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Abstract

The neutrinoless muon-to-electron conversion in nuclei is studied by using the renor-
malized quasiparticle random-phase approximation (RQRPA). This generalization
of RPA is more reliable for the extremely small (1™, e™) transition matrix elements
than the ordinary QRPA because it restores the Pauli principle to a large extent. We
apply the method to a set of nuclei throughout the periodic table, but we specifically
investigate the 48T and 2°8 Pb nuclei which are currently used as stopping targets
at the PSI y — e conversion experiments with the SINDRUM II spectrometer.
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1 Introduction

The investigation of the neutrinoless 4~ — e~ conversion in muonic atoms,

by +(A,Z2) e + (A Z) (1)

is especially interesting research both from an experimental [1]-[3] and theo-
retical [4]-[7] physics point of view. The importance of this process is due to
the fact that its observation would signal a breakdown of the separate lepton
number conservation for electrons and muons. Up to now no u-e conversion
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events have been seen but instead upper limits for the observation of this pro-
cess have been well established by several experiments [1]-[3]. The best limit
of the u~ — e~ branching ratio to the ordinary u~ capture, R, has been set
by the SINDRUM II collaboration using 7% [1,2] as

RI'<6.1x107" 2)

This limit provides very severe constraints for muon number non-conservation
compared to other similar processes [8]-[11]. This is mostly due to the possi-
bility of the coherent effect, a distinct feature of process (1) which constitutes
the signature of the u — e conversion in the relevant experiments. The coher-
ent channel is expected to appear as a single peak at momentum g ~ m, — ¢,
in the measured electron-spectrum (m, is the muon mass and ¢, its binding
energy in the muonic atom).

The advantages of the u — e conversion motivated some of the most sensi-
tive experiments [1]-[3] performed the last decades to look for flavor violation
events (see Ref. [5]). The SINDRUM II experiment, which is at present the
only operating p — e conversion experiment, is using *®Ti as target and is
aiming to increase the sensitivity on the branching ratio R,. by about two
orders of magnitude. Recently, a new p — e conversion experiment, the so
called MECO experiment at Brookhaven, has been designed on " Al target [3]
with the aim to push the best limit below 1076 and search for new physics.
For these experiments the knowledge of reliable nuclear physics inputs for
all possible u~ — e~ conversion channels of the targets used is an essential
prerequisite.

In previous works [7,8] the renormalized quasiparticle random phase approx-
imation (RQRPA) appropriate for the y — e conversion has been formulated.
The influence of the renormalized quasi-boson approximation, on which the
RQRPA relies, to the coherent matrix elements was also studied [7]. As has
been shown, the improved quasi-boson approximation takes reliably into ac-
count the nucleon-nucleon ground state correlations which are important in
evaluating accurately the sensitive (4=, e™) rates. The purpose of this work
is to investigate the incoherent channels and calculate all possible transition
matrix elements of the reaction (1) within the context of the RQRPA. The
correlated ground state, on which the excited states reached by the incoher-
ent channels are built, is derived in the same manner as in Ref. [7] and plays
important role in our calculations, because it includes more exactly the Pauli-
exclusion principle than the previously used normal QRPA.

The relevant u — e conversion operators refer to the photonic and some non-
photonic mechanisms (see Ref. [12]-[16]) and calculations are performed for
a set of nuclei throughout the periodic table. We emphasize on the nuclei
47T and 2% Pb which have recently been used as targets in the SINDRUM II



experiment at PSI. We should note that, similar calculations for the odd-A ?"Al
target employed by the Brookhaven experiment cannot be carried out with
RQRPA (detailed shell model calculations for this target have been performed
in Ref. [9]).

Our present results combined with the lowest experimental limits on R,. could
determine bounds on the flavor violating parameters entering the branching ra-
tio R, in some extensions of the standard model (with finite neutrino masses)
as well as in supersymmetric theories [7]. With these limits we can constrain
the neutrino masses, mixing angles, etc. of a neutrino mixing scenario or the
parameters of a SUSY model entering a u—e conversion Lagrangian describing
this process.

2 The renormalized QRPA for the 4~ — e~ reaction

The refinement of the QRPA adopted in the present work is the so called
charge-conserving Renormalized QRPA, since in the reaction (1) the charge
of the target nucleus is not changed. This implies that, for the y= — e~ re-
action, the RQRPA with two-proton or two-neutron quasi-particle excitations
is needed. This type of QRPA, goes beyond the quasi-boson approximation
(QBA) in which the Fermion pairs are treated as bosons. The so called renor-
malized QBA [7], takes into account the exact commutation relations of a
Fermion pair in the RPA ground state expectation value and includes in a
good approximation the Pauli principle, which prevents to have too many
quasi-particles in the ground state.

