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Nuclear symmetry energy effects on neutron stars properties

Ch.C. Moustakidis, V.P. Psonis and S.E. Massen
Department of Theoretical Physics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

We construct a class of nuclear equations of state based on a schematic potential model,
that originates from the work of Prakash et. al. [1], which reproduce the results of most
microscopic calculations. The equations of state are used as input for solving the Tolman-
Oppenheimer-Volkov equations for corresponding neutron stars. The potential part con-
tribution of the symmetry energy to the total energy is parameterized in a generalized
form both for low and high values of the baryon density. The obtained nuclear equations
of state are applied for the systematic study of the global properties of a neutron star
(masses, radii and composition). We also address on the problem of the existence of
correlation between the pressure near the saturation density and the radius.

1. Introduction

Neutron stars (NS) are some of the densest manifestations of massive objects in the
universe which provide very rich information for testing theories of dense matter physics
and also provide a connection among nuclear physics, particle physics, statistical physics
and astrophysics [2-8]. The global aspects of neutron stars, such as the masses, radii and
composition are determined by solving the so-called Tolman-Oppenheimer-Volkov (TOV)
equations [9]. However there are large variations in predicted radii and maximum masses
because of the uncertainties in the nuclear equation of state (EOS) near and mainly above
the saturation density ns [6,10-15]. The total energy of neutron rich matter (the case of
a neutron star) can be written as a sum of two parts. The first one is the contribution
of the symmetric nuclear matter (which is well known) and the second is the symmetry
energy (SE) which still is uncertain although several constraints exist from ground state
masses (binding energies) and giant dipole resonances of laboratory nuclei.

In general, the value of the SE at nuclear saturation density and mainly the density
dependence of the SE are both difficult to be determined in the laboratory. The motivation
of the present work is to propose a new parameterization for the potential part of the
symmetry energy Ey,(n) in order to be able to reproduce the results of a variety of
microscopic models both in low and high values of the baryon density. Especially the
trend of the symmetry energy just above the equilibrium density n, is a critical factor in
determining the neutron star radius.

Special effort has been devoted to find analytical relations between the radius R and
the pressure P which correspond to a special density n for a fixed value of the mass M
of the neutron star. So an accurate determination of a neutron star radius will permit
evaluation of the pressure of neutron star matter. All the above will provide a direct
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determination of the density dependence of the nuclear SE at these densities [16].

2. The model

In general, the energy per baryon of neutron-rich matter may be written to a very good
approximation as

E(n,z) E(n,3)
A = A 2 + (1 - 2x)2Esym(n) ) (1)
where n is the baryon density (n = n, + n,) and = is the proton fraction(z = “2). The

symmetry energy Ey,,(n) can be expressed in terms of the difference of the energy per
baryon between neutron (x = 0) and symmetry (z = 1/2) matter
E(n,0) E(n,?)
Eyym(n) = L — 20 2
In the present work we consider a schematic equation for symmetric nuclear matter
energy (energy per baryon E/A or equivalently the energy density per nuclear density
e¢/n) which is given by the expression [1]

E(n,1/2 sym
(n,l; [2) _ um _ 1 SEWP V), u=n/n, 3)
n

where E% = (3/5)(hk%)?/2my is the mean kinetic energy per baryon in equilibrium state
and ng is the saturation density.

The density dependent potential V(u) of the symmetric nuclear matter is parameter-
ized, based on the previous work of Prakash et. al. [1,7] as follows

1 Bu° A DF Dr
=_-A e — i s == —arctan = |, 4
V(uw) 5 u—+ T Bae + 3¢:Z1,20 <p%> (Ai arctan A¢> (4)

where pr is the Fermi momentum, related to p% by pr = p%u1/3. The parameters A; and
A, parameterize the finite forces between nucleons. The values used here are A; = 1.5p%
and Ay = 3p%. The parameters A, B, B', o, C; and Cy are determined with the constraints
provided by the properties of nuclear matter saturation. In the present work the values
of the above parameters are determined in order that E(n = n,)/A — myc* = —16 MeV,
ny = 0.16 fm™> and K, = 240 MeV. In general the parameter values for three possible
values of the compression modulus K (Ko = 9n3%|"0> are displayed in table I, on
Ref. [1].

