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Applications of the relativistic mean-field
model to finite nuclei.

G.A. Lalagzissis

Physik-Department der Technischen Universitat Miunchen, D-85748 Germany

Abstract

The relativistic mean-field theory (RMF) provides a framework in which the nuclear
many-body problem is described as a self-consistent system of nucleons and mesons.
We review recent applications of the RMF theory to the structure of finite nuclei.

1 Introduction

RMF models have been successfully applied in calculations of nuclear matter
and properties of finite nuclei throughout the periodic table. With only a few
phenomenological parameters such theories are able to give a quantitative de-
scription of ground state properties of spherical and deformed nuclei at and
away from the stability line. One of the advantage of the RMF theory is that
the strength and the shape of the spin-orbit term are determined in a fully
self-consistent way. Because the proper size of the spin-orbit splitting plays a
crucial role in understanding the basic properties of nuclei, it follows that a
proper treatment of the relativistic dynamics is warranted as is done in the
RMF theory. Another example of the importance of relativistic dynamics is
the fact that the near equuality (but opposite sign) of V' and S leads to ap-
proximate pseudo-spin symmetry in nuclear spectra. The Relativistic Hartree
Bogoliubov (RHB) model provides the frame for a unified and self-consistent
description of mean-field and pairing correlations, which is necessary for a
proper description of systems with extreme isospin values. Detailed calcula-
tions have been performed for a variety of nuclear structure phenomena [1].
Here we report some recent applications of the RMF model. In Section 2 the
RMF formalism is given. In Sec. 3 the broken pseudo-spin symmetry is inves-
tigated. In Sec. 4 a brief description of the RHB model is provided. In Sec. 5
the formation of halos in light neutron rich nuclei is discussed, while in Sec. 6
the presence of a A hyperon in light drip line nuclei is examined.

2 The RMF formalism

In relativistic quantum hadrodynamics [2], a nucleus is described as system of
Dirac nucleons that interact via exchange of virtual mesons and photons. The
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Lagrangian density of the model is

L = P(@y-0-m)y + (BU)Z—U(U)
1 5. "
- —Q Q“"+; i - —R“,,R“" 3 f,pz - —F JFH
- T3
- goUoY — gy -w — gy PTY — ewv-A(—g—)d)- (1)

The Dirac spinor v denotes the nucleon with mass m. m,, m,, and m, are the masses
of the o-meson, the w-meson, and the p-meson, and g, g.,, and g, are the corresponding
coupling constants for the mesons to the nucleon. U(c) denotes the nonlinear o self-
interaction, and Q*, R*, and F* are field tensors [1,2]. The coupled equations of
motion are derived from the Lagrangian density (1). The Dirac equation for the nucleons:

0 = [ (—zV Gow — ngp—e( —'3)

(1—-73)
2

)+mm+%w

+gutwo + gpTho + € Ao] Wi (2)

and the Klein-Gordon equations for the mesons:

(2-A+m2)o = —gops — g20° — gs0® 3)
(5‘,2 -A+ mf,) Wy = Gulu 4)
(atz -A+ mi) P = gpju (3)

(2-2)4, = e (6)

In the relativistic mean-field approximation, the nucleons described by single-particle
spinors ¢; (¢ = 1,2,...,A) are assumed to form the A-particle Slater determinant |®),
and to move independently in the classical meson fields. The sources of the fields, i.e.
densities and currents, are calculated in the no-sea approximation, the scalar density:

ps = 2,_1 d,,w, the isoscalar baryon current: j* = ):,_ iv*1;, the isovector
baryon current: j* = TA | Uiy*Fi;, the electromagnetic current for the photon-field:
& = XA w,-’y“l—’;-"v,‘ The summation is over all occupied states in the Slater de-

terminant |®). Negative-energy states do not contribute to the densities in the no-sea
approximation of the stationary solutions. It is assumed that nucleon single-particle
states do not mix isospin.

