global modeling based on neural networks 
are potentially competitive with the best phenomenological models based on the 
traditional methods of theoretical physics. 

1 Introduction 

The last decade has seen the development of powerful new methods of statisti­
cal analysis, including neural networks adapted to classification and function-
approximation tasks [1,2]. In particular, multilayer feedforward neural net­
works trained on backpropagation and other supervised learning algorithms 
[3] may be applied to generate a "predictive" statistical model of a given 
input-output mapping, whether physical or mathematical in character. Infor­
mation contained in a set of training examples of the input-output association 
is embedded in the weights of the connections between the layered units. This 
information may (or may not) be sufficient for the trained network to make 
reliable predictions for examples outside the training set. Thus, the network 
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may be taught to generalize, based on what it has learned from the set of 
examples. In more mundane terms, the model provides a means for interpola­
tion or extrapolation. In scientific or real-world problems, the available data 
is limited and generally biased, so that success is by no means guaranteed. 

Artificial neural networks have been employed to construct predictive statis­
tical models in a variety of scientific settings from astronomy to experimental 
high- energy physics to protein structure [2]. Nuclear physics offers especially 
rich territory for "data mining" with neural nets. For one thing, there is avail­
able a huge collection of high-quality experimental data on diverse properties 
of more than 2000 nuclides. For another, quantitative calculation of some prop­
erties of some classes of nuclei presents difficult challenges even for the best ab 
initio quantum-mechanical theories and microscopic phenomenological mod­
els. To date, global neural-network models have been successfully developed 
for the stability/instability dichotomy, for the atomic-mass table, for neutron 
separation energies, for spins and parities, and for decay branching probabil­
ities of nuclear ground states [6-9,4,5]. In the present work, we report new 
results from exercises in neural-network modeling of atomic masses and the 
halflives of unstable nuclear ground states that decay 100% via the ß~ mode. 

The problem of devising global models of nuclidic (atomic) masses has a long 
history, going back to the early work of Bohr, von Weizsäker, and Bethe based 
on the liquid drop model. (For recent reviews, see refs. [10,11].) The primary 
aims are (i) a fundamental understanding of the physics of the mass surface 
and (ii) the prediction of the masses of "new" nuclides far from stability -
both in the superheavy region and in the regions approaching the proton and 
neutron drip lines. Neural networks can contribute to the realization of the 
second aim if not the first. The predicted masses are of great current inter­
est in connection with present and future experimental studies of nuclei far 
from stability, conducted at heavy-ion and radioactive ion-beam facilities [12]. 
The results are also useful in such astrophysical problems as nucleosynthesis 
and supernova models. The existing global models of the mass table lie on a 
spectrum extending from low to high theoretical input (and correspondingly, 
high to low numbers of fitting parameters). Extrapability of such models is 
measured by the accuracy of mass prediction for new nuclides not involved 
in the fitting process, relative to the accuracy of the model for the fitted nu­
clei (or nuclei belonging to the training set). Neural network mass models, as 
currently developed, rely on minimal theoretical input. The current work is a 
continuation of the program established in refs. [6,7,9], with improvement of 
certain aspects of coding and training. 

Regardless of the methods employed, prediction of the ß-decay lifetimes of 
neutron-rich nuclei (or "new" nuclei generally) is of great current interest 
from several perspectives, including main-stream nuclear physics, nuclear as­
trophysics, and nuclear technology [13]. Models rooted in quantum theory and 
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involving large-scale computations have been developed and tested in refs. [14-
17]. These models necessarily entail simplifications and approximations, with 
the consequence that the results for ß~ halflives sometimes deviate from ex­
periment by more than a factor 10. The neural-network statistical approach 
offers a promising alternative to this more traditional treatment. Successful 
multilayer neural network models of ß-decay systematics have already been 
described in ref. [19]. Here we expand upon that work, presenting models 
trained with additional experimental input, notably the Q-value of the decay 
process. 

2 Masses 

With regard to global modeling of the atomic-mass surface, our primary con­
cern has been the training of neural nets to predict the mass excess AM. In 
constructing some of the models, we have taken account of the experimental 
errors associated with the mass values used for the training set, applying the 
"cleanprop" algorithm developed in ref. [9]. Additionally, we have made at­
tempts to create an informative statistical model of the differences between 
the experimental mass excess values AMexp and the theoretical values AMth 

generated by the macroscopic-microscopic model of Möller et al. [20]. The lat­
ter study is being carried out with the hope of revealing subtle regularities of 
nuclear structure not yet embodied in the best microscopic/phenomenological 
models of atomic-mass systematics. Any significant findings of this study will 
be reported elsewhere; here we focus on new results from direct neural-network 
modeling of AM. 

