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Nuclear symmetry energy effects on neutron stars properties

Ch.C. Moustakidis, V.P. Psonis and S.E. Massen
Department of Theoretical Physics, Aristotle University of Thessaloniki,

54124 Thessaloniki, Greece

We construct a class of nuclear equations of state based on a schematic potential model,
that originates from the work of Prakash et. al. [1], which reproduce the results of most
microscopic calculations. The equations of state are used as input for solving the Tolman-
Oppenheimer-Volkov equations for corresponding neutron stars. The potential part con-
tribution of the symmetry energy to the total energy is parameterized in a generalized
form both for low and high values of the baryon density. The obtained nuclear equations
of state are applied for the systematic study of the global properties of a neutron star
(masses, radii and composition). We also address on the problem of the existence of
correlation between the pressure near the saturation density and the radius.

1. Introduction

Neutron stars (NS) are some of the densest manifestations of massive objects in the
universe which provide very rich information for testing theories of dense matter physics
and also provide a connection among nuclear physics, particle physics, statistical physics
and astrophysics [2–8]. The global aspects of neutron stars, such as the masses, radii and
composition are determined by solving the so-called Tolman-Oppenheimer-Volkov (TOV)
equations [9]. However there are large variations in predicted radii and maximum masses
because of the uncertainties in the nuclear equation of state (EOS) near and mainly above
the saturation density ns [6,10–15]. The total energy of neutron rich matter (the case of
a neutron star) can be written as a sum of two parts. The first one is the contribution
of the symmetric nuclear matter (which is well known) and the second is the symmetry
energy (SE) which still is uncertain although several constraints exist from ground state
masses (binding energies) and giant dipole resonances of laboratory nuclei.

In general, the value of the SE at nuclear saturation density and mainly the density
dependence of the SE are both difficult to be determined in the laboratory. The motivation
of the present work is to propose a new parameterization for the potential part of the
symmetry energy Esym(n) in order to be able to reproduce the results of a variety of
microscopic models both in low and high values of the baryon density. Especially the
trend of the symmetry energy just above the equilibrium density ns is a critical factor in
determining the neutron star radius.

Special effort has been devoted to find analytical relations between the radius R and
the pressure P which correspond to a special density n for a fixed value of the mass M
of the neutron star. So an accurate determination of a neutron star radius will permit
evaluation of the pressure of neutron star matter. All the above will provide a direct
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determination of the density dependence of the nuclear SE at these densities [16].

2. The model

In general, the energy per baryon of neutron-rich matter may be written to a very good
approximation as

E(n, x)

A
=

E(n, 1
2
)

A
+ (1 − 2x)2Esym(n) , (1)

where n is the baryon density (n = nn + np) and x is the proton fraction(x = np

n
). The

symmetry energy Esym(n) can be expressed in terms of the difference of the energy per
baryon between neutron (x = 0) and symmetry (x = 1/2) matter

Esym(n) =
E(n, 0)

A
− E(n, 1

2
)

A
. (2)

In the present work we consider a schematic equation for symmetric nuclear matter
energy (energy per baryon E/A or equivalently the energy density per nuclear density
ε/n) which is given by the expression [1]

E(n, 1/2)

A
=

εsym

n
= mNc2 +

3

5
E0

F u2/3 + V (u), u = n/ns (3)

where E0
F = (3/5)(h̄k0

F )2/2mN is the mean kinetic energy per baryon in equilibrium state
and ns is the saturation density.

The density dependent potential V (u) of the symmetric nuclear matter is parameter-
ized, based on the previous work of Prakash et. al. [1,7] as follows

V (u) =
1

2
Au +

Buσ

1 + B′uσ−1
+ 3

∑
i=1,2

Ci

(
Λi

p0
F

)3 (
pF

Λi

− arctan
pF

Λi

)
, (4)

where pF is the Fermi momentum, related to p0
F by pF = p0

F u1/3. The parameters Λ1 and
Λ2 parameterize the finite forces between nucleons. The values used here are Λ1 = 1.5p0

