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Super-Kamiokande neutrino oscillations and 
the supersymmetric model 

Amand Faessler 

Universität Tübingen, Institut für Theoretische Physik, D-72076 Tübingen 
Germany 

Abstract 

The standard model predicts a ratio of 2 for the number of atmospheric muon 
to electron neutrinos, while super-Kamiokande and others measure a much smaller 
value (1.30±0.02 for super-Kamiokande). Super-Kamiokande is also able to measure 
roughly the direction and the energy of the neutrinos. The zenith-angle dependence 
for the muon neutrinos suggests that the muon neutrinos oscillate into a third neu­
trino species, either into the r neutrino or a sterile neutrino. This finding is inves­
tigated within the supersymmetric model. The neutrinos mix with the neutralinos, 
this meaning the wino, the bino and the two higgsinos. The 7 x 7 mass matrix is 
calculated on the tree level. One finds that the mass matrix has three linearly de­
pendent rows, which means that two masses are zero. They are identified with the 
two lightest neutrino masses. The fit of the super-Kamiokande data to oscillations 
between three neutrinos yields, together with the result of supersymmetry, that the 
third neutrino mass lies between 2 χ IO - 2 and I O - 1 eV. The two lightest neutrino 
masses are in supersymmetry on the tree level zero. The averaged electron neutrino 
mass which is the essential parameter in the neutrinoless double-beta decay is given 
by {mve) ~ mU3Pze < 0.8 χ IO - 2 eV (95% confidence limit). It is derived from the 
super-Kamiokande data in this supersymmetric model to be two orders smaller than 
the best value (1 eV) from the neutrinoless double-beta decay. 

1 Introduction 

Five hundred and fifty years before Christ, Empedokles from Agragas in Sicily 
(today Agrigento) came up with the idea that there are four elements: earth, 
water, air and fire. In addition he had two forces, an attractive force φιλία 
(friendship) and a repulsive force νεϊκος (hate). Two hundred years later Aris­
toteles supplemented the four elements by a fifth one, the ether, which accord­
ing to him fills the spheres beyond the Moon. According to his understanding 
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there could be no vacuum and thus he needed a 'quinta essentia'. Qualita­
tively this picture explained many things and gave a rational unified view of 
our world, although we would say today that this hypothesis was not correct. 
This model of our universe and the forces in it survived 2000 years and was 
the official standard model in medieval times. 

Newton made a decisive step forward in 1687 in his Principia. He was the 
first to assume that the forces in Heaven are the same as those on Earth. 
The famous story with the Moon and the apple illustrates this fact. Even if 
it might not be true, it is well invented: while an apple was falling down in 
Newton's garden he had the idea that the same force which keeps the Moon in 
orbit around the Earth is also responsible for the apple falling from the tree. 

Maxwell unified the electric and magnetic forces into a single force. He showed 
that it depends only on the reference frame if we call something an electric 
or a magnetic field. A charge at rest has only an electric field, while the same 
charge in another reference frame, in which it is moving, has also a magnetic 
field. Since Maxwell we speak of electromagnetic forces. 

In 1968 Glashow, Salam and Weinberg unified the electromagnetic forces of 
Maxwell and the weak interaction of Fermi into the electroweak forces. 

Since the 1970s one formulates grand unified theories which treat the elec­
troweak and the strong forces of quantum chromodynamics (QCD) as a single 
force. There exists a large variety of grand unified theories which describe the 
known data. High-precision experiments at low energies like double-beta de­
cay or extremely high energy experiments are needed to distinguish between 
the different theories. 

The last force, gravitation, might be also included in a unification in super-
symmetric models. At least there are steps in this direction. A generalization 
of supersymmetric models from a global gauge theory into a local gauge the­
ory is called supergravity. This might be a way to quantize general relativity 
and include all forces. 