The ground state of a nucleus is described by the stationary self-consistent solution
of the coupled system of equations (2)-(6), for a given number of nucleons and a set of
coupling constants and masses. In this paper, we report results obtained with the param-
eter set NL3 of the mean field Lagrangian. The NL3 force has been derived recently [3]
by fitting ground state properties of a large number of spherical nuclei. Properties cal-
culated with the NL3 effective interaction are found to be in very good agreement with
experimental data for nuclei at and away from the line of §-stability [4,5].
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3. Pseudo-spin symmetry in RMF theory

Pseudospin symmetry has been discovered in nuclear physics 30 years ago [6-8]. Re-
cently, Ginocchio [9] suggested that the pseudo-spin symmetry may arise due to near
equality in magnitude of attractive scalar and repulsive vector fields in relativistic mean
theory. This has revived the activity related to the understanding of the origin of this
symmetry in real nuclei. The concept of pseudo-spin symmetry [6,7] is based on the
experimental observation of the existence of quasi-degenerate doublets of normal parity
orbitals (n, £, j = £+ %) and (n—1,¢+2,j=¢+ g) such as (4512, 3ds/2), (3ds/2, 2g7/2)
etc., in the same major shell. Since for spherical systems the quantum numbers ;" are
conserved, the pseudo-spin angular momenta (£, § = 1/2) satisfy j = j ==+ 3.

It is straightforward to write the coupled baryon spinor and the mesons mean field
equations. Starting from the Dirac equation for the single nucleon radial wave function
with the spherical attractive scalar (S = —g,0) and the repulsive vector (V = g,w)
potentials and following the standard procedure, by eliminating the small components
(g:), the large components (f;) obey the following second order differential equation:

S+ V" 0  ki+l
—_ 2_ —_— — .
{ VBV (8r+ r )}f

= —-2m-E—-(S+V)(E-(S=-V)) fi. (7
Here the eigenvalues denoted by «;, of the operator —3(X - L + 1) are given by
1 . o1
K = :F(Ji+§) for j,‘—z,':tz s (8)

and S’ (V') are the derivatives of the potentials S (V ) with respect to r. The binding
energy E > 0 is measured with respect to the nucleon mass M in natural units i =c = 1.
On the other hand eliminating the large component f; we have for the small component
g; the following second order differential equation:

S -V 8 wi—1
I - RPNy | D, . ¢
-l )}o
= 2m-E-(S+V)(E-(S-V))g. (9)
For the case of equal strengths, S =V, the Eq. (9) reduces to:
-V24;+E(S+V)g;=E2m—-E)g. (10)

Clearly Eq. (10) has an energy dependent potential (E(V + S)) and has the eigenvalue
E(2m-E). After scaling the radial variable r = z/(v/E), the potential has a complicated
(VE) dependence i.c., S (x/ \/'E') +V (x/ \/E) In such a situation this equation (10) is
no longer a normal Schrodinger eigenvalue equation. Further, it is obvious that in this
equation all solutions with “bound” states in the Fermi sea with E > 0 are shifted to one
degenerate eigenvalue with £ = 0, which, in fact, is not bound. The corresponding wave
functions are not normalizable. This indeed is an unphysical situation. This equation is
the same as the equation (3) of Ref. [9] in the scaled variable z when written in terms of the
partial waves and using the relation {({+1) = k(x—1). Here £, the angular momentum of
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Figure 1. Single particle energies of the deformed Dirac equation for the neutrons in the
nucleus 3Dy as a function of the quadrupole deformation parameter 8,. Asymptotic
pseudo-spin quantum numbers are given and the pseudo-spin partners are indicated by
arrows 1 and J

the lower component g; is identified with the pseudo-spin angular momentum (£). This is
the pseudo-spin symmetry limit of Ref. [9], where the doublets j = £+1/2 with the same ¢
are degenerate. However, in this limit only the Dirac sea states exist and no Dirac valence
bound states and therefore contradicts reality. According to these considerations in all
realistic situations the pseudo-spin symmetry must be broken. Therefore the question
arises, to which extent it is broken in real nuclei. So far only the spherical case has
been investigated for square well potentials [9] and for spherical solutions of the RMF
equations[10].