F

and Λ2 = 3p0
F . The parameters A, B, B′, σ, C1 and C2 are determined with the constraints

provided by the properties of nuclear matter saturation. In the present work the values
of the above parameters are determined in order that E(n = ns)/A−mNc2 = −16 MeV,
ns = 0.16 fm−3 and K0 = 240 MeV. In general the parameter values for three possible

values of the compression modulus K0

(
K0 = 9n2

0
d2(E/A)

dn2 |n0

)
are displayed in table I, on

Ref. [1].
To a very good approximation, the nuclear symmetry energy Esym can be parameterized

as follows [5]

Esym(u) =
(
22/3 − 1

) 3

5
E0

F

(
u2/3 − F (u)

)
+ S0F (u), (5)

where S0 is the SE at the saturation point, S0 = Esym(u = 1). In general, theoretical
predictions give S0 = 25 − 35 MeV. In the present work we consider S0 = 30 MeV.
The function F (u) parameterizes the potential contribution of the nuclear SE and has to
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satisfy the constraints F (u = 0) = 0 and F (u = 1) = 1. Equation (5) can be written in a
more instructive form by separating the kinetic and the potential contribution of the SE.

Esym(u) � 13u2/3︸ ︷︷ ︸
Kinetic

+ 17F (u)︸ ︷︷ ︸
Potential

. (6)

The information gained from microscopic theoretical calculations shows that SE exhibits
different trends in low and high densities. So, one should try to find a formula for the
function F (u) which satisfies the above restrictions. In the spirit of the previous statement
we propose a new parameterization of the function F (u). The new function reproduces
the SE for most realistic calculations and has the following form

F (u) =

⎧⎪⎨
⎪⎩

uc1 u ≤ 1

uc2e1−u + (u − 1)(c1 + 1 − c2) u ≥ 1 .
(7)

The function F (u) satisfies the constraints F (u → 1+) = F (u → 1−) and F ′(u → 1+) =
F ′(u → 1−). The derivative of the function is determined by the parameters c1 and c2

(hereafter called potential parameters).
In order to construct the nuclear equation of state, the expression of the pressure is

needed. In general, the pressure, at temperature T = 0, is given by the expression

P = n2d(ε/n)

dn
= n

dε

dn
− ε. (8)

From equations (1), (3) and (8) we found that the contribution of the baryon to the
total pressure is given by the relation

Pb =

[
2

5
E0

F n0u
5/3 + u2n0

dV (u)

du

]
+ n0(1 − 2x)2u2dEsym(u)

du
. (9)

The electrons originating for the condition of the beta stable matter contribute also to
the total energy and total pressure [5]. The electrons which are the ingredients of the
neutron star are considered as non-interacting Fermi gas. In that case their contribution
to the total energy and pressure is given by

εe− =
m4

ec
5

8π2h̄3

[
(2z3 + z)(1 + z2)1/2 − sinh−1(z)

]
, (10)

Pe− =
m4

ec
5

24π2h̄3

[
(2z3 − 3z)(1 + z2)1/2 + 3 sinh−1(z)

]
, (11)

where z = kF /mec.
Now the total energy and pressure of charge neutral and chemically equilibrium nuclear

matter is

εtot = εb + εe− , Ptot = Pb + Pe− . (12)

From equations (12) we can construct the equation of state in the form ε = ε(P ). What
remains is the determination of the proton fraction x in β-stable matter. It is easy to
show that x is given as the solution of the following equation [5]

4(1 − 2x)Esym(n) = h̄c(3π2ne)
1/3 = h̄c(3π2nx)1/3. (13)
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Figure 1. (a) Esym(n) for various values of the potential parameters c1 and c2 of the function

F (u), given by the equation (7), versus the baryon density n. (b) The ratio cs/cl versus the

baryon density n for various values of the potential parameters c1 and c2.

It is worthwhile to notice that the present model satisfies the relativistic causality. That
means the speed of sound which was defined from the relation,

(
cs

cl

)2

=
dP

dε
=

dP/dn

dε/dn
, (14)

does not exceed the speed of light for any value of the baryon density. This is a basic treat
for any realistic EOS, regardless the details of the interactions among matter constituents
or the many body approach [13].