The neutrino plays an important role in testing grand unified theories and 
supersymmetric models. Indeed the neutrino was always an interesting par­
ticle, since it was proposed by Wolfgang Pauli in a famous letter from 4th 
December 1930 which he wrote from Zürich to a conference of the German 
Physical Society on radioactivity at Tübingen. This well-known letter starts 
with: "Sehr geehrte radioaktiven Damen und Herren" (Dear radioactive ladies 
and gentlemen). In this letter Pauli proposes the existence of a 'neutron' to 
conserve energy and angular momentum in beta decay. 
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2 Neutr ino Oscillations 

If the neutrinos are massive, the 'mass eigenstates' must not be identical with 
the 'weak eigenstates', in which the different neutrinos are created. In the 
standard model we have for each of the three families a neutrino: ue, νμ and 
vT. The mass eigenstates ẑ i, z/2 and z/3 are connected with the weak eigenstates 
ve-, ν μ, VT by a unitary transformation 

U\e ϋ\μ U\τ 

U2e ^2μ V^r 

\ Uze υ3μ U3r J 

',Λ 
(i) 

The neutrinos are created in a weak eigenstate ve, νμ or lif, but they propagate 
in the mass eigenstates. If we consider for a moment only two neutrinos and 
invert (1) using unitarity, we obtain 

cos ΰ — sin ΰ ' 

sintf costf ι 

νμ(ϊ) = COS^|Ì>2) exp(ipr - iE2t) — sini9|z>3) exp(ipr - iE3t) , 
(2) 

E2 = y]p2 + ml2 « p + ^ f , 

E3 = ^ + < « ρ + γ · 

The probability to find a τ neutrino after the distance L, if a μ neutrino is 
created, is given by the overlap of the r neutrino wave function at time t = 0 
and the μ neutrino wave function at t = L/c 

V>r(* = L/c) = \(ur(t = 0 ) M « = L/c)>|2 

1.27Am2(eV)L(km) 
= sin^(2tf)sm2 

&, (GeV) 
(3) 

with Δ?τΐ32 m? mi 
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3 Atmospheric Neutrinos 
and the Super-Kamiokande Experiment 

Cosmic rays bombard the atmosphere of the Earth with protons and nuclei 
with energies up to 1020 eV. These particles interact strongly and produce 
specifically very many pions in the atmosphere 

7Γ — • μ + νμ , 

μ -> e + νμ + ve , (4) 

The standard model predicts therefore for the ratio of muon to electron neutri­
nos a value of 2. Experimentally this ratio is found to be much lower. The best 
value of 1.30 ± 0.02 is obtained from the super-Kamiokande experiment [1]. 
But super-Kamiokande cannot only measure the ratio of μ to e neutrinos; it 
can also determine roughly the direction and the energy of the different neutri­
nos. The detector consists of a cylindrical cavity in a mine with 60 000 tons of 
very pure water, 35 meters high and 35 meters in diameter. An inner cylinder 
with 25 000 tons of water is used as the real detector. The inside of this inner 
cylinder is lined with more than 11000 photomultiplier tubes (PMTs), each 
50 cm in diameter. The outside of the inner cylinder is optically shielded and 
is used to eliminate background produced by beta-decay of neutrons, emitted 
from nuclei in the wall of the cavity by high-energy muons from the cosmic ra­
diation, which penetrate through the mountain. The detection of the electron 
and muon neutrinos and antineutrinos is done using the Cerenkov radiation 
of the relativistic electrons, positrons and muons from the inverse beta decay 

Ve + ρ —y η + e+ , 

ve + η —• ρ + er , 

ν μ. + Ρ —• η + μ+ , 

ι/μ + η —• ρ + μ' . 

Electrons and muons can be distinguished by the muon and the electron 
Cerenkov rings. The direction of the electrons and muons is within 10 to 
20 degrees identical with the direction of the neutrinos. The size of the rings 
and the total light output allow us to determine the energy of the neutrinos. 
The results are shown in Fig. 1 as a function of the zenith angle Θ, where 
θ — 0 corresponds to neutrinos from above and θ — ±180 degrees to neutri­
nos from below, which were formed somewhere over the South Atlantic and 
traveled through the Earth to Japan. Figure 1 shows for the electron neutri-
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Fig. 1. Zenith-angle distribution of μ and e neutrino events for sub-GeV and 
multi-GeV data sets. The zenith-angle is given as coso, coso = 1 means neutrinos 
from above with a short path from about 10 to 20 km created in the atmosphere. 
Kamiokande neutrinos produced by cosmic radiation over the South Atlantic, which 
travel through the Earth to Japan, have coso = — 1. The sub-GeV events are di­
vided into the ones below 400 MeV/c and the ones above 400 MeV/c. The electron 
neutrinos for multi-GeV events are divided into the ones below and the ones above 
2.5 GeV/c. All muon neutrino-like events fully contained in the inner counter are 
shown in the third position in the lower row. The last figure in the lower row shows 
muon-like events ('μ neutrinos') which are not fully contained in the inner counter 
volume. Monte Carlo expectation for no oscillations with statistical errors {hatched 
region). Best-fit {bold line) for μ neutrino to τ neutrino oscillations with an overall 
flux normalization fitted as a free parameter 