2.1 Design and training of neural-network mass models 

We employ multilayer feedforward networks of various architectures. The (gross) 
architecture of a given net is summarized in the notation (I-HI-H2-..-HL-

0)[P], where Ρ is the total number of weight/bias parameters and /, Hi, and 
Ο are integers that indicate, respectively, the numbers of neuron-like units in 
the input layer, zth intermediate (or "hidden") layer, and the output layer. 
Except when pruning is implemented to eliminate unimportant weights (see 
below), all forward connections from each layer to the next are present. The 
activation function of the neuronal units is taken to be the logistic function. 
The model networks are trained with a modified version of the familiar back-
propagation algorithm [3] that proves in most cases to be more efficient in 
avoiding local minima of the cost function or objective function that the learn­
ing algorithm is nominally intended to minimize. As in standard (or "vanilla") 
back-propagation, the weight-update rule contains a momentum term that has 
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an inertial effect on the search path, damping out wild oscillations when deep, 
narrow troughs of the cost surface are encountered [18]. However, the mo­
mentum term is modified to introduce a recursive process such that weight 
changes extending far back in time - not just the most recent change - are 
allowed to influence the current update. On-line rather than batch updating 
is implemented. Thus, weights are updated after presentation of each example 
rather than after completion of each epoch, i.e., after each pass through the 
randomly-sequenced training corpus. To improve the quality of the trained 
model, strategic changes of both the learning rate and momentum parame­
ter are made during the training process. The training stops when the lowest 
value of the cost function has been achieved in the validation set. In some cases, 
pruning of weights of lesser importance is carried out, followed by retraining 
(cf. réf. [7]); this generally results in better predictive accuracy without serious 
sacrifice of performance on the training set. 

0 H t t e O K M O i a Q M D t t O 

Ν 

Fig. 1. Locations in the Ν — Ζ plane are shown for the 1323 ("old") nuclei of the 
training set and the 351 ("new") nuclei of the validation set used in neural-network 
modeling of the special Möller-Nix (MN) mass-excess database. 

We report results obtained using a special database consisting of 1323 "old" 
(O) experimental masses that the 1981 Möller-Nix model [21] was designed 
to reproduce, together with 351 "new" (N) mass data that lie mostly beyond 
the edges of the 1981 data set as viewed in the Ν - Ζ plane. The locations 
of old and new nuclei are shown in Fig. 1. This database (designated MN for 
short) was formed by Möller and Nix [10] to assess the extrapolation capabil­
ity ( "extrapability" ) of different global models of atomic masses. In creating 
neural-network models, the old masses are used as the training set and the 
new masses provide a validation or prediction set. 
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Three different input coding schemes have been studied. In the first [6,7], the 
input layer consists of sixteen on-off units (eight for Z, eight for N) that serve 
to encode the proton and neutron numbers in binary. This scheme facilitates 
learning of quantal properties (pairing, shell structure) that depend on the 
integral nature of Ζ and N. The second scheme implements analog coding 
of Ζ, Ν in terms of the activities of only two analog input neurons, which, 
however, are aided by two further on-off input units that code for the parity 
(even or odd) of Ζ and N. (Thus the network is again given information about 
the integral character of Ζ and N.) In the third scheme, the 16-unit binary-
coding input array of the first design is supplemented by two additional units 
encoding Ζ and Ν in analog. In any of these cases, the mass excess computed 
by the network is represented by the activity of a single analog output unit. 
As performance measures in learning, validation and prediction sets we use 
the root-mean-square (rms) deviation from experiment, denoted arms, as well 
as the number of patterns (examples) for which the value got in the output 
deviates from experiment by less or equal than 5%. The rms error is widely 
adopted as the figure of merit in global modeling of the mass table. 

