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Abstract 

In this report the theoretical concepts of a chirally symmetric meson field theory 
are reviewed and an overview of the most relevant applications in nuclear physics is 
given. This includes a unified description of the vacuum properties of hadrons, finite 
nuclei and hot, dense and strange nuclear matter in an extended chiral SU(3)L Χ 

SU(3)R σ — ω model. 

1 Introduction - General Ideas 

Quantum Chromodynamics (QCD) is the accepted theory of strong inter­

actions, but for low energies it is not perturbatively solvable. One idea to 

overcome this problem is lattice gauge theory, where QCD is solved numeri­

cally on a finite space-time lattice. So far, lattice gauge theory is not able to 

describe finite nuclei or dense nuclear matter (finite chemical potential) [1]. 

A different approach has been followed in nuclear physics for several years 

that is well known from other disciplines, the idea of constructing effective 

theories. In this concept only the relevant degrees of freedom for the problem 

are considered to construct a simplified model which is solvable, but contains 

the interesting and essential characteristics of the full theory. For the case of 

strong interactions this means that one considers the hadrons as relevant de­

grees of freedom instead of quarks, and the bosonic fields are mesons instead of 

gluons. There exist several models which successfully describe nuclear matter 

and finite nuclei in such a way [2-4]. Especially the Walecka model (QHD) 

and its extensions (QHD II, nonlinear Walecka model) have been very success­

ful and widely used for the description of hadronic matter and finite nuclei. 
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These models are relativistic quantum field theories of baryons and mesons, 
but do not consider some of the essential features of QCD, like approximate 
5/7(3) x 5/7(3) chiral symmetry or broken scale invariance. This lead us to 
construct an extended chiral 517(3) σ—ω model of hadrons and mesons, which 
on one hand incorporates the successful idea that the strong interaction is me­
diated by scalar- and vector mesons and which on the other hand contains the 
relevant symmetries of QCD. In this paper the basic concepts, the Lagrangian 
and the main applications of this model will be reported. In Sec. 2 we discuss 
the motivation for using chiral symmetry in effective models for strongly inter­
acting matter. Section 3 shows the representations and transformations of the 
chiral 5/7(3) χ 5/7(3) group. The nonlinear realization of chiral symmetry and 
the resulting transformation properties of the relevant degrees of freedom are 
considered in Sec. 4. The chiral 5/7(3) Lagrangian is constructed and discussed 
in Sec. 5. The equations of motion are solved in the mean field approximation 
(Sec. 6). In Sec. 7 we demonstrate that vacuum properties of hadrons and 
nuclear matter ground state properties can be described satisfactorily in the 
chiral 5/7(3) model. Finally, two main applications are presented. Section 8 
shows the results for nuclei, hypernuclei and superheavies and in Sec. 9 the 
extension to hot and dense hadronic matter is discussed. The conclusions will 
be drawn in Sec. 10. 

2 Why Chiral Symmetry ? 

Recently, the general principles of chiral symmetry and broken scale invari­
ance in QCD have received renewed attention at finite baryon densities. There 
are several reasons for this. First of all in an effective theory of strong interac­
tions, the main features of QCD should be implemented. One important part 
of these features are symmetries. Lorentz invariance, parity invariance and 
more are already incorporated in QHD. But chiral symmetry and the broken 
scale invariance have not been accounted for, even though SU(2) χ 5/7(2) 
chiral symmetry is a very good symmetry of QCD and 517(3) x 5/7(3) chiral 
symmetry, even though it is stronger broken due to the strange quark mass, 
can still be considered as an explicitly broken symmetry. In this spirit, models 
with SU(2)i χ 5Z7(2)# symmetry and scale invariance were applied to nu­
clear matter at zero and finite temperature and to finite nuclei [5-9]. As a 
new feature, a glueball field χ, the dilaton, was included, which accounted 
for the broken scale invariance of QCD at tree level through a logarithmic 
potential [10]. The success of these models established the applicability of this 
approach to the relativistic description of the nuclear many-body problem. 
Chiral SU (3) models have been quite successful in describing hadron interac­
tions, e.g. meson-meson interactions can be described very well by using the 
linear 5/7(3) σ model [11] and Kaon-nucleon scattering can be well described 
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using a chiral effective SU(3) Lagrangian [12,13]. But these models lack the 
feature of including the nucleon-nucleon interaction on the same chiral SU(3) 
basis and therefore do not allow a consistent extrapolation to finite density. 
Therefore we have extended the chiral effective model to SU(3)L Χ SU(3)R 

[14,15]. This approach shall provide a basis to shed light on the properties of 
strange hadrons, as the in-medium properties of the hadrons and the prop­
erties of strange hadronic matter, by pinning down the nuclear force in a 
chirally invariant way. It has been found that simultaneously hadronic masses 
of the various SU(3) multiplets, the nuclear matter equation of state, finite 
nuclei, hypernuclei and excited nuclear matter can be described reasonably 
well within a model respecting chiral symmetry. 

3 SU(Z) x 517(3) 

The σ-model has been used extensively in exploring the implications of chiral 
symmetry in low-energy hadron dynamics. Most of these investigations have 
employed the SU(2) model with mesons and nucléons and the SU(3) σ-model 
with mesons only. We require the effective model for hadronic matter to be 
approximately SU(3) χ SU(3) chirally invariant and include baryons, spin-0 
and spin-1 mesons, where the latter are necessary for non-zero baryon densi­
ties. Therefore, in this section we will discuss the transformation properties of 
spin-0 and spin-1 mesons as well as of the baryons. First, we determine the 
group representations to the various hadronic multiplets. 

3.1 Representations 

For determining the representations to which the hadrons are assigned, we will 
look at their quark content. The representations of the hadrons result from 
the direct product of the quark representations. However, in the Lagrangian, 
there will be no explicit reference to quarks. For our purpose, they are only 
used as a pedagogical and mnemonic tool. In the chiral limit, the quarks are 
massless. Therefore, it is sufficient to consider the 2-component spinors 

QL = ^{l-75)q ~ (3,0) ,ui (1) 

< ? * = 2 ( 1 + 7 δ ) ς ~ ( 0 ' 3 ) · ( 2 ) 

Since the quarks are massless, the chirality of the spinors is linked to their 
spin. On the right-hand side, the quark representations are symbolized by the 

172 



number of flavors, which is placed left (right) from the comma between the 
brackets for the left (right) subspace. 

3.1.1 Mesons 

The mesons visualized as a bound system of a quark and antiquark correspond 
to the bilinear form qöq where the 12 χ 12 matrix Ό is the direct product of 
the 4 x 4 Dirac matrices and the 3 χ 3 unitary spin matrices (Ö = Γ <g> λ). 
For the discussion of the representations we will first suppress the explicit 
reference to the Gell-Mann matrix λ. 
First, consider the spin-0 mesons. Assuming that they are s-wave bound states, 
then the only spinless objects we can form are 

QRQL , QLQR · ( 3 ) 

The combinations qLqL and qRqR vanish, since the left and right subspaces are 
orthogonal to each other. The resulting representation is (3,3*) and (3*, 3), 
respectively (The antiparticles belong to the conjugate representation). We 
are thus led to consider nonets of pseudoscalar and scalar particles. 
For the vector mesons, we have to construct vectorial quantities out of qi, 
and qR. Again, if we assume that s-wave bound states are involved, the only 
vectors which can be formed are 

1L1H<IL , ΆκΊμ(1κ · (4) 

This suggests assigning the vector and axial vector mesons to the represen­
tation (3 χ 3*, 0) θ (0, 3 χ 3*) = (8, 1) θ (1, 8), coinciding with the tensor 
properties of the currents conserved in the 577(3) x SU(3) limit [16,17]. 

