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Abstract

Multilayer feedforward neural networks are used to create global models of atomic
masses and lifetimes of nuclear states, with the goal of effective prediction of the
properties of nuclides outside the region of stability. Innovations in coding and
training schemes are used to improve the extrapolation capability of models of
the mass table. Studies of nuclear lifetimes have focused on ground states that
decay 100% via the 8~ mode. Results are described which demonstrate that in
predictive acuity, statistical approaches to global modeling based on neural networks
are potentially competitive with the best phenomenological models based on the
traditional methods of theoretical physics.

1 Introduction

The last decade has seen the development of powerful new methods of statisti-
cal analysis, including neural networks adapted to classification and function-
approximation tasks [1,2]. In particular, multilayer feedforward neural net-
works trained on backpropagation and other supervised learning algorithms
[3] may be applied to generate a “predictive” statistical model of a given
input-output mapping, whether physical or mathematical in character. Infor-
mation contained in a set of training examples of the input-output association
is embedded in the weights of the connections between the layered units. This
information may (or may not) be sufficient for the trained network to make
reliable predictions for examples outside the training set. Thus, the network

266



may be taught to generalize, based on what it has learned from the set of
examples. In more mundane terms, the model provides a means for interpola-
tion or extrapolation. In scientific or real-world problems, the available data
is limited and generally biased, so that success is by no means guaranteed.

Artificial neural networks have been employed to construct predictive statis-
tical models in a variety of scientific settings from astronomy to experimental
high- energy physics to protein structure [2]. Nuclear physics offers especially
rich territory for “data mining” with neural nets. For one thing, there is avail-
able a huge collection of high-quality experimental data on diverse properties
of more than 2000 nuclides. For another, quantitative calculation of some prop-
erties of some classes of nuclei presents difficult challenges even for the best ab
initio quantum-mechanical theories and microscopic phenomenological mod-
els. To date, global neural-network models have been successfully developed
for the stability/instability dichotomy, for the atomic-mass table, for neutron
separation energies, for spins and parities, and for decay branching probabil-
ities of nuclear ground states [6-9,4,5]. In the present work, we report new
results from exercises in neural-network modeling of atomic masses and the
halflives of unstable nuclear ground states that decay 100% via the 8~ mode.

The problem of devising global models of nuclidic (atomic) masses has a long
history, going back to the early work of Bohr, von Weizsédker, and Bethe based
on the liquid drop model. (For recent reviews, see refs. [10,11].) The primary
aims are (i) a fundamental understanding of the physics of the mass surface
and (ii) the prediction of the masses of “new” nuclides far from stability —
both in the superheavy region and in the regions approaching the proton and
neutron drip lines. Neural networks can contribute to the realization of the
second aim if not the first. The predicted masses are of great current inter-
est in connection with present and future experimental studies of nuclei far
from stability, conducted at heavy-ion and radioactive ion-beam facilities [12].
The results are also useful in such astrophysical problems as nucleosynthesis
and supernova models. The existing global models of the mass table lie on a
spectrum extending from low to high theoretical input (and correspondingly,
high to low numbers of fitting parameters). Extrapability of such models is
measured by the accuracy of mass prediction for new nuclides not involved
in the fitting process, relative to the accuracy of the model for the fitted nu-
clei (or nuclei belonging to the training set). Neural network mass models, as
currently developed, rely on minimal theoretical input. The current work is a
continuation of the program established in refs. [6,7,9], with improvement of
certain aspects of coding and training.

Regardless of the methods employed, prediction of the 3-decay lifetimes of
neutron-rich nuclei (or “new” nuclei generally) is of great current interest
from several perspectives, including main-stream nuclear physics, nuclear as-
trophysics, and nuclear technology [13]. Models rooted in quantum theory and
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involving large-scale computations have been developed and tested in refs. [14-
17). These models necessarily entail simplifications and approximations, with
the consequence that the results for 3~ halflives sometimes deviate from ex-
periment by more than a factor 10. The neural-network statistical approach
offers a promising alternative to this more traditional treatment. Successful
multilayer neural network models of 3-decay systematics have already been
described in ref. [19]. Here we expand upon that work, presenting models
trained with additional experimental input, notably the @Q-value of the decay
process.