nos practically no deviation from a Monte Carlo simulation without neutrino 

oscillations. For the muon neutrinos ('μ-like' events), already one sees below 

0.4 GeV/c a depletion, which may indicate that at this low energy muon neu­

trinos from all directions oscillate to τ neutrinos (or to a sterile neutrino). 

Between 0.4 and 1.0 GeV/c one sees clearly that there are more μ neutrino 

events from above than from below, especially if one compares with Monte 

Carlo expectations. The same is true for the fully contained events above 1 

GeV/c and also for the partially contained μ neutrino events. This behavior 

is made clear in Fig. 2. A two-neutrino fit to the data as indicated in (2) and 

(3) yields the following results 

sin2 2ΰ > 0.82 , 

5 χ IO" 4 < Arn 2 = m 2 - m\2 < 6 χ IO" 3 (eV2) 

(6) 

The results are graphically shown in Fig. 3. Barger, Weiler and Whishnant 
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did a three-neutrino analysis of the super-Kamiokande data [2]. The unitarity 

of the transformation matrix (1) requires 

Pu=\Uu\2\ Ρ3μ = \υίμ\
2\ P3T = |[/3r|2; 

(7) 

P$e + Ρζμ + Pzr = 1 · 

Here Ρ 3 μ signifies the probability that the third mass eigenstate is a μ neutrino. 

The analysis of [2] is shown in Fig. 4. The 95% confidence limit indicated in 

ν 6 , ν μ 

/^ 0 Karnìòicande 

/ / I N, \ 

{ / EARTH \ | 

\ νμ-ντ Γ 

ν6,νμ 

Fig. 2. Schematic drawing of the Earth with the super-Kamiokande detector in the 
upper part in a mine about 2 700 m of water equivalent below the mountains. The 
counter is a cylinder with 60 000 tons of purest water, 35 meters high and 35 meters 
in diameter. An inner cylinder with 25 000 tons of water is optically shielded from an 
outer area. This inner cylinder is lined with more than 11000 photomultiplier tubes 
(PMTs) with a diameter of 50 cm. The PMT's measure the Cerenkov radiation 
from the relativistic electrons and muons. The light output and the opening angle 
of the Cerenkov cone give the energy. The Cerenkov ring determines the direction. 
Cerenkov rings from muons are more clearly defined, while the ones from electrons 
are more smeared out. Due to the long flight path of the neutrinos transversing the 
Earth, the muon neutrino can oscillate away. Since they do not appear as electron 
neutrinos, they must either oscillate to τ neutrinos, or to a sterile neutrino 
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Fig. 3. The 68%, 90% and 99% confidence limits axe shown for a Am2 and sin2 (20) 
plot for μ to τ two-neutrino oscillations, based on the super-Kamiokande data. The 
lines are inclusion plots. The limits are given in (6). The super-Kamiokande data 
are more trustworthy 

Fig. 4 can also be given as numbers 

0.5 x KT 3 < δτη2

32 < 10 χ 10~3 (eV2) , 

0 < P 3 e < 0.08 , 

0.25 < Ρ 3 μ < 0.75 , 

0.25 < P 3 r < 0.75 

(95% confidence limit ) . 

(8) 

The probability that the third neutrino mass eigenstate mv% is the electron 
neutrino is most likely zero with an upper limit of 0.08. Due to the unitarity 
(7) P 3 T must be 0.75 if Ρ 3 μ is 0.25. In general the sum of all three probabilities 
must be unity. 
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Fig. 4. Three-oscillation fit [2] to the super-Kamiokande data. The plot shows the 
95% confidence limit for the probability that (a) the third mass eigenstate is an 
electron neutrino Pse, that the third mass eigenstate is a muon neutrino Ρ^μ, (b) 
the overall flux normalization for ao = 1.16 and (c) the difference of masses squared 
5m| 2 = (m\ — raj) (eV2). Additional exclusions (dashed area) by the CHOOZ neu­
trino-oscillation experiment [3] 

4 Supersymmetry and Neutr ino Oscillations 

Supersymmetry (SUSY) was invented to reduce the divergence of the mass 

of scalar bosons from a quadratic dependence on the cut-off mass to a loga­

rithmic dependence. It also helps to solve the hierarchy problem: it fills the 

gap between the electroweak mass scale of about 100 GeV and the Planck 

mass of 101 9 GeV. Supersymmetry puts bosons and fermions into one mul­

tiplet (see Table 1). Several books [4,7] and review articles [5,6] exist about 

supersymmetry. 