3.1.2 Baryons 

The representation of spin-|-baryons can be obtained from the symmetric 
coupling of three left- or right-handed quarks, (3 x 3 x 3, 0) = (10,0) or 
(0, 3 χ 3 x 3) = (0, 10). For spin-| particles the construction of baryon multi­
plets from the basic fields qL and qR is not unique. The reason is that a left-
or right-handed quark can be added to the spin-0 diquark of one subspace. 
Consequently, the baryons can be assigned to the representation (3, 3*) and 
(3*, 3) or (8, 1) and (1, 8), respectively. For an explicit construction in terms 
of quark fields see [18,19]. 
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3.2 Transformations 

Once the chiral transformations properties of the elementary spinors are known 
it is straightforward to derive the corresponding transformations properties of 
the composite fields. 
An arbitrary element of SU(3) x SU(Z) can be written as 

U(a, β) = e
{~[iaaQa+ißaQZa]) = e(-^

a+ßyQL+(a-ßyQR}) s (5) 

where α and β are eight-component vectors, and Q, Q 5 are the vector and axial 
generators, respectively. The spinor qi transforming under SU(3)L generated 
by QL and ÇR of SU(3)R generated by QR transform infinitesimally as 

qi—+φ + *[(α + 0 ) · λ / 2 ] ^ , (6) 

Q—XZ + ifta-ßy-X^qj. (7) 

Here, the (un-)barred indices belong to the (right) left subspace. Since the 
Gell-Mann matrices are hermitean, the complex conjugate spinor transforms 
as 

^ _ - , ç i _ ^ [ ( û + ^ ) .A / 2 ] j . (8) 

Knowing the representation of the mesonic and baryonic fields, it is straight­
forward to derive their transformation properties. They are summarized in 
Table 1, where we conveniently express the fields in a basis of 3 χ 3 Gell-Mann 
matrices. For example, the spin-0 mesons may be written in the compact form 

EfoAû<?A + QL^WR) = Σ ( ^ λ Α + ™aK) = Σ + iU = M 
ο=0 α=0 

8 8 

E<*Ä*«l +^ Û
7 5 <? L ) = Σ,(ξαλα - ίΚαλα) = Σ - ill = Μ* . 

α=0 α=0 

The first and second row are connected by the parity transformation, which 
transforms left-handed quarks to right handed ones. In the matrix formulation 
this is achieved by taking the adjoint of the expression. Therefore, since scalar 
and pseudoscalar particles have opposite parity, an imaginary unit i is attached 
to the pseudoscalar matrix Π. 
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Table 1 
Chiral transformations of spin-0 mesons (M = Σ-ΗΠ), spin-1 mesons {Vß = Ιμ + τμ 

and Αβ = Ιμ — rß) and baryons 

Hadrons 

Spin-0 mesons 

Spin-1 mesons 

baryons (spin-|-

baryons (spin- \· 

baryons (spin-|-

-nonet) 

-octet) 

-decuplet) 

Jp 

o+,o-

i - , i + 

1 + 
2 
1 + 
2 
3 + 
2 

Transformat ions 

LMR} 

LlßÜ 

mLRi 

L^LÜ 

LLLAL 

RMitf 

Ι1τμΐΰ 

R$!RLi 

mRRi 

RRRAR 

4 The nonlinear realization of chiral symmetry 

In some neighborhood of the identity transformation, every group element 
g'(x) of a compact, semi-simple group G with a subgroup H can be decom­
posed uniquely into a product of the form [20] 

g'{x) = exp [iΣξα{φα] exp [i Σ^ b(x)t b] = u (ξα{χ)) h {9b(x)) , (9) 

where h(6b) is an element of Η, ξα and 6b are parameters of the symmetry 
transformation which are generally space-time dependent, xa and tb represent 
the generators of the group G. 

For the case of SU(S)L χ SU(S)R symmetry, the generators are the vectorial 
{U = Qi) and axial (XÌ = Qj) charges, respectively, and the subgroup is 
H = SU{3)V. 

For our model, we assume invariance under global SU(S)L Χ SU(3)R transfor­
mations, 

g = exp [i Σ otlXia] exp [i £ ab

RXRb] = L (aL) R {aR) . (10) 

Here, the representation of Gell-Mann matrices Â , = λ(1 — 7s)/2 and XR = 
λ(1 -f 7δ)/2 with space-time independent parameters oij, and aR is used. 

The product gu(£a{x)) is still an element of G and can be written as 

g exp [i Σ ξαχα] = exp [i £ £ ( 5 , ξα)χα] exp [i £ &b{g, ξβ)ί6] , (11) 

where, in general, both ξ'α and &b depend on g and ξα- Let 

q -+ D(h)q (12) 
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be a linear representation of the subgroup H of G. Then the transformation 

9·.ξ->?,ξ-*Ώ (exp [iJTto]) * ( 1 3 ) 

constitutes a nonlinear realization of G. 

The local parameters of the axial charges are identified with the fields of the 
pseudoscalar mesons [21]. In the representation of Gell-Mann matrices one has 
(see also Appendix A) 

ΐί(πα(χ)) = exp 
ι 

— π ΰ ( χ ) λ α 7 5 
Ίσ0 

(14) 

This assignment has the advantage that the pseudoscalar mesons are the pa­
rameters of the symmetry transformation. They will therefore only appear if 
the symmetry is explicitly broken or in terms with derivatives of the fields. 

The composition of hadrons in terms of its constituents, the quarks, has to 
be determined in order to build models with hadronic degrees of freedom. 
This strategy has been followed e.g. in [14] and is adopted also here. The 
transformation properties of the hadrons in the nonlinear representation can 
be derived if the 'old' quarks q are related to the 'new' quarks q of the nonlinear 
representation. 

The quarks of the nonlinear representation transform with the vectorial sub­
group SU(S)v in accord with (9). Splitting the quarks in left- and right-handed 
parts, they can be written as 

qL = uqL qR = u^qR . (15) 

These equations are connected by parity. The ambiguity in the choice of h is 
avoided by setting h = I. The transformation properties of the pions and the 
new quarks are found by considering how the old quarks transform: 

q' = LqL + RqR = LuqL + RujqR . (16) 

According to (11), (set g = L), 

Lu = u'h ; Ru1 = vt'h , (17) 

where the right equation is the parity transformed one of the left equation. 
Here and in the following, the abbreviations u = it(7re(a;)) and u' = ιι(π'α(χ)) 
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are used. By inserting these relations into (16), one sees that q transforms 
with St/(3)v as 

9L = hQL ; q'R = hqR . (18) 

According to (11), in general the vector transformation is a local, nonlinear 
function depending on pseudoscalar mesons, h = h(g,na(x)). Following equa­
tion (17), the pseudoscalar mesons transform nonlinearly as 

u' = Luh) = huIU , (19) 
u* = faftf = Ruihi . (20) 

The second set of equalities are again due to parity. In contrast to the linear 
realization of chiral symmetry, there is no distinction between the left and 
right space. Therefore, only the representations 8 and 1 of the lowest-lying 
hadrons are possible. The various octets transform accordingly, e.g. for the 
scalar (X), vector (Vß — Ιμ + rM), axial vector {Λμ = 1μ — τμ) and baryon 
(Β, D) matrices one has, 

X' = hXh\ ν'μ = hVßti, Λ'μ = ΗΛμΗ\ Β' = hBh), D' = hhhD . (21) 