In the present work we investigate the broken pseudo-spin symmetry in deformed nuclei
within the relativistic mean field approach. For our study, ®*Dy as a representative
of deformed nuclei. We use in our calculations the Lagrangian parameter set NL3[3]
which successfully reproduces the ground state properties of nuclei, spread over the entire
periodic table. Constrained relativistic Hartree calculations have been carried out for the
nucleus '3*Dy. Numerical details are given in Refs. [11] and [12]. Pairing correlations are
treated in the constant gap approximation.

The energies of the bound neutron pairs of orbitals corresponding to pseudo-spin dou-
blets are plotted against the deformation 3, ranging from 0.0 to 0.5 in Fig.1. The asymp-
totic Nilsson quantum numbers [V, n3, A, Q] are good for large values of the deformation
B,. The pseudo-spin doublets [V, 73, A, = A = 1/2] [13] are indicated by [N, i3, A]
+ and | in the figure. For zero deformation (8, = 0) the orbitals are indicated by the
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corresponding spherical states. The figure reveals the following:

a) The energy splitting between the pseudo-spin partners is smaller for the valence orbitals
and for the partners just below the Fermi surface.

b) This energy difference is relatively larger for the partners having larger pseudo-spin
angular momentum (£).

c) In general, this separation stays almost constant and does not vary with deformation
after reasonable value of 3.

d) The energy difference between the | and the 1 partners always remains positive except
for [464], where there is crossing at around 8 = 0.3. Such a crossing is not very unusual,
it has also been observed in Ref.[13].

These systematics are consistent with those observed in the spherical nuclei. A similar
plot for the proton pseudo-spin doublets reveals identical systematics as those observed
for the neutron case [14]. It is noted that similar calculations have also been carried out
for other deformed nuclei and they show identical systematics. In conclusion, it is shown
in the relativistic mean field framework that quasi-degenerate pseudo-spin doublets do
exist near the fermi surface for both spherical and deformed nuclei. The pseudo-spin
symmetry is restored better and better as one moves closer to the continuum limit. These
conclusions confirm the findings of Ginocchio [9,15].

4.5 o L TRLINE N L (e B Y | *. T
i neutron density
Y % ]
40 21 Ne,, -
E @ [ Ne’“N ]
= E ]
T 3 : [ ]
g 3 % sl ]
) o ]
E g |
3.0 - ; 3
# 3
[ [ b)
2 L2 R _g ). 4 _f- 3 _§._2 8% i % 0 P . N L P | Lol L
10 14 18 22 26 30 0 2 4 6 8 10 12 14 16 18
N r (fm)

Figure 2. Calculated rms radii (a) and proton and neutron density distribution (b) for
Ne isotopes.

4. The Relativistic Hartree-Bogoliubov model

The relativistic extension of the HFB theory is described in ref.[16] Independent quasi-
particles are introduced and the ground state of a nucleus |® > is represented as the
vacuum with respect to these quasi-particles. The quasi-particle operators are defined by
a unitary Bogoliubov transformation of the single-nucleon creation and annihilation op-
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erators. The generalized single-particle hamiltonian of HFB theory contains two average
potentials: the self-consistent field I' which encloses all the long range ph correlations,
and a pairing field A which sums up the pp-correlations. In the Hartree approximation
for the self-consistent mean field, the Relativistic Hartree-Bogoliubov (RHB) equations
read

hp —m— X\ A )(Uk>_ (Uk) -
( —-Ar —hp+m+r) ) =B ) (11)
where BD is the single-nucleon Dirac hamiltonian, and m is the nucleon mass. Uy and V4
are quasi-particle Dirac §pinors, and Ej denote the quasi-particie'energies. The RHB
equations are non-linear integro-differential equations. They have to be solved self-

consistently, with potentials determined in the mean-field approximation from solutions
of Klein-Gordon equations for mesons and Coulomb field:

