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Parameter-free solution of the Bohr Hamiltonian for actinides in the
octupole mode

D. Lenis* and Dennis Bonatsos®

*Institute of Nuclear Physics, National Centre for Scientific Research “Demokritos”,
GR-15310 Aghia Paraskevi, Attiki, Greece

An analytic, parameter-free (up to overall scale factors) solution of the Bohr Hamil-
tonian involving axially symmetric quadrupole and octupole deformations, as well as an
infinite well potential, is obtained, after separating variables in a way reminiscent of the
Variable Moment of Inertia (VMI) concept. Normalized spectra and B(EL) ratios are
found to agree with experimental data for 226 Ra and #2Th, the nuclei known to lie closest
to the border between octupole deformation and octupole vibrations in the light actinide
region.

1. INTRODUCTION

Critical point symmetries [1,2] are attracting recently considerable interest, since they
provide parameter-independent (up to overall scale factors) predictions supported by ex-
periment [3-6]. The E(5) [1] and X(5) [2] critical point symmetries have been obtained
from the Bohr Hamiltonian [7] after separating variables in different ways and using an
infinite square well potential in the 3 (quadrupole) variable, the latter corresponding to
the critical point of the transition from quadrupole vibrations [U(5)] to axial quadrupole
deformation [SU(3)] [2].

In the present work a solution of the Bohr Hamiltonian aiming at the description of the
transition from axial octupole deformation to octupole vibrations in the light actinides
[8] is worked out. In the spirit of E(5) and X(5) the solution involves an infinite square
well potential in the deformation variable and leads to parameter-free (up to overal scale
factors) predictions for spectra and B(EL) transition rates. Both (axially symmetric)
quadrupole and octupole deformations are taken into account, in order to describe low-
lying negative parity states related to octupole deformation, known to occur in the light
actinides [8]. Separation of variables is achieved in a novel way, reminiscent of the Variable
Moment of Inertia (VMI) concept [9]. The parameter-free predictions of the model turn
out to be in good agreement with experimental data for *Ra [10] and ?*Th [11], the
nuclei known [12,13] to lie closest to the transition from octupole deformation to octupole
vibrations in this region.

In Section 2 of the present work the solution is worked out. Numerical results are given
and compared to experimental data in Section 3, while Section 4 contains discussion of
the present results and plans for further work.
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2. THE MODEL

When only axially symmetric quadrupole (52) and octupole (53) deformations are taken
into account, the Hamiltonian reads [14,15]

K2 R2L2

RORTN:: aﬂxﬁkaﬂx 6(Ba 1 2B,50) T

where By, Bs are the mass parameters.
One then seeks solutions of the Schrédinger equation of the form [14]

‘D}f(ﬂ%ﬂsae) = (5253)_3/2‘1’%@2,53)@]\40, +), (2)

where M is the angular momentum projection onto the laboratory-fixed z-axis, K = 0
is the projection onto the body-fixed Z’-axis, and the functions |LMO0,+) and |LMO, —)
transform according to the irreducible representations (irreps) A and B; of the group Dy
respectively [14,15], their explicit form being given in [13,16].

Introducing [14,15]

- B 5 B: By + B:
@—@JE,@—@J;,B—QQJ, 3)

reduced energies € = (2B /h{)E and reduced potentials u = (2B/h*)V [1,2], as well as
polar coordinates (with 0 < § < oo and —7/2 < ¢ < 7/2) [14,15]

V (B2, 33) (1)

/éQZBCOSQZ), /53:BSin¢a /é: V5~22+B§7 (4)
the Schrédinger equation takes the form [13]

Lo 16, L4y 18 3wt e -

|: aBQ B 8B + 362(1 + SiI12 ¢) 52 8¢2 + (ﬁ ¢) + 52 Sinz 2¢ €L \IJL (ﬁv ¢) = 0. (5)

Separation of variables in Eq. (5) can be achieved by assuming the potential to be of
the form [14,17] u(3, ¢) = u(B) + u(¢)/3?, leading to

32 _8_2_12 w(B) — e £(3) = — 2% (3

< o Bop +u(B) [j(L)> Vi (6) Vi (8), (6)
(812 —u(¢) - uL(¢)> X (0) = =" x7(9), (7)
where
UL(¢) = 5 L(L + 1) (8)

sin®2¢  3(1 + sin?¢)’

with ©2 being the separation constant and Ui (5, ¢) = 17 (3)x= (), where, however, the
=+ indices have become redundant.