The ordinary QRPA, as is well known, relies on the assumption that the an-
gular momentum coupled bifermion operators Af, A obey boson commutation
relations in a correlated RPA ground state [10]. This assumption is a reliable
approximation if the correlated ground state does not appreciably differ from
the uncorrelated one. As has been recently shown (7], the normal QRPA over-
estimates the ground state correlations, a shortcoming which can be cured by
rewriting the commutation relations for Af, A as

(0hpallA, (KL, JM), AL (KT, TM)]|0%p ) = OkeOp 677 Drpe (KL, J) (3)

where D is a renormalizing matrix defined as

Do (kl, J) =
1- 3t < OEPA!{a:karE]gIOEPA > -5t < OEPA|[GLIGT'1']8|0§PA > (4)

(7 = v27+1). Thus, the commutation relations (3) take into account the



fact that the nucleon pair consists of two Fermions. In the above equations,
k and ! denote the set of quantum numbers (ng, I, jx) and (ny, U, 7;) for the
single particle levels that can be coupled to a total angular momentum J and
parity 7 (J7). The indices 7, 7’ denote the charge of the nucleons (protons
or neutrons).

The RQRPA method proceeds by rewriting the two-quasiparticle operators in
terms of Af, A as

Al (kl, JM) = D7H3(kl, J) AL (K, TM),
A, (kl, JM) = D7} (kl, J) A, (kl, T M) (5)

Thus, 4 and A' commute like bosons and restore the Pauli principle to a
large extent. It should be noted that, the definition of the matrix D in Eq. (4)
takes into account only the diagonal part of the exact fermion commutation
relations, and consequently we can still write down an eigenvalue problem by
defining new variational amplitudes X and Y in terms of the old ones X and
Y as

X = D?X, Y = D%, (6)

and new RPA matrices A, B in terms of the ordinary-QRPA matrices A, B as

A=DYV2AD™Y?  B=DY’BD7V2, (7)

It is worth noting that, the replacement of the free variational amplitudes X,
Y and the bifermion operators Af, A by their renormalized ones, Eqgs. (5)
and (6) respectively, does not change the form of the phonon-operator Q’J’UM
[7,8]. This means that in the renormalized quasiparticle RPA the m'™ excited
state having total angular momentum J projection M and parity =, |J% M), is
created by acting with the phonon-operator Q'}‘J u on the correlated RQRPA
vacuum |0) rorpa as

|77 M) = Q71\/10) rorpa. (8)

The ground state FJ)RQRPA can be deduced as usually from the Thouless

theorem and the uncorrelated ground state |0) as [10]

0 ~ 1 o g
|O>RQRPA = No exp {'2' > icfxb )Zi(a, )\#)Ai(b, /\H)} |0). (9)

a,b,r
Ap



where a = (kl), b = (k'l') run over the configurations coupled to momentum
A. The matrix C is a new correlation matrix derived as in the case of the
ordinary QRPA [8] but now the new variational amplitudes X and Y should
be used as

oo = (P x)7) w0)

The above way of constructing the correlated RQRPA ground state preserves
only linear terms of the new correlation matrix C in the series expansion of Eq.
(9) and consequently we have for evaluation only bifermion operators acting
on the uncorrelated ground state. Under these conditions, the normalization
factor entering Eq. (9) is written as

-1/2

No = [1+[CP (11)

This factor measures the effect of the nucleon-nucleon ground state correla-
tions [7].

3 The p-e conversion transition matrix elements

Theoretically, the u — e conversion can proceed in many models (common
extensions of the standard model as well as supersymmetric theories) via pho-
tonic and non-photonic mechanisms [4,5,11,16]. In the photonic mechanism
the photon -~y is virtual coupling the leptons to the nucleus. There are many
types of non-photonic mechanisms which occur through the exchange of vari-
ous particles [5,16].

The expression for the branching ratio R, of the u~ — e~ conversion contains
the square of the nuclear matrix elements of tensor operators resulting from the
hadronic currents describing the above mechanisms [16] in the non-relativistic
approximation (nuclear level) [5,6].