To a very good approximation, the nuclear symmetry energy Fi,,, can be parameterized
as follows [5]

Boym(u) = (22— 1) gE% (u2* = F(u)) + SoF(u), (5)

where Sj is the SE at the saturation point, So = Esym(u = 1). In general, theoretical
predictions give Sy = 25 — 35 MeV. In the present work we consider Sy = 30 MeV.
The function F'(u) parameterizes the potential contribution of the nuclear SE and has to
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satisfy the constraints F(u = 0) = 0 and F(u = 1) = 1. Equation (5) can be written in a
more instructive form by separating the kinetic and the potential contribution of the SE.

Boym(u) 2 1302 + 17F (u). "
Kinetic — potential

The information gained from microscopic theoretical calculations shows that SE exhibits
different trends in low and high densities. So, one should try to find a formula for the
function F'(u) which satisfies the above restrictions. In the spirit of the previous statement
we propose a new parameterization of the function F'(u). The new function reproduces
the SE for most realistic calculations and has the following form

U u<l1
Flu) = (7)
u2el ™+ (u—1(c1+1—cy) u>1.

The function F(u) satisfies the constraints F(u — 17) = F(u — 17) and F'(u — 11) =
F'(u — 17). The derivative of the function is determined by the parameters ¢; and ¢y
(hereafter called potential parameters).

In order to construct the nuclear equation of state, the expression of the pressure is
needed. In general, the pressure, at temperature 7' = 0, is given by the expression

d(e/n de
Q(di):n%—e (8)

From equations (1), (3) and (8) we found that the contribution of the baryon to the

total pressure is given by the relation

P=n

0B (1)

|20 53 o dV(u) 0,02, 2
P, = { Epnou’” +u o=~ + no(1 — 22)%u I 9)

5

The electrons originating for the condition of the beta stable matter contribute also to

the total energy and total pressure [5]. The electrons which are the ingredients of the

neutron star are considered as non-interacting Fermi gas. In that case their contribution
to the total energy and pressure is given by

WL§C5 3 2\1/2 1 —1
€ = 2o [(22 +2)(1+2°)"/* —sinh (z)} , (10)
mic
= 247:27'13 [(233 —32)(1+ )V + 3Sinh_1(z)] , (11)

where z = kp/mec.
Now the total energy and pressure of charge neutral and chemically equilibrium nuclear
matter is

€tot = €p T €, Py =B+ P . (12)

From equations (12) we can construct the equation of state in the form ¢ = ¢(P). What
remains is the determination of the proton fraction = in (-stable matter. It is easy to
show that z is given as the solution of the following equation [5]

4(1 = 22) Egyn(n) = he(3n%n,)? = he(3nnz)'/3. (13)
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Figure 1. (a) Egym(n) for various values of the potential parameters ¢; and ¢ of the function
F(u), given by the equation (7), versus the baryon density n. (b) The ratio ¢s/¢; versus the
baryon density n for various values of the potential parameters ¢; and cs.

It is worthwhile to notice that the present model satisfies the relativistic causality. That
means the speed of sound which was defined from the relation,

(&)2 _dP _dP/dn
"~ de  de/dn’

. (14
does not exceed the speed of light for any value of the baryon density. This is a basic treat
for any realistic EOS, regardless the details of the interactions among matter constituents
or the many body approach [13].

In order to calculate the gross properties of a NS we assume that a NS has a spherically
symmetric distribution of mass in hydrostatic equilibrium and is extremely cold (T = 0).
Effects of rotations and magnetic fields are neglected and the equilibrium configurations
are obtained by solving the Tolman-Oppenheimer-Volkoff equations [9]

dP(r) ~ Gm(r)p(r) <1+ P(r) ) <1+ 47rr3P(r)> (1 2Gm(7")>1
) )

dr 72 Ap(r Am(r) Ar
dM(r) 4mrie(r)
o = darip(r) = —Qa (15)

To solve the set of equations (15) for P(r) and M (r) one can integrate outwards from
the origin (r = 0) to the point » = R where the pressure becomes zero. This point defines
R as the radius of the star.