2 Masses

With regard to global modeling of the atomic-mass surface, our primary con-
cern has been the training of neural nets to predict the mass excess AM. In
constructing some of the models, we have taken account of the experimental
errors associated with the mass values used for the training set, applying the
“cleanprop” algorithm developed in ref. [9]. Additionally, we have made at-
tempts to create an informative statistical model of the differences between
the experimental mass excess values AM®P and the theoretical values AM*®™®
generated by the macroscopic-microscopic model of Méller et al. [20]. The lat-
ter study is being carried out with the hope of revealing subtle regularities of
nuclear structure not yet embodied in the best microscopic/phenomenological
models of atomic-mass systematics. Any significant findings of this study will
be reported elsewhere; here we focus on new results from direct neural-network
modeling of AM.

2.1 Design and training of neural-network mass models

We employ multilayer feedforward networks of various architectures. The (gross)
architecture of a given net is summarized in the notation (I-Hy,-Hy—...-Hp—
O)[P), where P is the total number of weight/bias parameters and I, H;, and
O are integers that indicate, respectively, the numbers of neuron-like units in
the input layer, ith intermediate (or “hidden”) layer, and the output layer.
Except when pruning is implemented to eliminate unimportant weights (see
below), all forward connections from each layer to the next are present. The
activation function of the neuronal units is taken to be the logistic function.
The model networks are trained with a modified version of the familiar back-
propagation algorithm [3] that proves in most cases to be more efficient in
avoiding local minima of the cost function or objective function that the learn-
ing algorithm is nominally intended to minimize. As in standard (or “vanilla”)
back-propagation, the weight-update rule contains a momentum term that has
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an inertial effect on the search path, damping out wild oscillations when deep,
narrow troughs of the cost surface are encountered [18]. However, the mo-
mentum term is modified to introduce a recursive process such that weight
changes extending far back in time — not just the most recent change — are
allowed to influence the current update. On-line rather than batch updating
is implemented. Thus, weights are updated after presentation of each example
rather than after completion of each epoch, i.e., after each pass through the
randomly-sequenced training corpus. To improve the quality of the trained
model, strategic changes of both the learning rate and momentum parame-
ter are made during the training process. The training stops when the lowest
value of the cost function has been achieved in the validation set. In some cases,
pruning of weights of lesser importance is carried out, followed by retraining
(cf. ref. [7]); this generally results in better predictive accuracy without serious
sacrifice of performance on the training set.

Fig. 1. Locations in the N — Z plane are shown for the 1323 (“old”) nuclei of the
training set and the 351 (“new”) nuclei of the validation set used in neural-network
modeling of the special Moller-Nix (MN) mass-excess database.

We report results obtained using a special database consisting of 1323 “old”
(O) experimental masses that the 1981 Moller-Nix model [21] was designed
to reproduce, together with 351“new” (N) mass data that lie mostly beyond
the edges of the 1981 data set as viewed in the N — Z plane. The locations
of old and new nuclei are shown in Fig. 1. This database (designated MN for
short) was formed by Moéller and Nix [10] to assess the extrapolation capabil-
ity (“extrapability”) of different global models of atomic masses. In creating
neural-network models, the old masses are used as the training set and the
new masses provide a validation or prediction set.
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Three different input coding schemes have been studied. In the first [6,7], the
input layer consists of sixteen on-off units (eight for Z, eight for N) that serve
to encode the proton and neutron numbers in binary. This scheme facilitates
learning of quantal properties (pairing, shell structure) that depend on the
integral nature of Z and N. The second scheme implements analog coding
of Z, N in terms of the activities of only two analog input neurons, which,
however, are aided by two further on-off input units that code for the parity
(even or odd) of Z and N. (Thus the network is again given information about
the integral character of Z and N.) In the third scheme, the 16-unit binary-
coding input array of the first design is supplemented by two additional units
encoding Z and N in analog. In any of these cases, the mass excess computed
by the network is represented by the activity of a single analog output unit.
As performance measures in learning, validation and prediction sets we use
the root-mean-square (rms) deviation from experiment, denoted o,p;, as well
as the number of patterns (examples) for which the value got in the output
deviates from experiment by less or equal than 5%. The rms error is widely
adopted as the figure of merit in global modeling of the mass table.