In order to calculate the gross properties of a NS we assume that a NS has a spherically
symmetric distribution of mass in hydrostatic equilibrium and is extremely cold (T = 0).
Effects of rotations and magnetic fields are neglected and the equilibrium configurations
are obtained by solving the Tolman-Oppenheimer-Volkoff equations [9]

dP (r)

dr
= −Gm(r)ρ(r)

r2

(
1 +

P (r)

c2ρ(r)

)(
1 +

4πr3P (r)

c2m(r)

)(
1 − 2Gm(r)

c2r

)−1

,

dM(r)

dr
= 4πr2ρ(r) =

4πr2ε(r)

c2
. (15)

To solve the set of equations (15) for P (r) and M(r) one can integrate outwards from
the origin (r = 0) to the point r = R where the pressure becomes zero. This point defines
R as the radius of the star.

3. Results and discussion

In figure 1a we display Esym(n) as a function of the density n for various values of
the potential parameters c1 and c2. The potential parameters c1 and c2 varied between
0.5 ≤ c1 ≤ 1.2 and 0 ≤ c2 ≤ 2 in order to get a reliable density dependent SE. In general
the case is as follows, for fixed values of the parameter c2, the SE is an increasing function
of c1. In addition, for fixed values of the parameter c1 the increase of the parameter c2

leads to a decrease of the SE. It is seen that, within the present model, the stiff or soft
behavior of Esym(n) found in various macroscopic calculations, is reproduced. In figure
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Figure 2. (a) The radius R1.4 as a function of the second potential parameter c2 for various

values of the first potential parameter c1. The lines correspond to the least-squares fit expressions

(16) . (b) The radius R1.4 as a function of the second potential parameter c2 for various values

of the first potential parameter c1. The lines correspond to the least-squares fit expressions (17).

(c) The radius R1.4 versus the derivative of the symmetry energy E′
sym(3ns/2) for various values

of the potential parameter c2. The lines correspond to the least-squares fit expressions (19),

(20) and (21) respectively.

1b we display the ratio cs/cl as a function of the density for various cases. It is obvious
that the relativistic causality is satisfied.

In order to calculate the global properties of the neutron star, radius and mass we
solved numerically the TOV equations (15) with the given equations of state constructed
with the present model. For very low densities (n < 0.08 fm−3) we used the equation of
state taken from Feynman, Metropolis and Teller [17] and also from Baym, Bethe and
Sutherland [18].

Figure 2a illustrates the behavior of the radius R1.4 as a function of the second potential
parameter c2 for various values of the first potential parameter c1. The calculated points
for various values of c1 can be reproduced by a second order polynomial.

R1.4 = 12.58956 + 0.05378c2 − 0.46172c2
2, c1 = 0.5

R1.4 = 13.04786 − 0.02752c2 − 0.32340c2
2, c1 = 0.7

R1.4 = 13.85705 − 0.08087c2 − 0.21393c2
2, c1 = 1.0

R1.4 = 14.61946 − 0.19441c2 − 0.14536c2
2, c1 = 1.2 . (16)

In all examined cases, the radius R1.4 is a decreasing function of the potential parameter
c2. This is a direct consequence of the softening of the equation of state due to increase
of the parameter c2.

In addition, in figure 2b the behavior of the radius R1.4 as a function of the second
potential parameter c1 is reproduced for various values of the first potential parameter c2.
The least-squares fit values are given for the following linear equations

R1.4 = 11.09603 + 2.85172c1, c2 = 0.0

R1.4 = 11.01810 + 2.85517c1, c2 = 0.5

R1.4 = 10.42034 + 3.06724c1, c2 = 1.2 . (17)

R1.4 is an increasing function of the potential parameter c1. The increase of the para-
meter c1 leads to the stiffness of the SE as indicated in figure 1a. It is worthwhile to note
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Figure 3. (a) The quantity RP−a
as a function of the radius R1.4 for pressure determined at

n = ns, n = 3ns/2 and n = 2ns for c2 = 0. (b) The same as before for c2 = 0.5. (c) The same as

before for c2 = 1.2. For each density, the least-squares fit value for the exponent a is indicated.

that the slopes of the best fit lines are almost the same and there is just a shift of the
lines depending on the values of the parameter c2.