Table 1 

Comparison of neural network mcdelsofmass-excess data with other models based on. nuclear theory-

Use is made of data basis MN [ 1323(0) - 351(N)] 

Net type of mode] Learning mode 
(I-Hj-...-H2-0)[P] ^*Sto» Recalled Patterns 

ÇL6-10-10-10-l)[40L] 1 0.393 
Z.& M in binary 

(18-10-10-10-1) [421] J 0.331 
Σ SM in binary and decimal l 
(4-10-10-10-1 )* [28 L] j 0.491 
Z& Ν in decimal andpantr ; 

(4-10-10- LO-1)** [273] 1 0.617 
ZSL Ν in decimal and parity I 

(4-40-1) [245]=" L.068 
Möller et al.b) 0.673 

1L72/L323 

1187 

L141 

1095 

-
-

Validation (ν) & Pœdicdon (ρ) mode 
o,"l=«fa.is Recalled Patterns 

3575 (ν) 

2.199 (ν) 

1416 (ν) 

1.209 (ν) 

3.036 (ρ) 
0.735 (ρ) 

246/351 

272 

280 

284 

-
-

a) Β. L. Kalmaru see tef.[22] 

b) P. Möller, J. R. Nix, see cef.[lO] 

2.2 Results 

Some results from our computer explorations are reported below in Tables 1 
and 2 and Fig. 2. As shown in Table 1, the best model for the MN mass-excess 
database, marked with two asterisks, has gross architecture (4-10-10-10-1). 
This net is a descendent, via the pruning procedure, of the network of the same 
gross architecture marked with one asterisk. Performance of these networks is 
compared with that of two others employing binary encoding at the input and 
with that of a three-layer net constructed by Kaiman [9,22]. Most interesting is 
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the comparison with the rms error measures obtained in state-of-the-art treat­
ments based on the macroscopic-microscopic model of Möller et al. [10,20]. A 
strong test is provided by 10 rare-earth nuclides situated beyond the edges of 
the two subsets (0) and (N) of the MN database. (The mass defects of these 
nuclides have recently been measured with the ISOLTRAP mass spectrometer 
[23].) As explained above, performance on the data subset (N) was used to 
determine the stopping point for training. Accordingly, this set has a nontriv-
ial effect on the construction of the network model and does not qualify as a 
pristine prediction set in the usual sense. However, the 10 "newer" nuclides do 
so qualify. Table 2 presents results obtained for these nuclides using the net­
work (4-10-10-10-1)**. The corresponding value o f a ^ is O.S20MeV, which 
compares quite favorably with the value O.bOOMeV quoted in ref. [20] for the 
FRDM macroscopic/microscopic model. Relative to neural-network modeling 
results reported earlier [7], the best of the current models represent a dramatic 
step toward extrapability levels competitive with those reached by the best 
traditional global models rooted in quantum theory. With further improve-

Table2 

Illustration of the power of the neural network model Ì4-1C-L0-L0-1 f to predict the 
vaines of tir mass excess J.W of 10 ore earth nuclides beyond the edges of the MN 
database. Comp arisen is k e n made with the experimental values fmeasosd with 
IS0LÌRAP [21]) as well as with the results of the FRDM medd of Moller et ai. [20]. 
The no t mean square deviation cm is found equal to 0S20 and to 0.500 MeV fer 
the neural network and the FROM model zespectiveiv. 

Nuclide | Ζ 

8a ] 55 
Pr 1 39 

Pr ! 93 

m ι 8o 
Nd t eo 

Nd m 
Pei \ €1 
Sm ] 62 
Sm ; $2 
Eu ! €3 

A \ Expérimenta! j Predicted 
! values (MeV) | values(MeV) 

123 1 -7566 -73.83 
133 j -77S4 ! -77.46 
m j -7851 -78.56 
132 I -7140 -τα» 

134 ! -7565 -75,01 

138 j -8202 32,60 

133 } -74S2 -75.S0 

135 j -6581 -66.43 

133 J -7150 -71.90 
139 1 -6540 «5.82 

FRDM rallies 

(MeV) 
•75.60 

-77.64 
•78.10 

•71.49 

-75.13 

•81.01 
•74,29 

•66.52 
•70.83 
•65.27 

271 



soi 

Fig. 2. Values of the mass excesses (in Mev) predicted by the neural-network model 
(4-10-10-10-1)** for the validation set corresponding to Fig. 1 are compared with 
experiment. The plot represents a projection of the mass surface onto a plane of 
constant Ζ and thus displays dependences on the neutron number JV. 

merits (see for ex. ref. [18]) that appear to be feasible, it may be expected that 
statistical modeling will provide a valuable tool for predicting atomic masses 
far from stability. 

3 Halflives 

We now turn to the application of neural-network statistical methodology 
to the systematics of nuclear decay. Attention is restricted to the important 
problem of predicting the halflives Ti of nuclear ground states that decay 
100% by the β~ mode. 