The potential ur(¢) of Eq. (8) is shown in Fig. 1 for several values of L, normalized to
its minimum value for each L. It is clear that in each case the potential has the form of a
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Figure 1. Potential uy [Eq. (8)] for different values of the angular momentum L, normal-
ized for each L to its minimum value. See section 2 for further discussion.

deep well, possessing an L-dependent minimum, denoted by ¢; and determined from the
equation
2L(L+1)singcos¢p  12cos2¢
up(¢) = —3 3 g - — =0. (9)
3 (14sin®9¢) sin” 2¢
Using standard trigonometric identities and defining = sin®? ¢ and b = 9/(4L(L + 1))
one easily sees that Eq. (9) takes the form
a* —2(1+0)2° + (1 = 3b)a* + b =0, (10)
which turns out to have only one real root in the interval 0 < z < 1 (imposed by
— ain?
x = sin® ).
Given its form, the potential ur(¢) can be approximated around the minimum by the
first terms of the Taylor expansion as

u// ¢
us(9) ~ uson) + E (g g2 (1)
In Eq. (7) one can then omit the potential u(¢), treating ur(¢) as an effective potential

naturally occuring in the framework of the theory, leading Eq. (7) into the harmonic
oscillator form

2
—g—g+§2x:qx, (12)
with
" 2 _
o[ O g, o = PO (13)
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Table 1

Spectra of the present model for the ground state band and the associated negative parity
band (s = 1), as well as for the first excited band (s = 2), together with relevant values
of ¢1, and experimental data for Ra [10] and **Th [11]. Each spectrum is normalized
to the energy of its own 27 state. See section 3 for further discussion.

I QbL th ZZGRa 226Th J (bL th Q%Ra 226Th
s=1
0t 45.00 0.000 0.000 0.000 1~ 4570 0.337 3.747 3.191
2t 47.01 1.000 1.000 1.000 3~ 4877 1.967 4.749 4.259
4t 50.77 3200 3.127 3.136 5 52.79 4.657 6.603  6.240
6t 54.71 6.297 6.155 6.195 7 56.47 8.093 9.264 9.112
8+t 58.05 10.025 9.8901 9.999 9~ 59.46 12.081 12.677 12.785
10T 60.73 14.254 14.185 14.409 11~ 61.86 16.537 16.743 17.152
127 62.89 18928 18.931 19.324 13~ 63.81 21.424 21.388 22.105
147 64.65 24.023 24.061 24.675 15~ 6542 26.724 26.536 27.554
16T 66.13 29.526 29.523 30.413 17~ 66.78 32.427 32.126 33.418
18T 67.38 35.428 35.300 36.497 197 67.94 38.527 38.099 39.627
20t 68.46 41.724 41.375 42.896
5 =2
0t 45.00 12.569 12.186 11.152
2t 47.01 14.253
4t 50.77 17.871

Since €;, = 2n + 1, where n is the number of oscillator quanta, one obtains

V= @(Qn + 1) +up(dr). (14)

In what follows we are going to be limited to the case n = 0. R R R
Returning to Eq. (6), using for u(5) an infinite well potential (u(f) = 0 if 5 < Bw;
u(f) = 0o if 3 > Pw), and defining [2] €5 = k%, z = [kg, one is led to the Bessel equation

2 2
d¢u+1dwu+{l_%]%:0. (15)

dz? z dz

Then the boundary condition wy(ﬁw) = 0 determines the spectrum

xs,u
By = €450 = (ksyV)Qv kS,V = B ) (16)
w

and the eigenfunctions

Yaw(B) = Va1 (B) = coudy (ksuB), (17)

where z;, is the sth zero of the Bessel function J,(z), while ¢, are normalization con-

stants, determined from the condition fOGW |7,Z)S,l,(3)|23d3 =1to be cop = V2/Jyi1(kss).
The notation has been kept similar to that of Ref. [2].