The present, nonlinearly transforming, hadronic fields can be obtained from 
the linearly transforming ones described in [14] by multiplying them with 
υ,(π(χ)) and its conjugate: (see also [22]) 

X = hvtMu* + uM*u) , Y = hu1 Mu1 - uM^u) , (22) 

Ιμ = ηΠμιι, τμ = ufßu* , (23) 

BL = U^LU , BR = U^RV) , (24) 

DL = uuu&R , DR = uVu + A L . (25) 

Here, M = Σ -f ζΠ and its conjugate contains the nonets of the linearly trans­
forming scalar (Σ) and pseudoscalar (Π) mesons, whereas Ιμ, rß, Φ ,̂, Φβ, 
AL and Δ β are the left and right-handed parts of the spin-1 mesons, spin-| 
baryons and spin-| baryons in the linear representation, respectively. 
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5 Lagrangian 

In this section, the various terms of the Lagrangian 

£ = Ain + Σ ^Bw ~l~ £γρ + ^ v e c + A + A B (26) 
W=X,Y,V,A,u 

are discussed in detail. Ain is the kinetic energy term of baryons (spin-| and 
spin-1 ) and mesons (spin-0 and spin-1), CBW includes the interaction terms of 
the different baryons with the various spin-0 and spin-1 mesons. £ v e c generates 
the masses of the spin-1 mesons through interactions with spin-0 mesons, and 
Co gives the meson-meson interaction terms which induce the spontaneous 
breaking of chiral symmetry. It also includes the scale breaking logarithmic 
potential. Finally, A B introduces an explicit symmetry breaking of the U(1)A, 

the SU(Z)VÌ and the chiral symmetry. 

Baryon-meson interaction 

The various interaction terms of baryons with mesons are discussed in this 
section. The SU(S) structure of the the spin-| baryon-meson interaction terms 
are the same for all mesons, except for the difference in Lorentz space. For a 
general meson field W they read 

Cow = -y/2g%i (aow[BOBW}F + (1 - aow)[BOBW]D) ι* (27) 

-9^^=TT(BOB)TIW , (28) 

with [BOBW]F :« TrÇBOWB - BOBW) and [BOBW]D := Tv(BOWB + 
BOBW) - ITT(BOB)TTW. The different terms to be considered are those 
for the interaction of spin-| baryons, with scalar mesons (W = Χ, Ο = 1), 
with vector mesons (W = Ϋμ, Ό = ημ for the vector and W = VßVi Ο = σμν 

for the tensor interaction), with axial vector mesons (W = Αμ, Ο = 7^75) and 
with pseudoscalar mesons (W = υ,μ,0 = 7M7s), respectively. For the spin-| 
baryons one can construct a coupling term similar to (28) 

CDW = -V2g%8aDW[WGDßW} - g&Q&ODjTrW, (29) 

where $rODJW] and [WüDßW] are obtained from coupling [ÎÔ] χ [10] χ [8] 
and [TO] χ [10] x [1] to an SU(Z) singlet, respectively. 
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In the following we will discuss the couplings of the baryons to the scalar and 
vector mesons. For the pseudoscalar mesons only a pseudovector coupling is 
possible, since they only appear in the exponentials. Pseudovector and axial 
mesons have a vanishing expectation value at the mean field level, so that 
their coupling terms will not be discussed in detail here. 

5.1 Scalar mesons 

The baryons and the scalar mesons transform equally in the left and right 
subspace. Therefore, in contrast to the linear realization of chiral symmetry, a 
/-type coupling is allowed for the baryon-octet-meson interaction. In addition, 
it is possible to construct mass terms for baryons and to couple them to chiral 
singlets. 

After insertion of the vacuum matrix (X), (A.6), one obtains the baryon 
masses as generated by the vacuum expectation value (VEV) of the two meson 
fields: 

2 
mA = m0- -9os{oios - 1)(\/2ζ - σ) , vx 

2 
m E = m0 4- -gos^os - 1)(VX - σ) , vx 

ms = m0 + -pg8(2a05 + l)(V5c - σ) , 

with m0 = 9oi(v^o-+C)/y/3. The parameters g^v 9QS and aos can be used to 
fit the baryon masses to their experimental values. Besides the current quark 
mass terms discussed in Sec. 5.6, no additional explicit symmetry breaking 
term is needed. Note that the nucléon mass depends on the strange conden­
sate ζ! For ζ = a/y/2 (i.e. /„. = f K ) , the masses are degenerate, and the 
vacuum is 5C/(3)v-invariant. For the spin-| baryons the procedure is similar. 
If the vacuum matrix for the scalar condensates is inserted one obtains the 
dynamically generated vacuum masses of the baryon decuplet 

mA = pe[(3-aZ)5)o- + u;DsV/2C] ,vi 

mz.=gs

D[2a + V2C] ,vx 

ms- = 9SD [(1 + <*Ds)a + (2 - aDS)*j2C\ , νλ 

ma = 9Ì [aDSa + (3 - a ^ V ^ C ] . 
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The parameters g% and aos are fixed to reproduce the masses of the baryon 
decuplet. As in the case of the nucléon, the coupling of the Δ to the strange 
condensate is nonzero. 

It is desirable to have an alternative way of baryon mass generation, where the 
nucléon and the Δ mass depend only on σ. For the nucléon this can be accom­
plished for example by taking the limit aos — 1 and g^ = y/Qgos- Then, the 
coupling constants between the baryon octet and the two scalar condensates 
are related to the additive quark model. This leaves only one coupling con­
stant to adjust for the correct nucléon mass. For a fine-tuning of the remaining 
masses, it is necessary to introduce an explicit symmetry breaking term, that 
breaks the 5l/(3)-symmetry along the hypercharge direction. A possible term 
already discussed in [14,23], which respects the Gell-Mann-Okubo mass rela­
tion, is 

CAm = -πι{Ττ(ΒΒ - BBS) - m2Ti(BSB) , (30) 

where S£ = — |[\/3(λ8)£ — 6f]. As in the first case, the three coupling constants 
gNa = 3<7Q8, mi and rri2 are sufficient to reproduce the experimentally known 
baryon masses. Explicitly, the baryon masses have the values 

1 2 K» 

2 1 IT mi + 2 m 2 

™>A = --gNa<7 ~ ^9NaV2Ç + , V\ 
2 1 / ^ 

mE = --gNa<7 - -Z9NCVX + ™i · 

For the baryon decuplet one can choose ŒDS = 0 to obtain coupling constants 
related to the additive quark model. We introduce an explicit symmetry break­
ing proportional to the number of strange quarks for a given baryon species. 
Here we need only one additional parameter mDs to obtain the masses of the 
baryon decuplet: 

^ Δ = Ρ Δ σ [ 3 σ ] ,Ui 

m& = gA<T [2<j -h \/2C] + ™>Ds , v\ 

™>Ξ* = ΡΔσ [ΐσ + 2\/2ζ] + 2mDs , ux 

mn = ΡΔσ [θσ + 3\/2ζ] + 3m D s . 