3.1 The matriz elements for the multipole expansion operators

In the coordinate space, the nuclear operators of the u~ — e~ conversion
are obtained via the multipole expansion procedure [10]. This gives tensor

operators of the form T (L5 (J is the operator angular momentum rank and



M its projection) which are given by

A
T = Gy 6, Var 3 (3 + Bras)ivlar) Yig(£) 112}

=1

for the polar-vector component of the hadronic current (Fermi type or spin
independent operators), and

A
T = 52T S(e8" + Fraidars) [V E)®0]], (13)
=1

for the axial-vector component of the hadronic current (Gamow-Teller type or
spin dependent operators). j;(gr) are the spherical Bessel functions resulting
from the plane-wave, €'®", representation of the outgoing electron. The mag-
nitude of the momentum transfer q is given by ¢ = m, — & — E; where E;
the excitation energy of the daughter nucleus.

For our calculations the operators Tj; of Eqgs. (12) and (13) must be first
rewritten in the quasi-particle basis, i.e. in terms of the operators Af, 4 [10].
To this aim we start from their second quantization form

R e GG (14)

J2.J1,7

where cf (c) is a particle (hole) operator, and then we use the well known
Bogolubov-Valatin transformations

U S A
ij_UJ a’jm—VJa’jm1

Gm = Uj a5 + V; al,,. (15)

Jm

In these transformations, V]-(T) and UJ(') represent the probability amplitudes
for the single particle states to be occupied and unoccupied, respectively, and

¢ = (=)7"™¢j_m. The operators T}, take the form

Ty = 3 [sr(2dr, J)B' (jojr, JM) + §,(jos1, J)B' (jrja, IM)

J2J1,T
+pr (2g1, ) AT (j2jr, IM) + By (J2dr, J) A(dadr, TM) ]
. 2
—6a0850 Y Jv W (vv) (VL(T)) (16)

v,T



In Eq. (16), in addition to the two quasi-particle operators A* (jzj2, JM) and
A(jaj2, JM), there also appear the scattering operators B and B defined as

Bt(jzjh JM) = [‘I;zail] IJ\/I’

The quantities s, p, § and p in Eq. (16) are given in Ref. [8] and the quantities
W7 (ja51) are

W (joj1) = @ 27 +1)7* (o || T¢SM || 5u) (18)

with
Q = (3+p87),  for Fermi operators
Q = 8"+ p8'7), for Gammow-Teller operators .

The single-particle reduced matrix elements (j||T”7||7:) in Eq. (18), for har-
monic oscillator (h.o.) wave functions, have been written in a compact way
as

Ga || TG ||y = e X Y 6532, x = (gb)*/4 (19)

k=0

with b the h.o. size-parameter and 65 (j,j; J) given in Ref. [8]. Equation (19)
permits the computation of the coefficients 85, which are independent of the
momentum transfer q, once and for all the necessary configurations. Then, the
reduced matrix elements (j, || 7 || j,) needed for a given nucleus are readily
evaluated for every value of the momentum transfer q.

8.2 Inclusive p — e conversion matric elements.

The inclusive (u~, e”) conversion rate is evaluated by summing over the par-
tial contributions for all possible final states | f) induced by the Fermi and
Gammow-Teller type operators of Egs. (12) and (13). The coherent contribu-
tion in RQRPA has been calculated and discussed in Ref. [7]. The correspond-
ing incoherent matrix elements are written as [8]

Sa=7)_ (L)QZI (f 177 || 0)rorPa |2, f=IM), a=V,A (20)

7 oM’ g

(Sv is the Fermi-type and Sy the Gammow-Teller-type contributions). The
reduced matrix elements (f||7]|0) rorp4 for a given multipole RQRPA state
|f) = |JT) take the form



(JZIIT7)(0) orPa =
x Wi(j&jl) [_-X:i(.hjlr J)UJ(:)VJ'(;T) + (_)e?:(j2j1: J)V}(;)UJ(:)] (21)

J22J1,7T

where

W, (j2g1) = D2 (o, J)W; (Gs)
Eq. (21) shows that the incoherent matrix elements in RQRPA have the same
structure as those of the ordinary QRPA [see Eq. (15) of Ref. [10]], i.e. the
first can be obtained by substituting in the normal QRPA the free variational
amplitudes X and Y and the matrix elements W,/ with their renormalized
counterparts X, ¥ and W,.

The necessary matrix elements for the total (1, e™) rate in RQRPA are then
easily computed by adding the vector and axial vector contributions of the
coherent and incoherent rates (see below).