Table 1

Comparison of neural network models of mass-excess data with other models based on nuclear theory
Use is made of data basis MN [1323({0) - 351(N)]

Ner type of model Learning mode Validation (v) & Predicrion (p) mode
(I-H;-...-H-0) [P] ol=gpys Recalled Patterns oPl=aps Recalled Patterns
(16-10-10-10-1) [401] 0.393 117241323 3575 (v) 2461351
Z& Nin binary
(18-10-10-10-1) [421] 0.331 1187 2.199 (v) 272
Z &N in bimary and decimal
(4-10-10-10-1)* [281] 0.491 1141 1416 (%) 280
Z & Nin decimal and parity
(4-10-10-10-1)** [273] 0.617 1095 1209 (v) 284
Z & Nin decimal and
(4-40-1) [245% 1.068 - 3,036 (p) -
Mbller et al.” 0.673 = : 0.735 (p) -

a)B.L. Kalman, see ref[22]
b) P. Méller, J. R. Nix, see ref.[10]

2.2 Results

Some results from our computer explorations are reported below in Tables 1
and 2 and Fig. 2. As shown in Table 1, the best model for the MN mass-excess
database, marked with two asterisks, has gross architecture (4-10-10-10-1).
This net is a descendent, via the pruning procedure, of the network of the same
gross architecture marked with one asterisk. Performance of these networks is
compared with that of two others employing binary encoding at the input and
with that of a three-layer net constructed by Kalman [9,22]. Most interesting is
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the comparison with the rms error measures obtained in state-of-the-art treat-
ments based on the macroscopic-microscopic model of Mdller et al. [10,20]. A
strong test is provided by 10 rare-earth nuclides situated beyond the edges of
the two subsets (O) and (N) of the MN database. (The mass defects of these
nuclides have recently been measured with the ISOLTRAP mass spectrometer
[23].) As explained above, performance on the data subset (N) was used to
determine the stopping point for training. Accordingly, this set has a nontriv-
ial effect on the construction of the network model and does not qualify as a
pristine prediction set in the usual sense. However, the 10 “newer” nuclides do
so qualify. Table 2 presents results obtained for these nuclides using the net-
work (4-10-10-10-1)**. The corresponding value of oips is 0.820MeV, which
compares quite favorably with the value 0.500MeV quoted in ref. [20] for the
FRDM macroscopic/microscopic model. Relative to neural-network modeling
results reported earlier [7], the best of the current models represent a dramatic
step toward extrapability levels competitive with those reached by the best
traditional global models rooted in quantum theory. With further improve-

Table2

Ulosteation of the power of the nearal network model (4-10-10-10-1)" to predict the
valoes of the mass excess A of 10 mre earth muclides beyond the edges of the MN
database. Comparison is been made with the experimental values (measoed with
ISOLTRAP [21]) as well & with the msults of the FRDM model of Moller et d. [0].
The root mean square devistion ¢, is found equal to 0820 and 10 0.500 MeV for

the nenral network and the FRDM model mspectively.

[ Nuclide | 2 K| Expenmentsl | Prediied | FHDMvalues
values (leY) | values(MeV) {MaV)
Ba % | 123 7585 738 75.60
Pr » | 13 774 77.46 -77.68
Pr R 785! 78.55 78.10
Nd 0 | 12 7140 70.00 7148
Nd ® | 1M 7565 7501 75.13
Nd &0 | 18 20 260 81.01
Pm 6l | 18 749 75.50 4.2
Sm 82 | 1% 631 £6.43 6.52
[ Sm €@ | 1% 7150 71.50 -70.83
Eu 6 | i® 540 5.2 &5
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Fig. 2. Values of the mass excesses (in Mev) predicted by the neural-network model
(4-10-10-10-1)** for the validation set corresponding to Fig. 1 are compared with
experiment. The plot represents a projection of the mass surface onto a plane of
constant Z and thus displays dependences on the neutron number N.

ments (see for ex. ref. [18]) that appear to be feasible, it may be expected that
statistical modeling will provide a valuable tool for predicting atomic masses
far from stability.