For both versions of the baryon-meson interaction the parameters are fixed to 
yield the baryon masses of the octet and the decuplet (Table 2 and 3). 
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Table 2 
Hadron masses (in MeV) for the different fits Ci,C2,Cz 

Spin-0 particle masses 

m , ΤΠΚ ΤΠη ΤΪΙηι ΤΠαο ΤΠΚ ΤΠσ 771/0 

(139) (495) (547) (958) (980) (900) (980) 

Ci 139.0 498.0 574.5 969.2 953.5 995.7 473.32 1039.1 

C2 139.0 498.0 574.5 969.2 953.5 995.7 475.55 1039.1 

C 3 139.0 498.0 574.5 969.2 953.5 995.7 478.56 824.17 

Spin-1 particle masses Spin-^ particle masses 

τα.ω m/f« mp m^ m^ ΠΊΛ ΤΠ·ς m= 

(783) (892) (770) (1020) (939) (1115) (1193) (1315) 

Ci 783.0 863.7 770.0 1019.0 939.0 1115.0 1196.0 1331.5 

C
2
 783.0 863.7 770.0 1019.0 939.0 1115.3 1196.0 1331.5 

Cz 783.0 863.7 770.0 1019.0 939.0 1115.0 1196.0 1331.5 

Table 3 

Vacuum masses of baryon resonances and baryonic potential depths in nuclear mat­
ter 

Ci 

c 2 

Cz 

rriA 

1232.0 

1232.0 

1232.0 

ΤΗΣ· 

1380.0 

1380.2 

1380.0 

ΙΤΙΞ· 

1527.9 

1528.4 

1527.9 

™>ςχ 

1675.8 

1676.6 

1675.8 

0.61 

0.64 

0.61 

Κ [MeV) 

276.3 

266.1 

285.3 

UN 

-71.0 

-68.8 

-71.1 

^ Λ 

-28.2 

-30.5 

-28.61 

5.2 Vector mesons 

For the spin- | baryons two independent interaction terms with spin-1 mesons 

can be constructed in analogy to the interaction of the baryon octet with the 

scalar mesons. They correspond to the antisymmetric (/-type) and symmetric 

(d-type) couplings, respectively. From the universality principle [24] and the 

vector meson dominance model one may conclude that the d-type coupling 

should be small. For most of the fits ay — 1, i.e. /-type coupling, is used. 

However, a small admixture of d-type coupling allows for some fine-tuning of 

the single-particle energy levels of nucléons in nuclei [15]. As for the case of 
scalar mesons, for CQX = V&gos, the strange vector field φμ ~ s7Ms does not 

couple to the nucléon. The remaining couplings to the strange baryons are 
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then determined by symmetry relations: 

9Νω = (4ay - l)#o8 ι vl 

2 Λ/2 

9Αω = -^>OiV - 2)Ço8 , 9Αφ = g-(2<*y + 1)^08 . *Ί 

ρ Σ ω = 2αν9θ8 » ΡςΨ = - ν ^ ( 2 α ν - l)so8 . *Ί 

ρ Ξ ω = ( 2 α ν - l)po8 , 9ΖΦ = -2\/2αν5ο8 · 

In the limit α ν = 1, the relative values of the coupling constants are related 

to the additive quark model via: 

ο 2 v 9ΕΦ \/2 
#Λω = #Σω = 2#Ξ ί χ, = -gNu} = 2 # 0 8 , 9Κφ = 0Σ0 = " J " = ~0~^Νω ' 

Note that all coupling constants are fixed once e.g. 9^ω is specified. 

For the coupling of the baryon resonances to the vector mesons we obtain the 

same Clebsch-Gordan coefficients as for the coupling to the scalar mesons. 

This leads to the following relations between the coupling constants: 

9AU = (3 - aDV)gDv , 9 ΑΦ = \Î2aDVgDv , 

(?Σ*ω = 2<7£)y ì ρΣ.φ = y/2gDV , 

9Ξ'ω — (1 + OiDV)gDV , 9Ε'Φ = \/2(2 - aDV)9DV , 

9ίΐω = OÌDV9RV , 9ηφ = v 2 (3 - OÌDV)9DV • 

To obtain the coupling of the baryon decuplet to the spin-1 mesons we set 
OLR = 0, since the strange vector meson φ should not couple to the Δ baryon, 

in analogy to the octet case. The resulting coupling constants again obey the 

additive quark model constraints: 

3 
9Αω - 9#Σ*ω = %9Έ.*ω = ^9DV , Çfht * 0 ι * Ί (31) 

3 
9ίϊφ = -Ζ9Ξ-Φ = ^9Σ'φ = ν ^ ί Δ ω , 9ΑΦ - 0 . (32) 

This means that in the case of the baryon decuplet all coupling constants are 

again fixed if the overall coupling gov is specified. Since there is not a vacuum 

restriction on the Α-ω coupling like in the case of the scalar mesons, we have 

to consider different constraints. This will be discussed in Sec. 9. 
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Meson-meson interaction 

5.3 Vector meson masses 

Here we discuss the mass terms of the vector mesons. The simplest scale-
invariant form 

4 ä = \τη2

ν^Ίτνμν» + 29\TT{V^)2 , (33) 
2 Xo 

implies a mass degeneracy for the meson nonet. The first term of (33) is made 
scale invariant by multiplying it with an appropriate power of the glueball 
field χ (see Sec. 5.5 for details). To split the masses, one can add the chiral 
invariant [25,26] 

^ = \μ£τ[νμί/ν^Χ2} . (34) 

A detailed description can be found in [15]. The axial vector meson masses can 
be described by adding terms analogous to (34). We refrain from discussing 
them further, see [25,27]. 

5.4 Scalar mesons 

The nonlinear realization of chiral symmetry offers many more possibilities 
to form chiral invariants: the couplings of scalar mesons with each other are 
only governed by 5£/(3)y-symmetry. However, only three kinds of independent 
invariants exist, namely 

7i = TrX, 72 = TrX 2 , J3 = d e t X . (35) 

All other invariants, TrXn, with η > 3, can be expressed as a function of the 
invariants shown in (35), see [15]. For our calculations, the invariants of (35) 
are considered as building blocks, from which the different forms of the meson-
meson interaction can be constructed. In this report we will only discuss the 
potential of the SU(3) linear σ-model [28]. The connection to the models [5,29] 
and [2-4] is discussed in detail in [15]. 
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5.5 Broken scale invariance 

The concept of broken scale invariance leading to the trace anomaly in (mass-
less) QCD, Θ» = {ßQCD/(29))Q%,Q^ {ΰμν is the gluon field strength tensor of 
QCD), can be mimicked in an effective Lagrangian at tree level [10] through 
the introduction of the potential 

Acale = " t o * - V In 4 + ix* l n l é h \ • ^ 
4 Xo 3 det(A) 

The effectλ of the logarithmic term ~ χ 4 In χ is to break the scale invariance. 
This leads to the proportionality 0J ~ χ4, as can be seen from 

^="-*trM*ro-*4' (37) 

which is a consequence of the definition of the scale transformations [30]. 
This holds only, if the meson-meson potential is scale invariant, which can be 
achieved by multiplying the invariants of scale dimension less than four with 
an appropriate power of the dilaton field χ. 

The comparison of the trace anomaly of QCD with that of the effective theory 
allows for the identification of the χ-field with the gluon condensate: 

Κ = (^-0α

μ^ή s (1 - δ)χ4 . (38) 

The parameter δ originates from the second logarithmic term with the chiral 
invariant 73 (see also [5] for the chiral SU(2) linear σ-model). An orientation 
for the value of δ may be taken from /?QCD

 a t t ß e o n e 1°°P level, with Nc colors 
and Nf flavors, 

Here the first number in parentheses arises from the (antiscreening) self-
interaction of the gluons and the second term, proportional to Nf, is the 
(screening) contribution of quark pairs. Equation (39) suggests the value 

1 According to [10], the argument of the logarithm has to be chirally and parity 
invariant. This is fulfilled by the dilaton, χ, which is both a chiral singlet as well as 
a scalar. 
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δ = 2/11 for three flavors and three colors. This value gives the order of 
magnitude about which the parameter δ will be varied. 