3. Results and discussion

In figure la we display Eyy,(n) as a function of the density n for various values of
the potential parameters ¢; and c;. The potential parameters ¢; and ¢y varied between
0.5<c¢; <1.2and 0 < ¢y <2in order to get a reliable density dependent SE. In general
the case is as follows, for fixed values of the parameter ¢y, the SE is an increasing function
of ¢;. In addition, for fixed values of the parameter c; the increase of the parameter cy
leads to a decrease of the SE. It is seen that, within the present model, the stiff or soft
behavior of Egy,,(n) found in various macroscopic calculations, is reproduced. In figure

131



16th Hellenic Symposium on Nuclear Physics

1151

RN
)
hoNa

«ren

1.0 F

105 1

-0.5 0.0 0.5 1.0 1.5 2.0 25 0.6 0.9 1.2 50 100 150 200
c, c. E'gym(3/2"5)

2 1

Figure 2. (a) The radius R;4 as a function of the second potential parameter ¢y for various
values of the first potential parameter c¢;. The lines correspond to the least-squares fit expressions
(16) . (b) The radius Rj 4 as a function of the second potential parameter ¢y for various values
of the first potential parameter ¢;. The lines correspond to the least-squares fit expressions (17).
(c) The radius Ry 4 versus the derivative of the symmetry energy EY,,,(3ns/2) for various values
of the potential parameter cy. The lines correspond to the least-squares fit expressions (19),
(20) and (21) respectively.

1b we display the ratio ¢ /¢; as a function of the density for various cases. It is obvious
that the relativistic causality is satisfied.

In order to calculate the global properties of the neutron star, radius and mass we
solved numerically the TOV equations (15) with the given equations of state constructed
with the present model. For very low densities (n < 0.08 fm™) we used the equation of
state taken from Feynman, Metropolis and Teller [17] and also from Baym, Bethe and
Sutherland [18].

Figure 2a illustrates the behavior of the radius R; 4 as a function of the second potential
parameter ¢y for various values of the first potential parameter ¢;. The calculated points
for various values of ¢; can be reproduced by a second order polynomial.

Ry, 12.58056 + 0.05378¢; — 0.46172¢2, ¢, = 0.5
Riy = 13.04786 — 0.02752c; — 0.32340c, ¢, = 0.7
Ryy = 13.85705 — 0.08087¢c, — 0.21393¢2, ¢ = 1.0
Ryy = 14.61946 —0.19441c, — 0.14536¢%, ¢ =12 (16)

In all examined cases, the radius R; 4 is a decreasing function of the potential parameter
co. This is a direct consequence of the softening of the equation of state due to increase
of the parameter c,.

In addition, in figure 2b the behavior of the radius R;4 as a function of the second
potential parameter ¢; is reproduced for various values of the first potential parameter cs.
The least-squares fit values are given for the following linear equations

Ry = 11.09603 +2.85172¢;, ¢ =0.0
Ry = 11018104 2.85517¢;, ¢y = 0.5
Ry = 1042034 +3.06724c;, ;=12 (17)

Ry 4 is an increasing function of the potential parameter ¢;. The increase of the para-
meter ¢; leads to the stiffness of the SE as indicated in figure la. It is worthwhile to note
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Figure 3. (a) The quantity RP~* as a function of the radius R; 4 for pressure determined at
n=mng, n = 3ns/2 and n = 2n, for ca = 0. (b) The same as before for co = 0.5. (c) The same as
before for co = 1.2. For each density, the least-squares fit value for the exponent a is indicated.

that the slopes of the best fit lines are almost the same and there is just a shift of the
lines depending on the values of the parameter c,.

Also, from figure 2a and 2b we conclude that the radius R;4 depends mainly on the
parameter ¢; which determines the derivative of the Ejy,,(n) and also the pressure Pyg
at the saturation density ns. However, there is a small dependence on the parameter cs
which is connected with the trend of E,,,(n) at higher values of the density n.