[~A+milo(r) = —g, z VJr 17 Vi(r)
E;>0
—g20%(r) — g3 o°(x), (12)
[~A+mi]e’(r) = —gu EE Vi (r)Vi(r) (13)
>0
[A+m () = —g, > Vi(r)msVi(), (14)
E;>0
AT = e ¥ WIS, (15)
Ep>0 2

The source terms are sums of bilinear products of baryon amplitudes. The sums run over
all positive energy states. The system of equations is solved self-consistently in coordinate
space by discretization on the finite element mesh [17]. The pairing field A in (1) is defined

Awr,r) = % 5 Va5, s, ). (16)

where Vgpea(r,r') are matrix elements of a gemeral two-body pairing interaction and
Ked(T, r’) is the pairing tensor, defined as

K,ad(r l‘ E Uck(r)de ) (17)

E;>0

The eigensolutions of (1) form a set of orthogonal and normalized single quasi-particle
states. The corresponding eigenvalues are the single quasi-particle energies. The self-
consistent iteration procedure is performed in the basis of the quasi-particle states. The
resulting quasi-particle eigenspectrum is then transformed into the canonical basis of
the single-particle states, in which the RHB ground-state takes the separable BCS form.
The transformation determines the energies and occupation probabilities of the canon-
ical states. In this work, in the particle-particle (pp) channel the pairing interaction is
approximated by a two-body finite range interaction of Gogny type [18].

VPP(1,2) = Ze’(rl—r2/ﬂi)2 (W; + B;P°
1.2

—H;P" — M;P°P"), (18)
with the set D1S [18] for the parameters y;, W;, B;, H; and M; (I =1,2).
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Figure 3. 1f-2p single-particle neutron levels in the canonical basis for the Ne (a), and
Ne + A (b) isotopes.

Neutron halo in light nuclei

In some loosely bound systems at the drip-lines, the neutron density distribution dis-
plays an extremely long tail: the neutron halo. The resulting large interaction cross
sections have provided the first experimental evidence for halo nuclei [19]. The neutron
halo phenomenon has been studied with a variety of theoretical models [20,21]. For very
light nuclei in particular, models based on the separation into core plus valence space
nucleons (three-body Borromean systems) have been employed. In heavier neutron-rich
nuclei one expects that mean-field models should provide a better description of ground-
state properties. In a mean-field description, the neutron halo and the stability against
nucleon emission can only be explained with the inclusion of pairing correlations. Both
the properties of single-particle states near the neutron Fermi level, and the pairing inter-
action, are important in the formation of the neutron halo. The details of the formation
of the neutron halo in Ne isotopes have been studied in Ref. [22,23]. In Fig. 2a the rms
radii for Ne isotopes are plotted as functions of neutron number. Neutron and proton
rms radii are shown, and the N/ curve normalized so that it coincides with the neutron
radius in ?Ne. The neutron radii follow the mean-field N'/3 curve up to N ~ 22. For
larger values of V the neutron radii display a sharp increase, while the proton radii stay
practically constant. This sudden increase in neutron rms radii has been interpreted as
evidence for the formation of a multi-particle halo. The phenomenon is also observed in
the plot of proton and neutron density distributions (Fig. 2b). The proton density pro-
files do not change with the number of neutrons, while the neutron density distributions
display an abrupt change between **Ne and 3?Ne. The microscopic origin of the neutron
halo has been found in a delicate balance of the self-consistent mean-field and the pairing
field. This is shown in Fig. 3a, where the neutron single-particle states 1f7/3, 2ps/2 and
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2p12 in the canonical basis, and the Fermi energy are plotted as function of the neutron
number. For N < 22 the triplet of states is high in the continuum, and the Fermi level
uniformly increases toward zero. The triplet approaches zero energy, and a gap is formed
between these states and all other states in the continuum. The shell structure dramat-
ically changes at N > 22. Between N = 22 and N = 32 the Fermi level is practically
constant and very close to the continuum. The addition of neutrons in this region of the
drip does not increase the binding. Only the spatial extension of neutron distribution
displays an increase. The formation of the neutron halo is related to the quasi-degeneracy
of the triplet of states 1f;/;, 2ps/2 and 2p;/». The pairing interaction promotes neutrons
from the 1f7/, orbital to the 2p levels. Since these levels are so close in energy, the total
binding energy does not change significantly. Due to their small centrifugal barrier, the
2ps/2 and 2p;/» orbitals form the halo.