For simplicity, we will also consider the case in which χ = χ0, where the gluon 
condensate does not vary with density. We will refer to this case as the frozen 
glueball limit. 

5.6 Explicitly broken chiral symmetry 

In order to eliminate the Goldstone modes from a chiral effective theory, ex­
plicit symmetry breaking terms have to be introduced. Here, we use 

£SB = ~τη2

ηοΊτΥ2 - ÌTrAp (uXu + υϊΧυ?) - Tr {A, -AP)X. (40) 

The first term, which breaks the U(1)A symmetry, gives a mass to the pseu-
doscalar singlet. The second term is motivated by the explicit symmetry break­
ing term of the linear σ-model, 

\ΊϊΑρ(Μ + M*) = ΊτΑρ (u{X + iY)u + u\X - ιΥ)υ)) , (41) 

with Αρ = l/y/ïdiagimlU, mlf„, 2m2
KfK - mj/*) and πιπ = 139 MeV, 

m κ = 498 MeV. Inserting the spin-0 meson matrix one obtains 

- £ S B = ^ [rnlUa + (\/2m2

KfK - ^ | " 4 « c ) - (42) 

From this the VEV of σ and ζ are fixed by the PCAC relations for the π- and 
K-mesons. 

σο = - Λ Co = Λ*(Λ - 2/jp) . (43) 

For simplicity, 770/778 mixing is neglected through omitting Y from the second 
term of equation (40). If this term is included, we get a mixing angle of θ — 16° 
for parameter set C\ [15], which agrees well with experiment, 9exp « 20° from 
77,77' -» 77. 

In the case of SC/^y-symmetry, the quadratic Gell-Mann Okubo mass for­
mula, 3mjj8 + ml - Am2

K = 0, is satisfied. 
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The third term breaks St/(3)y-symmetry. As — diag(ar, x, y) can be used to 
remove the vacuum constraints on the parameters of the meson-meson poten­
tial by adjusting χ and y in such a way that the terms linear in σ and ζ vanish 
in the vacuum. 

6 Mean-field approximation 

The terms discussed so far involve the full quantum operator fields which 
cannot be treated exactly. To investigate hadronic matter properties at finite 
baryon density we adopt the mean-field approximation. This is a nonper-
turbative relativistic method to solve approximately the nuclear many body 
problem by replacing the quantum field operators by its classical expecta­
tion values (for a recent review see [31]), i.e. the fluctuations around constant 
vacuum expectation values of the field operators are neglected: 

σ(χ) = (σ) + δσ -* (σ) = σ , ζ (χ) = (ζ) + δζ -> (ζ) = ζ , 

ωμ(χ) — {ω)δ0μ + δωμ -* (ω0) s ω , 

φμ(χ) = (φ)δ0μ + δφμ -» (φο) = φ . 

The fermions are treated as quantum mechanical one-particle operators. The 
derivative terms can be neglected and only the time-like component of the 
vector mesons ω S (ω0) and φ= {φο) survive if we assume homogeneous and 
isotropic infinite baryonic matter. Additionally, due to parity conservation we 
have (π») = 0. After performing these approximations, the Lagrangian (26) 
becomes 

CBM + CBv — - Σ ΨλβίωΊϋω0 + gitoti? + m*]^ , 
i 

Aec = \ml%ω2 + \τη2Αφ2 + 9\{ωΑ + 2φ*) , 

Vo = ì * o x V + C2) - kx(a
2 + ζ 2 ) 2 - M y + C4) 

-Α:3χσ2ζ + ^ χ 4 + ί χ 4 1 η 4 - ^ 1 η σ 

A q x " „2r ' 

Xo 

4~ xt 3 oiCo 

m\Uo + (V2m2

KfK - ^ ™ 2 / π Κ 

with the effective mass of the baryon i, which is defined according to Sec. 5.1 
and i = N,A, Σ, Ξ, Δ, Σ*, Ξ*, Ω. 

Now it is straightforward to write down the expression for the thermodynam-



ical potential of the grand canonical ensemble Ω per volume V at a given 
chemical potential μ and zero temperature: 

Ω 
Η = - £ v e c -CO-CSB-V^-^T^I d3k{E*(k) - μ?] . (44) 

The vacuum energy Vvac (the potential at ρ = 0) has been subtracted in 
order to get a vanishing vacuum energy, ji denote the fermionic spin-isospin 
degeneracy factors. The single particle energies are E*(k) = \Jk2 + m*2 and 
the effective chemical potentials read μ* = μι — gUiU — 

The mesonic fields are determined by extremizing ψ (μ, Τ = 0): 

d{Q/V) 
= -ω2τη2

ω^ + koX(a2 + ζ2) - ^σ2ζ^ 

+ [ 4h + 1 + 41η^- - 4 l n - ^ - Ι W 
Χο 3 σ%ζ0ι 

+24 
Χο 

"4Λ-σ + (V2m2

KfK - -7=™ίί*)ζ 

d{ü/V) 
da k0x

za - 4^(σ£ + ζΛ)σ - 2k2a
i - 2^χσζ - 2 

= 0, 

Sx4 

3σ 

Χ dm* 
1/1 + Ι ^ Ι ™ ^ + Σ Ί ^ Ρ ? = Ο 3σ 

ggyv) 
3ζ 

5χ4 

= ΛοΛ - 4*i(<^ + O C - 4fcC - hXa
z - -ϊ~νλ 

+ [2L 
Χο 

1 
\^rn2

KfK - -7=π4/π 
dC 

αφ \Χ0 

4 Pi 

ito 
Ρ 

i Pi 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

The scalar densities p\ and the vector densities pi can be calculated analytically 
for the case Τ = 0, yielding 

dzk __ /" en 

" 7 l i Ϊ2Ϊ 
m2 7*m* 

(2ττ)3 £* 4π2 

f JLJL - TEL· 
~Ίί J (2π)3 ~ 6π2 ' 

kFiE*Fi - m*2 In 
™? J J 

(54) 

(55) 
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The energy density and the pressure follow from the Gibbs-Duhem relation, 
e = Çl/V + μίρ

ί and ρ = -Ω/V. Applying the Hugenholtz-van Hove theorem 
[32], the Fermi surfaces are given by E*(kFi) = ^k2

Fi + mf = μ* . 

7 Nuclear matter 

Here we discuss how the parameters of the effective model are fixed to vacuum 
and nuclear matter ground state properties. Furthermore predicted observ­
ables will be discussed. 

7.1 Fixing of parameters 

The elements of the matrix Av are fixed to fulfill the PCAC-relations of the 
pion and the kaon, respectively. Therefore, the parameters of the chirally in­
variant potential, &o and h%, are used to ensure an extremum in the vacuum. As 
for the remaining constants, h$ is constrained by the r/-mass, and k\ is varied 
to give a σ-mass of the order of πισ = 500 MeV. The VEV of the gluon conden­
sate, χο, is fixed to fit the binding energy of nuclear matter co/p — πΐχ — —16 
MeV at the saturation density p0 = 0.15 fm - 3. The VEV of the fields σ0 and 
ζο are constrained by the decay constants of the pion and the kaon, respec­
tively, see (43). As stated before the coupling constant of the baryons to the 
scalar mesons are fitted to the experimental values of their vacuum masses. 
The coupling constant of the spin-1 mesons to the spin-| baryons is chosen to 
ensure that the nuclear matter ground state pressure vanishes. The coupling 
of the baryon resonances to the spin-1 mesons will be discussed in (9). 