In the minimal supersymmetric model each particle of the standard model 

has its SUSY partner. For example the weak doublet of the electron neu­

trino and the electron in the first lepton family gets as partners a sneutrino 

(s-neutrino) and a selectron (s-electron). For scalar particles like the Higgs 

doublet (h& h^) one can get the antiparticles by Hermitian conjugation. For 

the supersymmetric multiplet including higgsinos, this is not possible, since 

the higgsinos are fermions. Thus we have a second multiplet and both are 
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Table 1 
Properties of bosons and fermions, which supersymmetry puts into one multiplet. 
Since the properties of these two objects are so different, it took a long time to find 
out that there exist generators of groups which allow bosons and fermions to be put 
into one multiplet 

Bosons \B) Fermions \F) 

Integer spin Half-Integer spin 

Tensor Spinor 

Commutator Anti-commutator 

BiB2 - B2BX = 5(1,2) F±F2 + F2Fi = <5(1,2) 

Bose statistics Pauli principle 

Carrier of forces Matter particles 

Have classical limit Quantum object 

Q+\B)a\F) Q-\F)a\B) 

extended to supermultiplets (9) 

(»Λ <*Λ 

£ ι = 
e 

Vi 

; L2 = L3 = 

U\ 
τ 

Qi 

Hu = 

d 

ü 

\H°J 

Qi 
S 

C 

κ 

Q3 = 
b 

i 

Hd = (m) 
(h°d\ 

(9) 

In addition to the lepton and quark doublets, which are extended to quartet 

superfields for the leptons Li(i = 1,2,3) and for quarks g*(i = 1,2,3) one has 

also singlets, which in case of massless fields would be right handed. In the 
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case of the minimal sup er symmetric model (MSSM) they contain only e , μ' 
and r~ and the quarks d, s and b 

; Ει, = Γ ; ft. = (io) -Eis = 

and corresponding superfields for the d, s, ò quarks, which we write as As · 
The S indicates that it is a singlet with respect to particles and with respect 
to SUSY particles separately. SUSY particles are, in the above superfields, 
always indicated by a tilde. The superfields are written as capital letters. 

The potential part of the minimal supersymmetric Lagrange density must 
always contain two superfields and a standard-model field, so that the R-
parity is conserved (the R-parity is given as +1 for an even number of SUSY 
particles or as —1 for an odd number of SUSY particles) 

^MSSM = MjLiHdEj, + hfjQiHdDjs + h%QiHjJja + μΗά · Hu . (11) 

The bar indicates the conjugate superfields and the indices i,j run over the 
three families, while s indicates the singlet. The two Higgs superfields Hu and 
Hd are defined in (9). The gauge bosons and their SUSY partners are contained 
in the kinetic energy in the covariant derivative. The SUSY partners of the 
gauge bosons are called photinos (7), zinos (Z°), winos (W+/~, W°) and binos 
(B°). The terms are constructed so that the Lorentz structure is guaranteed 
and that hypercharge is conserved. The lepton superfields Li have for example 
hypercharge Y = — 1 while the singlets Eja have hypercharge Y = — 2. The 
conjugate fields have naturally opposite hypercharge. The quark superfields 
Qi have hypercharge Y = 1/3 and the singlet quark fields DjS have Y = — 2/3. 
The hypercharge of the Higgs superfield Hu is Y = 1 and for Hd it is Y = — 1. 
R-parity conservation in (11) guarantees that the number of SUSY particles 
stays either always even or odd. 

