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Abstract

The significant features of exchange symmetry are displayed by simple systems such as two identical,
spinless fermions in a one-dimensional well with infinite walls. The conclusion is that the maxima of
probability of the antisymmetrized wave function of these two fermions lie at the same positions as if a
repulsive force (of unknown nature) was applied between these two fermions. This conclusion is
combined with the solution of a mathematical problem dealing with the equilibrium of identical
repulsive particles (of one or two kinds) on one or more spheres like neutrons and protons on nuclear
shells. Such particles are at equilibrium only for specific numbers of particles and, in addition, if these
particles lie on the vertices of regular polyhedra or their derivative polyhedra. Finally, this result leads
to a pictorial representation of the structure of all closed shell nuclei. This representation could be used
as a laboratory for determining nuclear properties and corresponding wave functions.
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1. Introduction

In this work we search for the distribution of maxima of the antisymmetric wave function of
many fermions, specifically, of the nucleons of a nuclear shell or of the nucleons of all closed
shells in a nucleus, without a precise knowledge of the wave function.

This effort is materialized by strictly following the consequences of the nature of the
particles involved, i.e., the fermionic nature of nucleons.

Apparently, this is a many-body problem in its specific case where the particles are
fermions and where their quantity is more than a few (i.e., it is not a few-body problem) and
where the fermion quantity is not so high as in a solid body (i.e., it is not an excessive number
of particles problem). In other words, it is a mesoscopic physics problem.

As known, as a many-body problem could be considered any problem with any number of
particles more than one. Specifically, in this work we start with the simplest possible problem
considering the very specific case of two identical fermions in one-dimensional square-well
potential with infinite walls. Afterwards, we extend the research to the number of identical
nucleons of a closed shell and to the number of identical nucleons of all closed shells in a
nucleus by taking advantage of the conclusions of the above elementary problem of two
identical spinless fermions together with the solutions of a well-analyzed relevant
mathematical problem.
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2. The nuclear Hamiltonian

As a first step of this work we analyze the nuclear Hamiltonian into partial Hamiltonians one
per nuclear shell and different for protons and neutrons as follows

H= ,Hjs+ pHyp + p;Higs + ...
+nHls+nH1p+nH1d25+ (1)

In the following first we search for the maxima of probability of the antisymmetric wave
function for the identical nucleons for each nuclear shell and then for the nucleons of all shells
in a closed-shell nucleus. As a first step we examine the simplest possible problem described
below.

After the above search of maxima is completed, we can go backwards to determine
explicitly the relevant Hamiltonian in Eq.(1) and the corresponding wave functions as
suggested at the end of this work.

3. Two identical fermions in a square well potential with infinite walls.
The total energy for two non-interacting spinless fermions is
-(h%/2m) (6°¥/0x,%) — (h*/2m) (6*W/dx2%) + Vi(x))W + Va(x2)¥ = (Wi)oW/ot )
where V(x;) = 0 for 0 <x; <L and o elsewhere
Va(x2) = 0 for 0 <x; <L and o elsewhere and
Y =¥(x1, X2, 1)

Equation (2) is separable in its three variables and the two coordinate-dependent equations are

d>y/dx,? + Co/hA)[W, — Vi(x )]y =0 (3)
d*ya/dx,” + 2m/hA)[W, — Va(x2)] i =0 (4)
where

W =W, + W, = h’n’n*/2mL? + h’k*n?/2mL> (5)

n=1,2.3. ...andk=1,2,3, ...
The one-particle eigenfunctions are

¥\ (y1) = V2/L sin (nnx,/L) and (6)
¥, (32) = V2/L sin (knxo/L) (7)
and the two-particle eigenfunctions are

vi’(r1, x2) = (2/L) sin (nmx)/ L) sin (knx,/L) and (8)
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2’1, 12) = (2/L) sin (nxy/ L) sin (knx /L) 9