7.2 Vacuum and nuclear matter properties 

We will mainly concentrate on the results obtained using three different pa­
rameter sets: 

• G\\ frozen glueball, baryon masses without additional symmetry breaking 
• C2'. frozen glueball, baryon masses including additional symmetry breaking 
• C3: non-frozen glueball, baryon masses like C\ 

The values of the parameters can be seen in Table 4. 

The hadronic masses in the vacuum have reasonable values for all fits (Table 
2 and 3). 
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Table 4 
Parameters of the fits (see text) 

Ci 

c2 

Cz 

ko 

2.37 

2.36 

2.35 

ki 

1.40 

1.40 

1.40 

k2 

-5.55 

-5.55 

-5.55 

k3 

-2.65 

-2.64 

-2.60 

k3m 

0 

0 

0 

k4 

-.23 

-.23 

-.23 

335 

2 

2 

2 

According to Table 3, the values of the effective nucléon mass and the com­
pressibility in the medium (at pQ) are reasonable. To obtain these values the 
inclusion of a quartic term for vector mesons (see (33)) was necessary. Table 3 
shows the nucléon and Lambda potential in saturated nuclear matter, which 
are in good agreement with extrapolations from binding energies in nuclei. 
Using different forms for the mesonic potential one can obtain other successful 
models for the description of nuclear matter and finite nuclei. This has been 
done for the Minnesota model [5] and the Walecka model in [15]. 

8 Nuclei, Hypernuclei 

As was pointed out in [33], reproducing the nuclear matter equilibrium point 
is not sufficient to ensure a quantitative description of nuclear phenomenology. 
For this, one has to study the systematics of finite nuclei. To apply the model 
to the description of finite nuclei, we also adopt the mean-field approximation. 
Compared to nuclear matter one has to take additional terms into account for 
the description of finite nuclei. 

• since one considers now finite system, the spatial derivatives of the fields 
have to be taken into account 

• since the system is not isospin symmetric anymore, the expectation value 
for the p-meson does not vanish anymore 

• electromagnetic interactions have to be taken into account 

This leads to the following additional terms for the Lagrangian: 

^ = -itf7iV*tf-i Σ VipVWi (56) 
φ—σ,ζ,χ,ω,ρ,Α 

9NpT3po + - e ( l + r 3 ) 4 ) Nvi , (57) C'BV = -ΛΓ70 

Cc = & y + yi(6tüV + P4) • (58) 
A0 
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Table 5 
Bulk properties of nuclei: Prediction (left) and experimental values (right) for bind­
ing energy E/A, charge radius r^, and spin-orbit splitting of Oxygen ( 1 6 0 with 
δρ = P3/2 - Pi/a)j Calcium ( 4 0Ca with 5d S d5/2 - ^3/2) and L e a d ( 2 0 8 Pb with 
δά = 2d5/2 - 2c?3/2) 

1 6 0 4 0 C a 208p b 

E/A Tch δρ E/A xch δά E/A r ^ <5d 

Exp. 

Ci 

c 2 

Cz 

Mi 

M 2 

Wi 

W2 

Wz 

-7.98 

-7.30 

-7.40 

-7.29 

-7.19 

-7.34 

-8.28 

-8.23 

-7.98 

2.73 

2.65 

2.65 

2.65 

2.68 

2.67 

2.63 

2.63 

2.67 

5.5-6.6 

6.05 

5.21 

6.06 

5.60 

5.90 

5.83 

5.84 

5.23 

-8.55 

-7.98 

-8.07 

-7.98 

-7.93 

-8.03 

-8.63 

-8.60 

-8.47 

3.48 

3.42 

3.42 

3.42 

3.45 

3.44 

3.42 

3.42 

3.44 

5.4-8.0 

6.19 

5.39 

6.22 

5.83 

6.08 

5.91 

5.94 

5.45 

-7.86 

-7.56 

-7.61 

-7.54 

-7.56 

-7.61 

-7.71 

-7.75 

-7.72 

5.50 

5.49 

5.50 

5.49 

5.53 

5.52 

5.51 

5.51 

5.55 

0.9-1. 

1.59 

1.41 

1.61 

1.53 

1.58 

1.43 

1.45 

1.33 

The resulting Dirac equation for the nucléon and the equation for the photon 
field are_of the form given, e.g. by Reinhard [34]. The densities ps = (NN), 
PB = (NJQN), p3 = (NjoTsN) can be expressed in terms of the components of 
the nucléon Dirac spinors in the usual way [31]. The set of coupled equations is 
solved numerically in an accelerated gradient iteration following [35]. Without 
changing the parameters of the model, the properties of nuclei can readily be 
predicted. 

The charge densities of 1 6 0 , 40Ca and 2 0 8Pb are quite close to experiment. 
They exhibit relatively small radial oscillations (Figs. 1, 2, and 3), though such 
oscillations are not seen in the experimental da ta 2 . The experimental charge 
densities are from [37], where a three-parameter Fermi model was used 3 . 
The charge radii are close to the experimental values. Figure 4 shows the 
charge form factor of 2 0 8Pb for parameter set C\ in momentum space. For 
small momenta the agreement with experiment [37] is very good, only for 
larger momenta deviations are observable but at the same scale as in the 
nonlinear Walecka model [29]. The binding energies of 1 6 0 , 4 0Ca and 2 0 8Pb are 
in reasonable agreement with the experimental data (see Table 5). Nevertheless 
they are off by approximately 0.5 MeV. To correct this, a direct fit to nuclear 

2 Similar problems exist also for nonchiral models, for a discussion see [33,36] 
3 A more sophisticated model-independent analysis by means of an expansion for 
the charge distribution as a sum of Gaussiane would lead to an even closer corre­
spondence between our results and the experimental data. 
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2.0 2.5 3.0 

r (fin) 

Fig. 1. Charge density for 1 6 0 for the parameter sets indicated in [15]. (C) chiral 
517(3) model. (M) chiral SU(2) Minnesota model. ( W) extended Walecka model. 
The experimental charge density is parameterized with a three-parameter Fermi 
model [37] 

Fig. 2. As for Fig. 1, but for 4 0 C 

properties has to be done [38]. 

As can be seen from Table δ, models d and C2 exhibit a spin-orbit split­
ting that lies within the band of the experimental uncertainty given in [39]. 
The single-particle energies of 2 0 8 Pb are close to those of the Walecka model 
extended to include nonlinear σ3 and σ4 terms [4] or the model [5], both for 
neutrons (Fig. 5) and for protons (Fig. 6). This is encouraging since neither 
the nucleon/scalar meson nor the nucleon/p meson coupling constants can be 
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Fig. 3. As for Fig. 1, but for 2U8Pb 
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Fig. 4. Charge form factor for 2 0 8Pb 

adjusted to nuclear matter or nuclear properties, in contrast to the Walecka 
model [4]. Figure 7 shows the binding energy per nucléon, the two nucléon 
separation energy and the two-nucleon gap for a nucleus with 126 neutrons 
and different numbers of protons (left) as well as a nucleus with 82 protons 
and varying numbers of neutrons. One perceives that the model fitted to infi­
nite nuclear matter properties correctly predicts 208Pb to be a doubly magic 
nucleus. All these results show that a satisfactory description of finite nuclei 
is possible within the chiral SU(2) model fitted to nuclear matter properties. 
Fits to properties of finite nuclei promise to yield even better results [38]. 
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2 

-16 • 

Exp. W, W2 W3 M, M2 C, C2 C3 

Fig. 5. Single paxticle energies of neutrons near the Fermi energy in 2 0 8 Pb. Experi­
mentally measured levels are compared with predictions from various potentials 