152



16th Hellenic Symposium on Nuclear Physics

o
o
n

L

T
—=—218 60 —=—220 7
—e 20| R@ e 222 Th /Q:‘
404 222 <« 501 224 % 1
g —v—224 « 4’ ~ v th / 1
x th P4 < 404 226 ®/ <« v |
301« 226 <Y o <28 * / 4 v
3 228 Ly 0 N/ o€
o < 30 230 <N
2 v © 304 * v 1
© 20 Y o A = —e—232 PRV N
= <5 °® < —%—234 / Y
> T e 2] WAV oo ]
o o ° > o © \ [ °®
ElOA 4’\’,1 o® ..II. B =3 hR 2V ©
2 o Aiiiatiaae g10] [\ L jafiAeeasatn ]
[ §S \(H?“',I:"'/ % _txj./.l inm
01 g (a)1 0{ vV (b) 1
T T T T T T T T T T T T
0 4 8 12 16 20 0 4 8 12 16 20
angular momentum L angular momentum L

Figure 2. (a) Experimental energy ratios R(L) = E(L)/E(2{) for *®Ra [11,20], ?°Ra
[11], and #227228Ra [10], compared to theoretical predictions. (b) Same for 220=228Th [11],
20T [10], 22Th [10,11], and 2 Th [10].

A few comments are now in place:

a) L-dependent potentials, as the one of Eq. (8), are known to occur in nuclear physics in
the framework of the optical model potential [18], as well as in the study of quasimolecular
resonances, such as ?C+12C [19].

b) The procedure followed for the determination of ¢y, is reminiscent of the Variable
Moment of Inertia (VMI) model [9]. In the VMI case the energy is minimized with respect
to the moment of inertia for each L separately, resulting in a moment of inertia increasing
with L. In the present case the effective potential energy wu; is minimized with respect
to ¢ for each L separately, resulting in ¢, values increasing with L. As a consequence, in
Eq. (8) the denominator of L(L+ 1), which can be considered roughly as playing the role
of a moment of inertia, is also increasing with L.

¢) In order to separate variables, one can in general assume u(3,v) = u(3) +u(y), as in
the X(5) model [2], or u(3,v) = u(8) +u(y)/5? as in Refs. [14,17]. In the former case the
separation is approximate, since a 32 term is involved in the 7 equation, replaced by its
average value, but no extra parameter is introduced in the -equation by the separation.
In the latter case, the separation is exact, but (at least) one extra parameter appears
in the B-equation, coming in from the ~-equation through the separation constant. In
the present model this disadvantage of the latter case is avoided through the VMI-like
procedure adapted.

d) For each L the specific value of the variable ¢, which decides the relative presence
of the quadrupole and octupole deformations, is determined in Eq. (7) by the effective
potential ur,(¢), which has a rigid shape, as seen in Fig. 1, while the potential u(¢) plays
no role.

The calculation of B(FL) transition rates proceeds as in Ref. [13] and need not be
repeated here.
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Table 2
B(EL;L; — Ly) values between states of the present model with s = 1. B(E2)s with
L; and Ly even are normalized to the 2{ — 0f transition, while B(E2)s with L; and Ly
odd are normalized to the 37 — 17 transition. B(E1)s are normalized to the 17 — 0
transition, while B(E3)s are normalized to the 37 — 07 transition. See section 3 for
further discussion.
Ly L} B(E2) LY L} B(El) LY L} B(E3) LY L} B(E3)
2t 0t 1000 1~ 0f 1.000 3~ 0t 1.000 2% 17 1.793
4t 2t 1494 2 17 1238 4t 17 1358 3~ 2T 1.362
6+ 4T 1749 3~ 2t 1389 57 2t 1581 4t 37 1341
8t 67 1944 4t 3~ 1522 6% 37 1752 5 4t  1.369
100 8" 2103 5 4t 1650 7- 4t 1896 67 57 1411
12 10t 2237 6t 5 1775 8t 57 2022 77 6t 1.456
14t 12+ 2350 7 6t 1896 9- 6T 2136 8" 77  1.500
16T 14t 2448 8t 17— 2012 10t 7 2238 9 8t 1542
18T 16t 2534 9 8t 2123 11~ 8 2331 10F 9~  1.582
20t 18t 2611 10T 9° 2228 12F 9= 2416 11~ 10T  1.620
11— 100 2328 137 10t 2494 12t 11~  1.655
3= 17 1.000 12t 11~ 2424 14% 11— 2566 13~ 12t  1.689
5 37 1.246 13~ 12t 2515 150 12t 2632 14t 137  1.720
7757 1413 14T 137 2,602 167 137 2694 157 14F  1.750
9~ 7- 1547 157 14 2,685 17 14t 2752 16t 15°  1.777
11= 9~  1.658 16T 15— 2764 18t 15~ 2806 17~ 16* 1.804
137 117 1.752 17— 16T 2.840 19~ 16* 2.856 18T 17~ 1.829
15~ 13~ 1.832 18" 17~ 2913 20t 17~ 2904 19~ 18t  1.852
177 157 1.902 19~ 18" 2983 200 197 1.875
19 177 1964 20" 19~  3.050