To illustrate further this point, we studied the correlations between the derivative of
the symmetry energy E!  which is given by

sym

L [Eu_l/3 + 17clucl_1] u<l1

ns | 3
By = {7 (13)
L [23—61[1/3 +17 (cl +1—cp+etu2 (2 — 1))] u>1

Ns

and the radius Rj4 close to the saturation point n = 3n,/2. In figure 2c we plot the
radius Ry 4 versus the derivative of the symmetry energy E’ (3n,/2) for fixed values of

sym
the potential parameter c;. One can see that there is a linear relation between R;4 and
B, (3n/2). The effect of the parameter c; is to induce a parallel shift of the best fit

lines. The least-squares fit values for various values of the parameter ¢y are given for the
following equations

Ry = 8.70394 + 0.02684EY,,,(3n,/2) ¢ = 0.0 (19)
Ry = 9.73291 + 0.02687EL,,(3n,/2) ¢ =0.5 (20)
Ry =10.27305 + 0.02887E.,,,(3n,/2) ¢, =12 (21)

We also tried to find the correlation between the pressure P (and consequently the
radius R) and the SE for other values of the density n. In order to clarify the problem of
the expected relation between the radius and the pressure we present a more simplified
model of a non-relativistic equation with a polytrope type of EOS. Thus the EOS has the
form

P=Kp, y=1+ (22)

1
R
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Figure 4. (a) The quantity RP~1/4 as a function of the radius Ry 4 for pressure determined at
n =mns, n = 3ns/2 and n = 2n, for c2 = 0. (b) The same as before for ¢ = 0.5. (¢) The same
as before for co = 1.2.

It is easy to show that in the case where A =1 (or v = 2) we get [3,10]

R 2G1% 1

Thus, from equation (23) we concluded that in the case of a polytrope with -y = 2 there
is a universal relation of the ratio R/P/? calculated for a specific value of the density p.
However if general relativity effects are included in the above analysis the exponent 1/2
of the pressure is found to be smaller [16].

Figure 3 illustrates the behavior of the quantity Ry 4P~% as a function of the radii R; 4
for pressure determined at n = ng, 3ns/2, 2n,, and also for ¢, = 0 (figure 3a), co = 0.5
(figure 3b) and ¢, = 1.2 (figure 3c).

In figure 4 we plot the quantity Ry 4P ~'/* as a function of Ry 4 for the pressure deter-
mined at n = ng, 3ns/2, 2ns and for co = 0 (figure 4a), co = 0.5 (figure 4b) and ¢y = 1.2
(figure 4c). It is obvious once again that the quantity R, 4P~/ is almost constant only
when the pressure is calculated at the saturation point n,. When the pressure is calcu-
lated at densities n = 3n,/2 and n = 2n4 the quantity Ry P Y%isan increasing function
of the radius Ry 4. Thus, in our proposed parameterization of the SE, it is concluded that
there is a dependence of the quantity R;4P~'/* from the first potential parameter ¢; as
well as from the second potential parameter ¢, and consequently from the trend of the
SE both for low and high values of the baryon density.

™

4. Summary

In the present work we performed a systematic study of the effect of the potential part
of the SE on the global properties of neutron stars (masses, radii and composition). The
potential part of the SE was parameterized in a generalized form both for low and high
values of the baryon density in order to be efficient in reproducing the results of most
microscopic calculations of dense nuclear matter.

As a result it is found that Ry 4 is a function of both potential parameters ¢; and c,.
This means that the value of Ry 4 is affected from the density dependent trend of the SE,
both in low and high densities. However, we showed that for fixed values of the parameter
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¢y, close to the saturation point (n = 3ns/2), a linear relation between the R; 4 and the
B, (3ns/2) stands. Finally, the quantity R, 4P~ = C(n) appears to be constant after
a suitable parameterization of the parameters a and C(n) but still remains dependent
from the second potential parameter c,. The quantity Ry ,P~*, exhibits an increasing

behavior as a function of the Ry 4 for density values above the saturation point.
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