8.1 Superheavy nuclei 

Starting from the well-known magic proton and neutron numbers, the question 
for the next, so far unknown, magic numbers is very important. According to 
[40] most relativistic mean field models find the doubly magic nuclei for Ζ = 
120, Ν — 172 and some predict a doubly magic nuclei with Ν = 184 and Ζ = 
120. Fig. 8 shows the binding energy per particle, the two-nucleon separation 
energy and the two-nucleon gap around N=172 and Z=120. The chiral SU(3) 
model predicts Z=114 as a shell closure for a neutron number of 172. One 
detects a peak at a proton number of 120 as well, but this nucleus is beyond 
the drip line. Figure 9 shows the same observables like Fig. 8 but for N=184 
(left) and Z=120 (right). One recognizes two possible magic numbers in that 
region for protons, namely Z=114 and Z=120. The neutron shell closures are 
N=172, N=184 and N=198. These results should only be seen as preliminary, 
since on the one hand an improved fitting to doubly magic nuclei and on 
the other hand the usage of other pair interactions than constant gap pairing 
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Exp. Wj W2 W3 Mi M2 C, C2 C3 

Fig. 6. As for Fig. 5, but for protons 

should yield better results. 

8.2 Hypernuclei 

We want to compare the experimental hypernuclear data with the results ob­
tained using parameter set C\. Table 6 shows the experimental Λ - n-hole 
one-particle-energy differences for the nuclei \2C, \ 60 and J°Ca from [41,42]. 
These values are compared to the results from the chiral SU(3) model us­
ing parameter set C\. One can see that the deviations in the most cases are 
smaller than experimental errors. This is even more remarkable, since the cou­
pling constants g\a and g\u have not been fitted to any hypernuclear data. But 
the inclusion of an explicitly symmetry breaking term was necessary to fix the 
potential depth of a Λ-particle in infinite nuclear matter to UA = -28MeV. 
Table 6 also shows the results for a Walecka model that was extended to the 
strange sector [35]. This model yields even better agreement with experiment, 
but here the coupling constants of the Λ were fitted to hypernuclear data. 
Figure 10 shows energy levels of Λ-hyperons in various nuclei, as a function 
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N=126 Z=82 

Fig. 7. Shell closures around 2 0 8 Pb. (Top) Energy per particle, (middle) 
two-nucleon separation energy and (bottom) two-nucleon gap for different isotones 
with (left) N=126 and (right) Z=82 

of A~3 and these are compared to calculated Λ one-particle levels for nuclei 
with A — 1 nucléons. It can be seen that the results agree well with the ex­
perimental data. Furthermore it can be seen, that all levels converge to the 
point 28MeV for increasing A. From this extrapolation the potential depth of 
the Λ in nuclear matter was first deduced [43]. As a further application of the 
chiral 517(3) model in the strange sector Fig. 11 shows the binding energy of 
baryons in nuclei with different numbers of Λ hyperons. It can be seen that 
with increasing number of A's, the binding energy first decreases and then 
rises again. That is not astonishing, since with adding hyperons a new degree 
of freedom is introduced. The A's are deeper bound than the lowest bound 
nucléons. 
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N=172 Z=114 

-7.0 
110 112 114 116 118 120 122 124 

-6.9 
168 172 176 180 184 188 192 196 200 
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Fig. 8. Superheavy nuclei with Z=114 and N=172. Same observables as in 7 

9 Hadronic matter at high temperature and density 

9.1 Extrapolation to higher densities 

Once the parameters have been fixed to nuclear matter at pQ the condensates 
and hadron masses at high baryon densities can be investigated. 

In Fig. 12 we display the scalar mean fields σ, ζ and χ as a function of the 
baryon density for vanishing strangeness using parameter set C3. One sees that 
the gluon condensate χ stays nearly constant when the density increases, im­
plying that the approximation of a frozen glueball is reasonable. The strange 
condensate ζ is only reduced by about 10 percent from its vacuum expecta-
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N=184 Z=120 

110 112 114 116 118 120 122 124 168 172 176 180 184 188 192 1% 200 
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110 112 114 116 118 120 122 124 168 172 176 180 184 188 192 196 200 
Ν 

Fig. 9. Superheavy nuclei with Z=120 and N=184. Same observables as in 7 

tion value. This is not surprising since there are only nucléons in the system 
and the nucleon-ζ coupling is fairly weak. The main effect occurs for the non-
strange condensate σ. The field has dropped to 30% of its vacuum expectation 
value at 4 times normal nuclear density. If we extrapolate to even higher den­
sities one observes that the σ field does not change significantly, that means 
all fields saturate around 4 p0 Since the baryon masses are generated by the 
condensates σ and ζ, the change of these scalar fields causes the change of 
the baryon masses in medium. The density dependence of the effective spin-| 
baryon masses is shown for C\ in Fig. 13. When the density in the system 
increases, the masses drop significantly up to 4 times normal nuclear density. 
This corresponds to the above mentioned behavior of the condensates. Fur­
thermore, one observes that the change of the baryon mass depends on the 
strange quark content of the baryon. This is caused by the different coupling 

197 



Table 6 
Experimental Λ-n-hole one-particle-energy-gaps of the nuclei \ 2C, \ 6 0 and j^Ca, 
compared to calculations in the Walecka model [35] and parameter set C\ of the 
chiral ST/(3)-model. The experimental data was obtained from excitation spectra 
from [41,42] 

Kern Niveaus 

Experiment Walecka model C\ prediction 

E AE E AE E AE 

i2c 

\6o 

i°Ca 

(l«l/2, 1ί>3/2)Λη 
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Fig. 10. Energy levels of Λ-hypernuclei as a function of A " compared to experiment 
[43]. The energy levels converge to the value -28MeV for the potential depth of the 
Λ in nuclear matter 
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of the baryons to the non-strange and strange condensate. Figure 14 shows 
the masses of the vector mesons. They are predicted to stay nearly constant 
if the density increases. As a further approximation we show in Fig. 15 the 
nucléon and anti-nucleon potentials as a function of density . Here one can 
see the very important influence of the quartic vector meson self-interaction. 
Including this term, the anti-nucleons become overcritical at densities around 
l2pQ. If the ω4 term is neglected anti-nucleons already become critical for 
ρ « 5ρο· But since this term is essential for the chiral SU(3) model to obtain 
reasonable values for the effective nucléon mass and the compressibility, this 
model predicts overcriticality only at very high densities. 