3.1 Design and training of neural-network half-lives models 

Since the relevant experimental halflives vary over 26 orders of magnitude, the 
target variable for prediction is taken to be lnTi. Vanilla backpropagation, 
involving a mean-square cost function, logistic activation functions, and a mo­
mentum term in the update rule is employed for on-line training of multilayer 
feedforward models. Each training run involves a pre-set number of epochs, 
and the weights that are kept after each run are taken as those yielding the 
best value of the performance measure < χ >κ achieved during the run. (This 
performance measure is identified below.) 
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Three different databases were used in our computational study: 

(i) Database A, formed from all data available in early 1995 from the Brookhaven 
National Nuclear Data Center, encompassing a total of 766 nuclides with 
β- half-lives ranging from 0.15 χ 10~2 sec for ^ N a to 0.2932 χ IO24 sec for 
^ C d . Of the 766 examples, 575 are selected (at random) for the training 
set, with the remaining 191 used as a test set. 

(ii) Database A-106, formed from basis A by removing nuclides with Ti values 
greater than 106 sec. This set contains 697 nuclides, a randomly chosen set 
of 523 being employed for learning and the remaining 174 for prediction, 

(iii) Database B, obtained from Database A-106 by omitting a few isomeric de­
cays, leaving 692 nuclides of which 518 are reserved for learning and 174 for 
prediction (see Fig. 3). 

These databases are chosen to allow reasonable comparisons to be made with 
the results from traditional global models of ß~ halflives [15-17]. 

Fig. 1. Location, in the Ν — Ζ plane, of the nuclides of database B. The distinction 
between nuclides belonging to training and prediction sets used for neural-network 
modeling axe indicated. 

In most cases, we utilize binary coding of Ζ and Ν at the input layer, in the 
same arrangement as employed in some of the mass models. In several cases, 
we append an additional input unit that encodes, in analog, the Q value of 
the decay. A single analog output unit generates the coded value of In Ti that 
the network associates with the input nuclide. 
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Network performance in learning and prediction is measured in terms of (i) 
the root-mean-square deviation a r m s of the calculated value of In ΧΊ from its 
experimental value; (ii) the deviation < χ >κ and associated standard devi­
ation σκ introduced by Klapdor-Kleingrothaus and adopted in refs. [14-16]; 
and the deviation < χ >M and associated standard deviation GM used by 
Möller et al. [17]. As a further performance measure, we have examined the 
percentage m ofthose nuclides whose ground-state ß~ halfiives Tiexp lie within 
a prescribed range (e.g. not greater than 106s, 60s, and Is), for which the half-
life generated by the network is within a prescribed tolerance factor (2 or 10) 
of the experimental value. 

Table 3 

Quality measures in learn tng and prediction of half-lives of β decaying nuclides by feedforward 

neural networks of various types trained with back-propagation algorithm for 20000 epochs. 

Net type 

α-Έι.....Ή^)[Ρ] 

(16-10-1) [181] 

(16-10-10-1) [291] 

(16-10-1) [181] 

(17-10-1) [191] Q values 

(16-10-10-1) [291] 

(17-10-10-1) [301] Qvalues 

Data 

A-all 

A -10* sec 

A-all 

A -10° sec 

Β-10* sec 

Β-10° sec 

Β-10* sec 

Β-10* sec 

Learning Mode 

Nuclides 

575 

523 

575 

523 

518 

518 

518 

518 

ORMS 

3.792 

L079 

0.974 

0.646 

1.099 

0.772 

0.528 

0.455 

Prediction Mode 

Nuclides 

191 

174 

191 

174 

174 

174 

174 

174 

<*»« 
4.969 

1.819 

5.864 

2.264 

2.072 

1.8S2 

3.020 

2.894 

Results with Database A ate reported in rei [19] 

Table 4 

Bliistiatioft of the power of the neural network model [17-10-1] in the learning mode to yield the values of (Γ decay half-

lives and corapan son with the results of Standi et al. [15] and Homma el a!. [16] 

factor 

<10 

<2 

TjVo 
<10» 

<ω 
<l 

<10" 

<l 

Learning 

m{%) 

99.4 

100 

100 

6i8 

64.8 

59.2 

<V\ 

m 
1.98 

104 
140 

1.40 

L3? 