R-parity-violating terms violate supersymmetry. One divides the R-parity-
violating potential part of the Lagrange density into those terms which contain 
one SUSY field only (Wg) and into those which contain three SUSY fields (Vç) 

Wjjip — -XijkLiLjEks + XijkLiQjDks 

^n\jkUis-Djs-Dks + %iLi • H.u , 

VÇP =KjkLiL3E
z
ks 
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+ßljLjHu + ßdjLjH2 (12) 

The upper index c at SUSY fields indicates the conjugate field. The standard-
model Higgs field hd has a finite vacuum expectation value, by which the 
vector bosons of the weak interaction get a mass (Higgs mechanism). In su-
persymmetry we now have two Higgs doublets with finite vacuum expectation 
values which might be different 

<*·> = 

(hä) = 

Κ 
hi 

Κ 

(13) 

The parameters of the Lagrange density (11) and (12) can now be such that 
this finite expectation value of a Higgs field leads to a finite vacuum expecta­
tion value of the sneutrino fields 

VD = -dû + fü2 , 

(14) 

This finite sneutrino expectation value now allows that all neutral particles 
with spin-1/2 can mix with each other. These particles are the three neutrinos 
and the neutralinos (wino, bino and the two higgsinos h°u, hd) 

(i/e, ym vTi W\ B\ h% hi) (15) 

Figure 5 shows the tree diagrams for this mixing. The loop with the finite 
vacuum expectation value of the sneutrino (z>) is counted as a tree diagram, 
since the sneutrino finite expectation value acts like an outside potential. 

The structure of the mass matrix from the above neutrino and neutralino 
mixing is the following 

Mn = 
0 m 

mT Mv 
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M 

Mx = 

' MzSwCßve MzCwCßve Ο -μηβ * 

-Μ^ΟβΌμ MzCwCßvß Ο -μημ 

\y-MzSwCßVT MzCwCßVT Ο -μητJ 

( Md Ο -MzSwCß M2SwSß \ 

Ο Mu MZCWC0 -MzCwSß 

-MzSwCß -MzCwSß -μ Ο 

\̂  M2SwSß -MzCwSß -μ Ο y 

(16) 

where 

tanß = (hl)/(h°d), Sw = s i n ^ , 
Cry = cos t?w , 5^ = sin /? , Cß = cos β , 

vi = (üi)/(h°d) = (ui}/b<^li 

Ui = μϊ/μ <C 1 . 

M0 of (16) is the mass matrix. Its upper left element is the neutrino-mass 
matrix, which is identically zero, and in the off-diagonal position we have 

W 

Ο 
V V V 

ve ? VLI ? ν τ 

Β 

Ο 
*e 9 *μ 5 Yc 

h°u 

ν ν ν 
ve ? νμ ? ν τ 

h° d 

|-1ε5(-1μ>|1τ 

Fig. 5. Tree diagrams for the mixing of the three neutrinos with the neutralinos 
(wino, bino and the two higgsinos). The loop with the finite vacuum expectation 
value of the sneutrino is counted as a tree diagram, since it acts like an outside po­
tential. The selection rules can partially be understood by hypercharge conservation 
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the mixing between the neutrinos and the neutralinos in the sequence (wino, 
bino, down-higgsino, up-higgsino) = (W°, B°,hd, Sj); The quantities in the 
mass matrix are the Z° mass Mz and the higgsino masses Md,Mdi the Wein­
berg angle t V and the angle β defined as the tangent of the ratio of the 
finite vacuum expectation values of the neutral up- and neutral down-Higgs 
particles. 

In our work [8] we realized that the mass matrix Mo has three linearly depen­
dent rows and therefore two mass eigenvalues are zero. This is independent of 
the details of the parameters apart from using a finite vacuum sneutrino ex­
pectation value (ve) and an expansion in the quantities which are assumed to 
be small in (16). The coupling constants μι and μ are defined in (11) and (12). 
The linear dependence of three rows of the mass matrix yields two masses 
to be identically zero. We identify these masses with the two lowest mass 
eigenstates of the neutrinos. So on the tree level we have the masses 

mUl = 0; mV2 = 0; mU3 φ 0 . (17) 

Naturally the zero masses for the first two neutrinos are modified if the loop 
corrections are included. 