These wave functions are apparently degenerate if n # k. This degeneracy is due to the
symmetry with respect to the interchange of the two identical fermions. If, however, there is
some mutual interaction between the two identical fermions in the form of some mutual
potential energy H’(x;, x2) which is unchanged in sign and magnitude upon the interchange of
x; and X, then there are only the following two possible choices for the zero-order wave
function for the two fermions system
Symmetric wave function:
W, = (1/N2)(2/L)[sin(nmx,/L)sin(knx,/L) + sin(nmx,/L)sin(kmx;/L)] (10)
Antisymmetric wave function:

¥, = (172)(2/L)[sin(nmx,/L)sin(kmxa/L) - sin(nmxa/L)sin(kax/L)] (11)

The above results come from the following secular equation

Hu-W) H’yz

=0 (12)
H’»; H1-W)
The determinant becomes
(H'11 - W)’ = (H12)%, (13)

since H’12 = H’21,
H’ll = H,zg, given that

H’y; = [y "*H y, "dx dxs, etc.

In Fig.1 a plot of Egs. (10 and11) is shown, i.e., a plot for both symmetric [part (a) of the
figure] and antisymmetric [part (b) of the figure] wave function of the system. The horizontal
axis of the plot is used to mark positions inside the potential well from 0 to L for the particle
assigned the number 1, likely the vertical axis for the particle assigned the number 2. In both
parts of the figure the probability amplitudes are considered perpendicularly to the paper and
are presented by counters numbered 1.0, 1.5, 2.0. As apparent from the figure the maxima of
probability in the case of symmetric wave function lie on the shown broken line where both
particles lie at x; = x,, either at the position x; = x, = L/4 or at the position x; = x, = 3L/4,
while in the case of antisymmetric wave function the maxima of probability lie out of this line
and specifically the one at the position L/4 and the other at the position 3L/4. This means that
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for the symmetric wave function of the system the maxima of probability of the two particles
coincide and the two particles are found together there, while for the antisymmetric wave
function of the system the particles have zero probability of being together. This conclusion is
equivalent to saying that among the particles, an attractive force was applied in the case of
symmetric wave function and a repulsive force (of unknown nature) was applied in the case
of antisymmetric wave function [1].

Thus, the antisymmetrization requirement of two identical fermions in a potential well
results in a situation for the maxima of probability of these identical fermions equivalent to
the situation we would have if among these two fermions a repulsive force (of unknown
nature) was applied.

00 L

Xy —

Fig.1. (a) Symmetric wave function: y*y, with n = 1 and k = 2, according to Eq.(10), (b) Antisymmetric wave
function: y,*y, withn= 1 and k = 2, according to Eq.(11).

4. Nucleons in a closed shell and in all shells of a closed-shell nucleus.

In the rest of this work we will take advantage of the above conclusion in order to proceed
with the problem of the many nucleons of a nuclear shell or of the many nucleons of all shells
in a closed-shell nucleus. In order to do so we extensively use the paper of Leech [2] dealing
with the equilibrium of one or two kinds of repulsive nucleons on a sphere resembling the
behavior of one or two kinds of identical fermions on a nuclear shell or shells.

According to this paper of Leech, repulsive particles on a sphere are at equilibrium (or at
their positions of maximum probability) only for specific numbers of particles and if these
particles lie on the vertices of one of the regular polyhedra or of one of their derivative
polyhedra or simultaneously of a regular polyhedron and one or two derivative
polyhedra. We call derivative polyhedra of a regular polyhedron those polyhedra which are
derived by considering the middles of faces or the middles of edges of the initial polyhedron.

Figure 2 represents the Leech polyhedra in three rows. Vertical blocks in the first two rows
of the figure represent reciprocal polyhedra, that is, polyhedra where the vertices of the one
are the middles of faces of the other. The third row makes more apparent the relative
orientation of the above reciprocal pairs for the special case where orthogonal edges of the
reciprocal pairs of polyhedra bisect each other. At each block of the figure the number of
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vertices of the relevant polyhedron is given in parentheses, while at the bottom of the block
the official name and/or its mathematical abbreviation of this polyhedron is also given.
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Fig.2. Leech-type equilibrium polyhedra.