Also, from figure 2a and 2b we conclude that the radius R1.4 depends mainly on the
parameter c1 which determines the derivative of the Esym(n) and also the pressure Psat

at the saturation density ns. However, there is a small dependence on the parameter c2

which is connected with the trend of Esym(n) at higher values of the density ns.
To illustrate further this point, we studied the correlations between the derivative of

the symmetry energy E ′
sym which is given by

E ′
sym(n) =

⎧⎪⎪⎨
⎪⎪⎩

1
ns

[
26
3
u−1/3 + 17c1u

c1−1
]

u ≤ 1

1
ns

[
26
3
u−1/3 + 17

(
c1 + 1 − c2 + e1−uuc2( c2

u
− 1)

)]
u ≥ 1

(18)

and the radius R1.4 close to the saturation point n = 3ns/2. In figure 2c we plot the
radius R1.4 versus the derivative of the symmetry energy E ′

sym(3ns/2) for fixed values of
the potential parameter c2. One can see that there is a linear relation between R1.4 and
E ′

sym(3ns/2). The effect of the parameter c2 is to induce a parallel shift of the best fit
lines. The least-squares fit values for various values of the parameter c2 are given for the
following equations

R1.4 = 8.70394 + 0.02684E ′
sym(3ns/2) c2 = 0.0 (19)

R1.4 = 9.73291 + 0.02687E ′
sym(3ns/2) c2 = 0.5 (20)

R1.4 = 10.27305 + 0.02887E ′
sym(3ns/2) c2 = 1.2 (21)

We also tried to find the correlation between the pressure P (and consequently the
radius R) and the SE for other values of the density n. In order to clarify the problem of
the expected relation between the radius and the pressure we present a more simplified
model of a non-relativistic equation with a polytrope type of EOS. Thus the EOS has the
form

P = Kργ, γ = 1 +
1

λ
. (22)
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Figure 4. (a) The quantity RP−1/4
as a function of the radius R1.4 for pressure determined at

n = ns, n = 3ns/2 and n = 2ns for c2 = 0. (b) The same as before for c2 = 0.5. (c) The same

as before for c2 = 1.2.

It is easy to show that in the case where λ = 1 (or γ = 2) we get [3,16]

R

P 1/2
=

[
2G

π

]1/2 1

ρ
. (23)

Thus, from equation (23) we concluded that in the case of a polytrope with γ = 2 there
is a universal relation of the ratio R/P 1/2 calculated for a specific value of the density ρ.
However if general relativity effects are included in the above analysis the exponent 1/2
of the pressure is found to be smaller [16].

Figure 3 illustrates the behavior of the quantity R1.4P
−a as a function of the radii R1.4

for pressure determined at n = ns, 3ns/2, 2ns, and also for c2 = 0 (figure 3a), c2 = 0.5
(figure 3b) and c2 = 1.2 (figure 3c).

In figure 4 we plot the quantity R1.4P
−1/4 as a function of R1.4 for the pressure deter-

mined at n = ns, 3ns/2, 2ns and for c2 = 0 (figure 4a), c2 = 0.5 (figure 4b) and c2 = 1.2
(figure 4c). It is obvious once again that the quantity R1.4P

−1/4 is almost constant only
when the pressure is calculated at the saturation point ns. When the pressure is calcu-
lated at densities n = 3ns/2 and n = 2ns the quantity R1.4P

−1/4 is an increasing function
of the radius R1.4. Thus, in our proposed parameterization of the SE, it is concluded that
there is a dependence of the quantity R1.4P

−1/4 from the first potential parameter c1 as
well as from the second potential parameter c2 and consequently from the trend of the
SE both for low and high values of the baryon density.

4. Summary

In the present work we performed a systematic study of the effect of the potential part
of the SE on the global properties of neutron stars (masses, radii and composition). The
potential part of the SE was parameterized in a generalized form both for low and high
values of the baryon density in order to be efficient in reproducing the results of most
microscopic calculations of dense nuclear matter.

As a result it is found that R1.4 is a function of both potential parameters c1 and c2.
This means that the value of R1.4 is affected from the density dependent trend of the SE,
both in low and high densities. However, we showed that for fixed values of the parameter
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c2, close to the saturation point (n = 3ns/2), a linear relation between the R1.4 and the
E ′

sym(3ns/2) stands. Finally, the quantity R1.4P
−a = C(n) appears to be constant after

a suitable parameterization of the parameters a and C(n) but still remains dependent
from the second potential parameter c2. The quantity R1.4P

−1/4, exhibits an increasing
behavior as a function of the R1.4 for density values above the saturation point.
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