3 Halflives

We now turn to the application of neural-network statistical methodology
to the systematics of nuclear decay. Attention is restricted to the important
problem of predicting the halflives T% of nuclear ground states that decay
100% by the A~ mode.

3.1 Design and training of neural-network half-lives models

Since the relevant experimental halflives vary over 26 orders of magnitude, the
target variable for prediction is taken to be In7:. Vanilla backpropagation,
involving a mean-square cost function, logistic activation functions, and a mo-
mentum term in the update rule is employed for on-line training of multilayer
feedforward models. Each training run involves a pre-set number of epochs,
and the weights that are kept after each run are taken as those yielding the
best value of the performance measure < z > achieved during the run. (This
performance measure is identified below.)
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Three different databases were used in our computational study:

(i) Database A, formed from all data available in early 1995 from the Brookhaven
National Nuclear Data Center, encompassing a total of 766 nuclides with
B~ half-lives ranging from 0.15 x 10~2 sec for 3-Na to 0.2932 x 10%* sec for
lf: Cd. Of the 766 examples, 575 are selected (at random) for the training
set, with the remaining 191 used as a test set.

(ii) Database A-10°, formed from basis A by removing nuclides with T% values
greater than 10° sec. This set contains 697 nuclides, a randomly chosen set
of 523 being employed for learning and the remaining 174 for prediction.

(iii) Database B, obtained from Database A-10° by omitting a few isomeric de-
cays, leaving 692 nuclides of which 518 are reserved for learning and 174 for
prediction (see Fig. 3).

These databases are chosen to allow reasonable comparisons to be made with
the results from traditional global models of 3~ halflives [15-17].

Fig. 1. Location, in the N — Z plane, of the nuclides of database B. The distinction
between nuclides belonging to training and prediction sets used for neural-network
modeling are indicated.

In most cases, we utilize binary coding of Z and N at the input layer, in the
same arrangement as employed in some of the mass models. In several cases,
we append an additional input unit that encodes, in analog, the @ value of
the decay. A single analog output unit generates the coded value of InT’; that
the network associates with the input nuclide. ’
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Network performance in learning and prediction is measured in terms of (i)
the root-mean-square deviation o, of the calculated value of In T;_ from its
experimental value; (ii) the deviation < z >k and associated standard devi-
ation og introduced by Klapdor-Kleingrothaus and adopted in refs. [14-16];
and the deviation < z >, and associated standard deviation ojs used by
Méller et al. [17]. As a further performance measure, we have examined the
percentage m of those nuclides whose ground-state 5~ halflives T;"" lie within
a prescribed range (e.g. not greater than 10°, 60s, and 1s), for which the half-
life generated by the network is within a prescribed tolerance factor (2 or 10)
of the experimental value.

Table 3

Quality measures in learning and prediction of half-lives of B~decaying nuclides by feedforward
neural networks of various types wained with back-propagation algerithr for 20000 epochs.

[Net type Data Learning Mode “Prediction Mode
(H,..-A,-0)[ P] Nudlides Cms Nuclides Omas
(16-10-1) (18] 3-al 575 3792 o1 1986

A-10°sec 523 1.0% 174 1.819
(16-10-10-1)  [291) A-al 575 ool | 191 5864

A-10°sec 523 0.646 174 2264
(16-10-1)  [181] B-10° sec 518 1.09 174 2072
(17-10-1) [191] Qvalues | B -10° sec 518 o 174 1.882
(16-10-10-1) [291] B -10° sec s18 0.528 174 3020
(17-10-10-1) [301] Qvalues | B - 10° sec 518 0.455 174 2.894