«κ 

1.16 

1.09 

LIO 

167 

1 » 

172 

StaudtetaJ. [15] 

m(%) 

721 

963 

99.1 

56.4 

82.2 

90.0 

<X>K 

1.85 

1.67 

1.44 

1.37 

1.36 

1.35 

% 

1.21 

1.02 

0.40 

0.29 

0.29 

0.27 

ftxnraaaal.il 6] 

m(%) 

76.7 

87.2 

95.7 

318 

410 

50.7 

<*>K 

3.00 

181 

164 

L43 

1.41 

1.43 
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Table 5 

Illustration of the power of the neural network model [17-10-1] in the learning and prédiction mode to yield the values 
of β" decay half-lives and comparison with the »suits of Moller et aL [17] and Homma et al. [16] 

Γ - ( « , 

< 1 

<10 

<100 

<1000 

0-0 

o < 
e-e 

o-o 
o-e 
e-e 

o-o 
o-e 
e-e 

o-o 
o-e 
e-e 

Learning 

η 

32 
52 
19 

67 
101 
43 

92 
156 
59 

110 
204 
73 

M B 

1.15 
1.07 
1.61 

1.17 
1.04 
1.19 

1.18 
1.05 
1.19 

1.19 
0.98 
L14 

σ1 0 

2.27 
2.03 
1.71 

2 2 5 
1.91 
2.09 

2.18 
1.93 
1.97 

113 
1.99 
1.95 

Prediction 

η 

10 
20 
5 

18 
30 
12 

39 
58 
25 

52 
91 
31 

M* 

2JD5 
1.08 
1.79 

226 
1.19 
131 

1.76 
1.12 
0.98 

2.22 
1.22 
0.93 

σ 1 0 

131 
2.38 
2.71 

5.42 
2.44 
2.30 

5.19 
3.15 
2.67 

625 
530 
4.78 

Moller et aL [17] 

η 

29 
35 
10 

59 
85 
34 

88 
133 
54 

115 
194 
71 

M M 

039 
039 
3.84 

0.76 
0.78 
230 

133 
1.11 
2.61 

330 
2.77 
6.86 

σ 

2.91 
2.64 
3.08 

8.83 
4.81 
4.13 

49.19 
9.45 
4.75 

72.02 
7130 
58.48 

Homma et aL [161 

η Μ σ 

28 1.75 4.96 
31 0.60 2 2 4 
10 1.15 236 

66 1.89 4.60 
81 0.92 3.84 
34 ljOl 2.93 

85 3.15 1031 
127 1.07 4 2 9 
52 1.13 3 3 8 

93 3.02 1025 
157 1.10 5 3 5 
63 139 6.10 

3.2 Results 

Selected results of our simulations are collected in Table 3. The results for 
Database A basis have already been reported in ref. [19]. Among nets trained 
on Database B, the best in predictive performance is that with architecture 
(17-10-1)[191] having binary (Z,N) and analog Q inputs. In Tables 4 and 5, 
we compare the performance measures for this particular network with those 
of the conventional global models of Staudt et al. [15], Homma et al. [16], 
and Möller et al. [17]. The level of performance displayed by the network 
model is similar to (and in some cases better than) that of the latter models. 
Two qualifications should accompany any assessment of the relative merits of 
neural-network and traditional approaches. On the one hand, comparison is 
hindered by the absence of a clear distinction between the aspects of fitting 
and prediction in the conventional treatments; and on the other, the neural-
network model has many more adjustable parameters than the traditional 
models. At any rate, the good performance of the (17-10-1) network model 
is clearly demonstrated in Fig. 4, where the experimental halflives of isotopes 
of Cu are plotted against neutron number JV, along with halflives generated 
by the net. In Fig. 5, the results given by this network for nuclides on or near 
the r-process path are compared with experiment. The encouraging results of 
these and other computer studies provide a strong incentive for seeking further 
improvements of network performance and extending the approach to other 
decay modes, notably ß+ decay. 
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Fig. 2. Experimental and calculated ß~ halflives of Cu isotopes, plotted versus 
neutron number N. The calculated results are generated by the network model 
(17-10-1) and represent fits or predictions, depending, respectively, on whether a 
given isotope belongs to the training or prediction set. 
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Fig. 3. Experimental and calculated ß~ halflives of nuclides that lie on or near the 
r-process path. The calculated results are generated by the network model (17-10-1) 
and represent predictions for 130Cd and 131In and fits for the other examples. 
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