4 Results and Discussion

Using the formalism of the renormalized QRPA developed before (see also
Ref. [7,8]) we carried out a detailed study of the inclusive (1™, e~) conversion
rates. For comparison with previous works we employed the same set of nuclear
isotopes and use the same inputs as in Ref. [7]. In order to illustrate the
difference between RQRPA and QRPA results and estimate the influence of the
ground state nucleon-nucleon correlations on the incoherent u — e conversion
matrix elements, we have also listed previous QRPA results [12].

As has been stressed before, the effect of ground state correlations is of par-
ticular significance for the very small u~ — e~ transition matrix elements and
they must be accurately incorporated in structure calculations. In principle all
RPA methods take into consideration to some extent the ground state correla-
tions. However, as has been pointed out [7], the RQRPA describes them in an
explicit and more reliable way. For the y — e conversion this is important not
only because the final states are built on the correlated ground state [see Eq.
(8)], but also because the gs — gs transitions dominate the u~ — e~ process
[5]-[7]. The coherent RQRPA results and the extracted conclusions have been
comprehensively discussed in Ref. [7].

The results for the incoherent (x4, e~) matrix elements obtained as described
before for photonic and non-photonic mechanisms are quoted in Table 1. For
the photonic mechanism there is no axial vector contribution and the incoher-
ent matrix elements are equal to Sy. For the non-photonic case, Sy and 3S4
refer to the vector and axial vector contributions of the W-boson exchange di-
agrams of Ref. [8], but the conclusions discussed below hold qualitatively also



Table 1

Incoherent (u~,e”) conversion matrix elements in RQRPA for the photonic and
the non-photonic diagrams of Fig. 1(c). Sy stands for the contribution of the vector
component and S for the contribution of the axial vector component. For com-
parison we have also listed the QRPA results of Ref. [7]. All matrix elements are
purified from the spurious unphysical contributions [12].

Photonic Mechanism Non-photonic Mechanism

RQRPA QRPA RQRPA QRPA
Nucleus Sy Sv Sv Sa Sv Sa
487 4.60 551 622 244 T7.69 3.20
60 p7; 3.84 448 442 405 4.79 5.36
2QGe 5.54 6.94 7.24 382 926 5.05
2¢q 6.48 814 864 517 11.37 6.67
162y 9.63 13.52 13.17 6.25 20.12 8.28
208 pp, 7.26 8.97 11.52 560 14.00 6.77

for other non-photonic diagrams [7]. As it is seen from Table 1, the incoherent
4 — e conversion matrix elements calculated with RQRPA are smaller than
the corresponding normal QRPA ones, but the differences are not very large.
Despite the fact that for the coherent mode the RQRPA matrix elements are
larger than those of QRPA (7], for the incoherent rate our calculations show
the opposite trend. This can be justified by remembering that the ordinary
QRPA ground state contains much more quasi-particles than the renormalized
QRPA. Thus, in the normal QRPA the probability to excite quasi-particles is
larger than that in RQRPA where the restored Pauli principle prevents them.
This event can also be explained by the formalism described in Sects. 2 and 3,
as follows. The magnitude of the coherent matrix elements is mainly governed
by the square of the correlation matrix |C|? for QRPA and [C|? for RQRPA
[see Eq. (11)]. For the currently interesting nuclei *®T% and 2°®Pb this is il-
lustrated in Fig. (2) of Ref. [7] from which it is clearly concluded that the
QRPA overestimates the ground state correlation due to the omission of the
Pauli principle. Using the RQRPA, this principle is appreciably restored and
the ground state correlations have been more correctly calculated. In contrast,
the magnitude of the incoherent matrix elements [see Eq. (21)] is determined
not only from the normalization coefficient N,, which contains the correlation
matrix, but also from the renormalizing matrix D. Thus, the increase induced

by the N§ in the incoherent rate is compensated by the reduction of the D
matrix.

In Fig. 1 we plot the individual contributions originating from various mul-
tipole components of the incoherent rate, in the non-photonic case, obtained
with RQRPA for the two nuclear isotopes *®T and 2° Pb. One can see that,
the main contributions to the incoherent mode, come from the low-spin mul-
tipole states 1~ and 0%, 1%, 2%, a result which is in agreement with previous
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Fig. 1. The individual contributions of each multipolarity to the incoherent matrix

elements for T and 28 Pb in the nonphotonic case. We see that the low multipo-
larity components dominate the total transition probability.