3. NUMERICAL RESULTS AND COMPARISON TO EXPERIMENT

The model predictions for the lowest bands are given in Table 1, together with the
experimental spectra of ?*Ra [10] and ?*Th [11], which are known to lie near the border
between the regions of octupole deformation and octupole vibrations [12,13], as also seen
in Figs. 2(a) and 2(b), where the spectra of 2®7228Ra and ?2°~234Th are included. In both
figures the region below the theoretical predictions corresponds to octupole deformation,
characterized by minimal odd-even staggering rapidly decreasing and disappearing with
increasing L, while the region above the theoretical predictions corresponds to octupole
vibrations, characterized by large odd-even staggering decreasing very slowly with in-
creasing L. As seen in Table 1, in the case of ?Ra and 22Th the odd-even staggering
is non-negligible only for the lowest four odd levels, the agreement between theory and
experiment being very good for the even levels, as well as with the rest of the odd ones.
The absence of staggering in the present model is due to the fact that the (infinite) po-
tential wells for B3 < 0 and B3 > 0 [see Eq. (4)] are separated by an infinite barrier, and
not by a finite one, as needed for odd-even staggering to be present [21].
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Figure 3. (a) Experimental B(E1;L — L+ 1) / B(E1;L — L — 1) ratios [22] of B(E1)
values originating from the same level of 2°Ra, compared to three different theoretical
predictions from Ref. [24] (labeled as R-h, R-I, R-II), as well as to theoretical predictions
of the present model. See section 3 for further discussion.

Several parameter-free predictions for B(E1), B(E2), and B(E3) transition rates, ap-
propriately normalized, are reported in Table 2. Since the lack of experimental data does
not allow for direct comparison to experiment, comparisons to B(E1) branching ratios
of #°Ra [22] and B(E1)/B(E2) ratios for 6Th [12] are shown in Figs. 3(a) and 3(b)
respectively. The theoretical predictions in Fig. 3(a) are compatible with the data within
the experimental errors, while in addition they are quite similar to predictions of the Ex-
tended Coherent States Model (ECSM) [23] obtained with the lowest order E1 operator
(R-h), as well as with two different choices of the E1 operator including anharmonicities
(R-I, R-IT) [24]. The theoretical predictions in Fig. 3(b) are also compatible with the
data within the experimental errors, lying considerably lower than the predictions of Ref.
[12] (BBS).

It is worth remarking that the ground state band spectrum and intraband B(E2)s of
the present model are quite similar to these of the X(5) model [2] (extensively tabulated
in Ref. [25]). Indeed the present model can be considered as an extension of X(5), in
which the octupole degree of freedom is taken into account in order to account for the
low-lying negative parity bands, while in parallel the v degree of freedom is left out in
order to keep the problem tractable. One important difference between the two models
is related to the (normalized) position of the 05 state, which is predicted at 5.649 by the
X(5) model [2], but at 12.569 by the present model. This implies that while searching
for X(5)-like nuclei in the light actinide region, one should expect the 03 state to occur
higher by a factor of two. Indeed the Ra and Th isotopes near A = 226 exhibit high-lying
05 states [10,11].

It should also be noticed that the predictions of the present parameter-independent
model are very similar to those of the one-parameter (¢y) Analytic Quadrupole Octupole
Axially symmetric (AQOA) model [13], in which best agreement to experiment is obtained
for ¢g = 56° in the case of ?2Ra, and for ¢g = 60° in the case of ?6Th. These values of
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¢ are understandable, when compared to the ¢ values shown in Table 1.

4. DISCUSSION

A parameter-free (up to overall scale factors) version of an Analytic Quadrupole Oc-
tupole Axially symmetric (AQOA) model involving an infinite well potential, suitable for
describing the transition from octupole deformation to octupole vibrations in the light
actinides, has been constructed, after separating variables in the Bohr Hamiltonian in a
way reminiscent of the Variable Moment of Inertia concept. Spectra and B(EL) ratios
are shown to be in good agreement with experimental data for ??Ra and ?26Th, the nu-
clei supposed to lie closest to the above mentioned border. Application of the model in
the A & 150 region, where octupole deformation is also well established [8], is receiving
attention.
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