The Leech paper as mentioned earlier, also deals also with the equilibrium of two
categories of identical repulsive particles on spheres. The particles of each category are at
equilibrium with themselves and in addition at equilibrium with the particles of the other
category, which means that the equilibrium polyhedron of the one category should be
reciprocal to the equilibrium polyhedron of the other category. Thus, here as two categories of
identical repulsive particles, we have two categories of identical fermions as neutrons and
protons on neutron and proton shells. The probability that these nucleons lie on the vertices of
two reciprocal polyhedra is at a maximum. Thus, these polyhedra represent the most probable
forms of a neutron and of a relevant proton shell. Two reciprocal polyhedra (e.g., a cube and
an octahedron, or a dodecahedron and an icosahedron) have the same rotational symmetry, as
expected for a proton shell and its relevant neutron shell, e.g., an 1p proton shell and its
relevant 1p neutron shell or an 1d2s proton shell and its relevant 1d2s neutron shell. We will
comment on relevant proton and neutron shells again when we deal with orbital-angular-
momentum quantization of direction vectors of these shells.

Figure 3 represents the most probable forms of the l1p and the 1d2s nuclear shells
accommodating 6 and 12 neutrons or protons, respectively. The vectors shown in the figure
stand identically (that is, precisely to any order of accuracy) for the orbital-angular-
momentum quantization of directions with quantum numbers € = 1 and 2, respectively and -{
< m < £ [3]. This should happen any way since the most probable form of each of the 1p and
1d2s nuclear shells represented in Fig. 3 is also one out of the infinite number of
instantaneous nuclear forms these shells could have and as such all nuclear properties should
be valid and should have a geometrical representation. Specifically, the quantization of
direction vectors of orbital-angular-momentum with quantum numbers £ and m should result
as property of the symmetries of the relevant polyhedron for each shell. Indeed, these
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L

Fig.3. Most probable forms of the 1p and the 1d2s nucleon shells, and the corresponding orbital-angular-
momentum quantization of direction vectors for £ =1,-1 <m<land£=2,-2<m<2.

orbital-angular-momentum quantization of direction vectors for the 1p shell (which is
represented by the octahedron in Fig. 3) pass through the polyhedral vertices (or through the
middles of faces of the reciprocal shell which has a cube as its most probable form.). Also, the
orbital-angular-momentum quantization of direction vectors for the 1d2s shell (which is
represented by the dodecahedron in Fig. 3) also pass through the polyhedral vertices (or
through the middles of faces of the reciprocal shell which has an icosahedron as its most
probable form.). These orbital-angular-momentum quantization of direction vectors with
respect to the shown quantization axis z for each shell (which z axes coincide and become a
common quantization axis for both shells when the two relevant polyhedra are superimposed
with common center and orientations as shown.) form identically the angles

0¢™ = cos 'm/[Ne(L + 1)]. (14)

In Fig. 4 it is shown that similar properties to those represented in Fig. 3 are also valid for
all orbital angular momenta with quantum numbers £ = 1- 6 and - < m < £ with respect to the
polyhedra in the first three rows of the figure. In each block of the fourth row the relation
between the polyhedra in the same column (rows 1-3) is given [3]. The polyhedra represented
in Fig. 4 have symmetries in relation to orbital-angular-momentum quantization of direction
vectors which are included in the symmetries of the polyhedra standing for the most probable
forms of nuclear shells shown in the next figure.
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|ml=0,2,4,6

Fig.4. Angular-momentum quantization of direction vectors in relation to the polyhedra shown

In Fig. 5 all polyhedra representing the most probable forms of all nuclear shells involved
up to Pb are given and are considered superimposed with a common center and orientations as
shown [4]. At the
bottom of each block of the figure the order of a proton (Z) or of a neutron (N) shell is given
(i.e., Z1, N2 etc). In the next row inside parentheses the number of vertices for the relevant
polyhedron, inside brackets the cumulative number of vertices of all previous proton or
neutron polyhedra and that polyhedron, and the radius of that polyhedron (obtained by
packing the shells themselves, and by considering the average size of a proton and of a
neutron to be 0.860 fm and 0.974 fm, respectively) are also given. More details are not given
here for this figure, but they are extensively included in [4], where also an explanation for the
reason why some of Leech-polyhedra are taken as most probable forms of proton shells and
some of them as most probable forms. of neutron shells.