QRPA calculations [7]. This means that the influence of the ground state cor-
relations on the incoherent transition matrix elements does not show clear
channel dependence. The picture of the dominance in the incoherent RQRPA
strengths is the same as that of the normal QRPA. Thus, for example, the
17 multipolarity is the most important in both methods. We mention that,
the spurious center-of-mass admixures of the 1~ multipole states has been
eliminated in both QRPA and RQRPA by utilizing the method of Ref. [12].

Using the matrix elements of the coherent mode (M2,) calculated in Ref.
(7] and those of Table 1 (photonic mechanism) for the incoherent channels
(M2,,.3), we computed the total rate matrix elements (M2,,) and the ratio 7
(n= MZ,/MZ2,) of the coherent to total 4~ — e~ matrix elements (see Table

2). It is seen that, the total matrix elements in RQRPA are slightly larger than
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Table 2

Inclusive u—e matrix elements for the photonic diagrams and ratio 7 of the coherent
to total (u~,e™) matrix elements within RQRPA. The notation is: coherent (M2, )
matrix elements, incoherent (M2,,, = Sy +354) matrix, and total (M2, = M2, +
M2, .,;) matrix elements. For comparison the corresponding results obtained with

ordinary QRPA are quoted.

RQRPA QRPA
Nucleus Mizncoh Mgoh Mtzgtgl n M;%ngﬁ Mczoh Mgzgal n
487, 460 1272 131.8 9% 551 117.7 123.21 96%
60 74 3.84 171.1 17494 97% 448 1494 153.88 97%
2Qe . 5.54. 199.1 204.64. 97% 6.94 169.9 176.84 96%

12¢q 6.48 285.7 292.18 98% 8.14 222.6 230.74 96%
162yp 9.63 393.3 402.93 98% 13.52 283.8 297.32 95%
208 py, 7.26 4156 422.86 98% 8.97 379.4 388.37 98%

those of ordinary QRPA although the incoherent RQRPA matrix elements are
smaller than the corresponding QRPA ones. This is due to the dominance of
the coherent channel for which the trend of the matrix elements in the two
methods is reversed [7].

The ratio n of coherent to total 4~ — e~ matrix elements, which is an in-
teresting quantity for experiments [1]-[3], appears to be close to unity and
this shows that the coherent transition exhausts about the entire total rate
in the (147, e™) process. This result agrees very well with previous results [5].
We also note that, even though the absolute values of the p~ — e~ matrix
elements calculated by RQRPA differ from those of ordinary QRPA both for
the coherent and incoherent processes, the ratio 7 is not appreciably affected.

As has been emphasized in our previous work [7], by using the more reliable
matrix elements obtained by the renormalized QRPA and adopting the lim-
its on R, extracted from the new run of SINDRUM II experiment for 8T
target, we can determine severe constraints for the fundamental lepton flavor
violating parameters entering the branching ratio R,. as follows: Assuming
that Ry, can be written [see Eq. (18) of Ref. [7]] as a product R, = pv,
where v contains the nuclear dependence of the branching ratio calculated
with the aid of RQRPA matrix elements [7] and p contains the elementary
sector dependence, we can put bounds on the parameter p. Even though, in
principle, p is the only parameter one can constrain using the experimental
sensitivity of R, in elementary models where the dominance of specific terms
in the 4 — e Lagrangian is a reasonable assumption, one can extract limits [16]
for some special parameters (or products of parameters) describing this exotic
process e.g. isoscalar parameter, isovector parameter etc. [9].
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5 Summary and Conclusions

We have formulated the renormalized quasiparticle random phase approxima-
tion (RQRPA) for the nuclear-charge conserving semi-leptonic reactions with
the goal to investigate the matrix elements for the inclusive y — e conversion
process. This method goes beyond the usual quasi-boson approximation on
which the ordinary QRPA relies and leads to the restoration of the Pauli prin-
ciple. The nucleon-nucleon ground state correlations are suitably treated and
therefore reliable results for the coherent and incoherent matrix elements of
1 — e conversion are obtained.

We found that the ground state correlations affect the incoherent matrix el-
ements in the opposite direction to that found previously for the coherent
ones. As a result, the incoherent matrix elements calculated with the renor-
malized QRPA are smaller than those given by the ordinary QRPA. Reliable
results for the very small 4~ — e~ transition matrix elements are of significant
importance, since they can provide useful nuclear physics inputs for the PSI
(SINDRUM II) and Brookhaven (MECO) p— e conversion experiments which
are some of the most sensitive current experiments seeking for events of muon
number violation and new physics beyond the standard model.
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