200 =—r—r——r—T——r—r—r—
[
100{
NE ;
- 0
S !
g 3
~ 100 ¢
g [
>
.200[.
_300-4 L 1 -
0 2 4 0

r (fm) r (fm)

Figure 4. Radial dependence of the spin-orbit potential in self-consistent solutions for the
ground-states of Ne, and Ne + A isotopes.

5. Light A hypernuclei near the neutron drip

The effects of the A hyperon on Ne isotopes with neutron halo has also been studied [24].
The Dirac equation for the A particle has the following form:

[—iaV + B(ma + goa0(r)) + guaw’ (T)]¥a = eatia (19)

The coupling constants for the A particle are from Ref. [25], where the relativistic mean-
field theory was used to study characteristics of A, £ and = hypernuclei. While the values
for the g,y coupling constants were determined from the naive quark model, that is
Jup = %gw ~; the values of g,y were deduced from the available experimental information
of hyperon binding in the nuclear medium. For the A hyperon g, was fitted to reproduce
the binding energy of a A in the 1s state of ’O: gy5 = 0.621g,5. The coupling constant
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determined from only this experimental quantity gives a reasonable description of binding
energies in A hypernuclei for a wide range of mass number.

In Fig. 3b we illustrate the effect of the A hyperon on the triplet of neutron states that
form the halo: 1f7,, 2ps/; and 2pys, and on the Fermi level. The energies are displayed
as function of the core mass number A.. Due to the extra binding provided by the A, the
single-neutron energies and the Fermi level are lower. The most important effect that we
observe, however, is that the Fermi level is negative for the isotope “>+ANe. Without the
A, the nucleus 2Ne was unbound.

Although the inclusion of the A does not produce excessive changes in bulk properties
of these nuclei, it can shift the neutron drip by stabilizing an otherwise unbound core
nucleus at the drip-line. The microscopic mechanism through which additional neutrons
are bound to the core originates from the increase in magnitude of the spin-orbit term in
presence of the A particle. The A in its ground state produces only a fractional change in
the central mean-field potential. On the other hand, through a purely relativistic effect,
it notably changes the spin-orbit term in the surface region, providing additional binding
for the outermost neutrons. This is shown in Fig. 4 where the radial dependence of the
spin-orbit potential for the ground states of **Ne, “*Ne and *!+ANe, '*ANe isotopes is
displayed. It is seen that for the corresponding A-hypernuclei (solid lines) the spin-orbit
term displays an increase in magnitude of about 10% (smaller as we approach the drip
line (41+ANe)). The effect can be illustrated on the example of **Ne and the corresponding
hypernucleus §!Ne. The mean field potential, in which the nucleons move, results from
the cancelation of two large meson potentials: the attractive scalar potential S and the
repulsive vector potential V: V+S. The spin-orbit potential, on the other hand, arises
from the very strong anti-nucleon potential V-S. Therefore, while in the presence of the
A the changes in V and S cancel out in the mean-field potential, they are amplified in Vj,.
For the core 3°Ne the values of the scalar (S) and vector (V) potential in the center of the
nucleus are -380 MeV and 308 MeV, respectively. For 3!Ne the corresponding values are:
-412 MeV and 336 MeV. The addition of the A particle changes the value of the mean-field
potential in the center of the nucleus by 4 MeV, but it changes the anti-nucleon potential
by 60 MeV. This is reflected in the corresponding spin-orbit term of the effective potential,
which provides more binding for states close to the Fermi surface. The additional binding
stabilizes the hypernuclear core.
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