Resalts with Database A are reported in w=f. 1s]

Table 4

Tlustration of the power of the neural network model [17-10-1] in the leaming mode to yield the values of B~ decay half-
lives and conparison with the resultsof Staudt et al. [15] and Homma et al. [16]

Learning Staudtet al. [15] Howma et al. (16]

factor 1;!;,“-, m (%) <Oy Oy m (%) <& Ok m(®h | <
£10 <ie° 99.4 203 .16 71 1.8 1.1 767 300
<0 100 198 109 96.3 1.67 L0 872 281
<l 100 204 L10 9.1 L4 040 957 264

< <10° 65.8 140 167 564 137 0% B8 | LB |
<60 64.8 40 | 29 22 1% | 0% 20 | 14
<l 592 137 AN | %0 13 | 0% 07 | L4
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Table 5

Dlusteation of the power of the neural network model [17-10-1] in the leaming and prediction mode to yield the values
of P decay half-lives and comparison with the results of Moller et al. [17] and Homma et al. [16]

Learning Prediction Moller et al [17] Hommaet al. [16]
T;“' {ac) n MY | & n ME o n wM® o n ™" cr—
ool] 32 | 115 | 227 | 10 | 205 | 231 | 29 | 059 | 261 | 28 175 4096

<1 oe{ 52 107 | 203 20 1.08 138 s 059 | 2.64 31 060 224
eei 19 1.61 171 5 179 271 10 384 | 308 10 115 236

oo} 67 117 225 18 226 542 59 076 | B.&3 66 18 4.0
<10 |oe} 101 | 1.04 191 30 1.19 244 85 078 | 481 81 092 384
eef 43 1.19 209 12 131 230 33 250 413 34 101 293

o-0f 92 L18 | 218 39 1.76 5.19 88 233 149.19 | & 315 1051
<100 |oe} 156 | 1.05 193 58 1.12 315} 133 | 111 } 945 | 127 107 429
eei 59 119 197 a5 098 267 54 261 | 475 113 358

oof 110 | 119 213 s2 i 625 115 | 350 | .02 32 1025
<1000 joej 204 | 098 199 91 1.2 550 | 194 | 277 | 7150 | 157 110 555
eej 73 114 195 31 093 478 71 6.86 | 5848 133  s6.10

3.2 Results

8 ¥

2

Selected results of our simulations are collected in Table 3. The results for
Database A basis have already been reported in ref. [19]. Among nets trained
on Database B, the best in predictive performance is that with architecture
(17-10-1)[191] having binary (Z,N) and analog @ inputs. In Tables 4 and 5,
we compare the performance measures for this particular network with those
of the conventional global models of Staudt et al. [15], Homma et al. [16],
and Moller et al. [17]. The level of performance displayed by the network
model is similar to (and in some cases better than) that of the latter models.
Two qualifications should accompany any assessment of the relative merits of
neural-network and traditional approaches. On the one hand, comparison is
hindered by the absence of a clear distinction between the aspects of fitting
and prediction in the conventional treatments; and on the other, the neural-
network model has many more adjustable parameters than the traditional
models. At any rate, the good performance of the (17-10-1) network model
is clearly demonstrated in Fig. 4, where the experimental halflives of isotopes
of Cu are plotted against neutron number N, along with halflives generated
by the net. In Fig. 5, the results given by this network for nuclides on or near
the r-process path are compared with experiment. The encouraging results of
these and other computer studies provide a strong incentive for seeking further
improvements of network performance and extending the approach to other
decay modes, notably 8% decay.
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Fig. 2. Experimental and calculated 8~ halflives of Cu isotopes, plotted versus
neutron number N. The calculated results are generated by the network model
(17-10-1) and represent fits or predictions, depending, respectively, on whether a
given isotope belongs to the training or prediction set.
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Fig. 3. Experimental and calculated 5~ halflives of nuclides that lie on or near the
r-process path. The calculated results are generated by the network model (17-10-1)
and represent predictions for 13°Cd and !3!In and fits for the other examples.
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