Now we want to discuss the inclusion of baryonic spin-| resonances and how 
these effect the behavior of dense hadronic matter. For the following inves­
tigations we consider the two parameter sets C\ and C2, which satisfactorily 
describe finite nuclei (Sec. 8). As stated before, the main difference between 
the two parameter sets is the coupling of the strange condensate to the nu­
cléon and the Δ. While in C2 this coupling is set to zero, in the case of C\ the 
nucléon and the Δ couple to the ( field. This leads to very different predictions 
for the behavior of dense nuclear matter. In the RMF models both coupling 
constants of the Δ-Baryon are freely adjustable. They can be constrained by 
the fact, that there that should be, e.g. no A's in the ground state of normal 
nuclear matter and a possible second minimum in the nuclear equation of state 
should lie above the saturation energy of normal nuclear matter. Furthermore 
QCD sum-rule calculations suggest, that the net attraction for A's in nuclear 
matter is larger than that of the nucléon. From these constraints one can ex­
tract a 'window' of possible parameter sets <?Δσ, g^u [44]. If the masses of the 
resonances are generated dynamically by the scalar condensate, like in the chi-
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Fig. 12. Scalar condensates σ, ζ and χ as a function of the baryon density for zero 
net strangeness 

Fig. 13. Effective baryon masses as a function of the baryon density for zero net 
strangeness 

ral model, then this coupling constant can be fixed. The vector coupling stays 
unfixed, but using the constraints from above one gets only a small region of 
possible values for g&u. In Fig. 19 we varied the Δ — ω coupling to show the 
possible range for this value. In all other figures the ratio of the Ν—ω coupling 
to the Δ — ω coupling is set to one. In Fig. 16 we show the equation of state 
for nuclear matter with and without the Δ-baryons for different parameter 
sets. One sees that around two times normal nuclear density the resonances 
influence the equation of state. But the strength of the influence depends on 
the strength of the coupling of the nucléon to the strange condensate ζ. This 
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Fig. 15. Nucléon and anti-nucleon energy at ρ = 0 as a function of baryon density. 
On the left hand side parameter set C\ was use, while on the right hand side the 
coupling constant g4 for the quartic vector meson interaction was set to zero 

can be understood from Fig. 17 where the ratio of the effective Δ-mass to the 
effective nucleon-mass is displayed. If there is no coupling of the nucléon to 
the ζ field (C2), the mass ratio stays constant but if the nucléon couples to the 
strange condensate (Ci) the situation changes. If one now looks at the ratio 
of the effective masses, Fig. 17, one sees that the ratio increases with density. 
That means the nucléon feels more scalar attraction than the Δ, which leads 
to reduced Δ production, as shown in Fig. 18. In Fig. 19 we vary the Δ — ω 
coupling strength so that the ratio rv = g&u/9Nu> is changed. One observes 
that a smaller value for this ratio leads to higher Δ-production, since they 
feel less repulsion, an this leads to an increasingly softened equation of state. 
The minimal value for rv is fixed by the constraint, that the second possible 
minimum in the EOS should not be lower than normal nuclear matter ground 
state. This implies the minimal value rv = 0.68 for C\ and rv — 0.91 for 
C2. Here one needs further experimental or theoretical constraints to fix this 
coupling. 
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9.2 Extrapolation to finite temperatures 

The extrapolation to finite temperatures is straight forward by using the grand 
canonical ensemble. Now the scalar densities p\ and the vector density pi have 
the form 

d3k 
= ri — m; 

(2π)3 Et + exp (Et - μξ)/Τ + 1 exp {Et + μ?)/Γ + 1. 
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These have to be calculated numerically and inserted in the field equations 
(45) to determine the mesonic fields, the grand canonical potential and the 
thermodynamic quantities for given temperature and chemical potentials. 

In Fig. 20 we show the behavior of the strange and non-strange condensates 
as functions of temperature for vanishing chemical potential with and without 
baryon resonances. One sees the important influence of the additional degrees 
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Fig. 20. Chiral condensates as a function of temperature for vanishing chemical 
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of freedom, since through the inclusion of the resonances the way how the chiral 

condensates change at high Τ are different. In the case that no resonances are 

included, one observes a smooth transition to small expectation values of the 

condensates, while for the case of included resonances both scalar fields jump 

to lower values. This is due to the much larger amount of degrees of freedom 

which accelerate the process of dropping condensates and increasing scalar 

density, which leads to further dropping condensates and again increasing 

scalar density. This scenario finally leads to a first order phase transition 

(actually there are two transitions, one for each scalar field, but they are in 

such a small region, that we will speak only of one transition). The resulting 

hadron masses as a function of temperature are shown in Figs. 21 and 22. As 

a final application we use the obtained temperature and chemical potentials 

for S + Au collisions at an energy of 200 AGeV as obtained from a thermal 

model [45] an insert these to obtain the resulting particle ratios. The results in 

the chiral model, compared to the thermal model and the experimental yields 

are shown in Fig. 23. The resulting deviations are enormous. The change of 

the masses in the hot and dense medium (especially the baryon masses) leads 

to drastically altered particle ratios, and this raises the question whether at 

temperatures of more than 150 MeV the thermal model assumptions may be 

valid. 
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10 Conclusions 

We reviewed the construction and application of an effective chiral SC/(3) 
model, which is based on QCD symmetries, namely chiral symmetry and 
scale invariance. The masses of the hadrons are generated by chiral conden­
sates through the principle of spontaneous symmetry breaking. Only the pseu-
doscalar mesons (Goldstone bosons) acquire their mass by explicit symmetry 
breaking. Most of the meson-meson and baryon-meson coupling constants are 
constrained by some hadrons masses and basic nuclear matter saturation prop­
erties. As has be shown, this leads to a model, that offers the possibility to 
reproduce the full range of hadron masses and predict the properties of finite 
nuclei and excited nuclear matter. Since the model incorporates the SC/(3) 
hadronic multiplets the extrapolation the calculations into the strange sector 
is straight forward for all cases. The quantitative results for finite nuclei are 
being improved by a direct fit to finite nuclei. Further studies are under way 
to investigate the influence of the predicted behavior of hot and dense nuclear 
matter on observables in relativistic heavy ion collisions. 
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A Appendix 

The SU(3) matrices of the hadrons are (suppressing the Lorentz indices) 

aö {-a°0 + a)y/2 κ° , (A.l) 

κ- κ? ζ 

Χ = -τ=σ" α λ α = 
y/2 

\ J 

p = 7 T t t A V l (Α.2) 
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( ι ivo » *8 λ π 
κ + \ 

AH + 

Ζ ui+l 
Ζ «Η-1 

ν = 72ναχ° 

Β = ^ 6 · λ 0 = 

Ρο+ 

2 

) 2 

~ ν/1+2 «^ / 

ω+1 

Α: 0 

\/l+2u; 2y " w+1 

» ν/2 

Pô (~PI + U)IS/2K* 

Κ 

( Σ° + Λ^ 

Σ 

V Ξ 

κ*° Φ ) 

ν/2 + Ve 
Σ+ 

Σ° , Λ° 

~72^7& 

Ρ 
\ 

- 2 Λ° 
VeJ 

(Α.3) 

(Α.4) 

(Α.5) 

for the scalar (X), pseudoscalar(P), vector (V), baryon (B) and similarly for 

the axial vector meson fields. A pseudoscalar chiral singlet Y = y 2/37701 can 

be added separately, since only an octet is allowed to enter the exponential 
(14). 

The notation follows the convention of the Particle Data Group (PDG) [46], 
though we are aware of the difficulties to directly identify the scalar mesons 
with the physical particles [47]. However, note that there is increasing evi­
dence that supports the existence of a low-mass, broad scalar resonance, the 
a(560)-meson, as well as a light strange scalar meson, the «(900) (see [48] and 
references therein). 

The masses of the various hadrons are generated through their couplings to the 
scalar condensates, which are produced via spontaneous symmetry breaking 
in the sector of the scalar fields. Of the 9 scalar mesons in the matrix X only 
the vacuum expectation values of the components proportional to λο and to 
the hypercharge Υ ~ λ8 are non-vanishing, and the vacuum expectation value 
(X) reduces to: 

(X) = ±(σ°\0 + σ8λ8) = diag(^ , ^ , ζ) , (A.6) 

in order to preserve parity invariance and assuming, for simplicity, SU(2) 
symmetry4 of the vacuum. 

4 This implies that isospin breaking effects will not occur, i.e., all hadrons of the 
same isospin multiplet will have identical masses. The electromagnetic mass break-
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