If we now use the result of the super-Kamiokande Collaboration (8), we can 
immediately extract from δτη^ the limits for the mass of the third neutrino. 
One can now also derive the parameter for the 'averaged' electron neutrino 
mass, which is the quantity relevant for the zero neutrino double-beta decay 

2 χ 1CT2 eV < mV3 < IO - 1 eV , (18) 

3 

(mve) = ]Tm^|£/ i e |
2. (19) 

issi 

The sum runs over the three neutrino families. If one has a left-right symmetric 
model from grand unification, the sum goes over three light and three heavy 
right-handed neutrinos. Here we assume that the mixing coefficients between 
the light and the heavy neutrinos are so small that they can be neglected 
or that we have only left-handed neutrinos. The quantity & is the CP (C = 
charge conjugation; Ρ = parity) relative phase. If only one mass of a neutrino 
is different from zero, this relative phase can be chosen to be £3 = 1. Thus we 
get from (19) an expression for the 'averaged' electron neutrino mass 

(m„e) = mvz\UZe\
2 = mViPZe < 0.8 χ 10"2eV 

(20) 

(95% confidence limit) . 
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This limit is by two orders of magnitude more stringent than the limit derived 
from zero neutrino double-beta decay which is presently at around 1 eV 

Ou β β decay : (mue) < 1 eV . (21) 

It is interesting to see in (20) that the averaged electron neutrino mass is 
essentially determined by the third mass eigenstate. It is only so small due to 
the fact that the probability of the third mass eigenstate being an electron 
neutrino is less than 0.08 according to the super-Kamiokande data (8). 

5 Summary 

We started out by discussing atmospheric neutrinos produced by cosmic ra­
diation. They are created by the decay of pions from the interaction of the 
cosmic rays with the atmosphere. The pions decay in about 10~8 s to a muon 
and a μ neutrino and the muon again into an electron, a μ neutrino and an 
e neutrino, where the particle or antiparticle character depends on whether 
one starts with a positive or a negative pion. The ratio of μ neutrinos to e 
neutrinos should be 2. But experiments show that the ratio lies somewhere 
between 1 and 1.4. super-Kamiokande finds a ratio Ννμ/Ν^β = 1.30 ± 0.02. 
But super-Kamiokande can also measure roughly the energy and the direc­
tion of the neutrinos. One finds that the muon to electron neutrino ratio is 
larger for neutrinos coming from above (zenith angle = 0) than the ratio for 
neutrinos coming through the Earth from below. This is explained by the fact 
that due to the long path of the neutrinos coming from below, the μ neutri­
nos with L « 13 000 km can oscillate away into τ neutrinos (or into a sterile 
neutrino). The fit to the super-Kamiokande data allowing oscillations between 
two neutrino species yields the result (8). The third neutrino mass state has 
practically no overlap with the electron neutrino, but large overlaps of about 
50% each with μ and r neutrinos. 

Supersymmetry allows us to mix the three neutrino states with the neutralinos 
(wino, bino, down-higgsino, up-higgsino). This 7 x 7 mass matrix has three 
linearly dependent rows and therefore yields two neutrinos with masses zero. 
Only the third mass eigenstate of the neutrinos is, on the tree level, different 
from zero. The third mass eigenstate lies between 2 χ 10~2 eV and 10_ 1 eV. 
The 'averaged' electron neutrino mass (19) which plays a decisive role in the 
neutrinoless double-beta decay, is less than 0.8 χ IO"2 eV (see (20)). The limit 
from the neutrinoless double-beta decay is today around 1 eV, which is two 
orders of magnitude less stringent. 

One could ask if the super-Kamiokande result is not affected by the Mikeyev-
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Smirnov-Wolfenstein effect of neutrino oscillations in matter. First, the den­
sity of the Earth is much less than in the Sun. The smaller density would 
probably not be able to make the electron neutrino mass degenerate with the 
μ neutrino mass. But secondly the MSW effect does not apply: the μ neutrino 
and the r neutrino masses which are important here, are shifted in the same 
way due to the universality of the weak interaction. (The Sun or the Earth 
does not contain muons or tauons. It contains only electrons. In this way only 
the mass of the electron neutrino is shifted differently, while the μ and the 
τ neutrinos experience the same shift and thus the mixing between μ and r 
neutrinos is not modified by the MSW effect). 

One should stress that the neutrino masses are also affected by loop diagrams 
which are not calculated here and which are assumed to be smaller. The 
solar-neutrino problem is attributed to the mass difference (<5mf2)· Oscillations 
between the electron and the μ eigenstates would be allowed due to loop 
corrections, but the mass differences would be smaller and one would then 
need a larger path L to see the oscillations. 
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