In this figure we consider that all nucleons simultaneously reside at their most probable
positions, which coincide with the vertices of the known polyhedral shells. Such a structure
resembles a crystal structure, but it is not, since it is not permanent. It represents only a
momentary (the most probable) structure which, of course, reappears periodically due to the
fact that the orbital-angular-momentum quantization of direction vectors are axes of
symmetry of the relevant polyhedra. The same property makes Fig.5 as a whole to have a
meaning as a pictorial
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Fig.5. Pictorial average nuclear structure of all closed shells up to 2°*Pb. The numbers in brackets given at the
bottom of the blocks of the figure coincide with the experimentally known magic and semi-magic numbers.

representation of the shell structure of a nucleus. It is very interesting to notice that the
cumulative numbers in brackets of Fig. 5 (mentioned earlier) are identical to the nuclear
magic and semi-magic numbers 2, 8, 20, 28, 40, 50, 70, 82, and 126. Thus, the magic
numbers here are strictly the result of the fermionic nature of identical nucleons and not the
result of a strong spin orbit coupling as assumed in the conventional shell model. It is in
support of the present explanation of nuclear magic numbers the fact that identical magic
numbers appear in certain cases of atomic clusters [5-7] where a strong spin orbit coupling
certainly does not exist. There, apparent fermions are the decoupled electrons, but also neutral
atoms in the cluster if the number of the electrons in an atom is an odd number, or the positive
ions in the core of the cluster after an odd number of electrons has been decoupled from each
neutral atom with an even number of electrons. The neutral atoms and the positive ions
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previously described behave like heavy fermions and obey all equations of section 2 here.
Thus, it is expected this type of fermions to form polyhedral shells of Leech type and the
decoupled electrons to behave like electrons in a giant atom where the polyhedra of positive
ions play the role of the core in this giant atom. The common ground of these seemingly
irrelevant structures is that they refer to mesoscopic physics of fermions.

Now, having this momentary (most probable) shell structure of a nucleus, we can proceed
either in a semiclassical way by employing a two-body potential, e.g., that of Eq. (15) [8]

V(rjj) =Vgr e-”Rrij /rij -Va e'“Arij /I‘ij R (15)

qr we can proceed in a purely quantum mechanical way by deriving the proper ho value for
each nuclear shell by employing Eq.(16), where the value of <t>>" for each shell is taken [9]
from Fig.5, as explained earlier

ho= h(n + 3/2)/[m<r>]. (16)

Thus, due to the antisymmetrization requirement of the wave function for the many nucleons
in a closed shell nucleus, we first arrive at the distribution of maxima of this wave function
and the size of the corresponding shell, then going backwards we can write the wave function
itself.

5. Conclusions

Starting with the simplest possible problem of two identical fermions in a square-well
potential with infinite walls, we arrive at the conclusion that identical fermions in a common
potential behave as if a repulsive force (of unknown nature) is acting among the particles [1].
Furthermore, we take advantage of this conclusion together with a mathematical paper [2]
dealing with identical repulsive particles on a sphere like protons and neutrons in a nuclear
shell, and we come to the conclusion that only a certain number of particles can be
accommodated in a shell which has as its most probable form that of a regular polyhedron or
its derivative polyhedra [2]. The same paper is used to examine the case where two kinds of
fermions, like protons and neutrons in a nucleus, are in a common potential. In this case the
proton and the relevant neutron shells have as their most probable forms reciprocal polyhedra
(i.e., polyhedra where the vertices of the one are the middle of faces of the other) [2]).

A proper superposition of such polyhedral shells leads to a pictorial shell- structure of a
close-shell nucleus [4]. Each time a polyhedral shell (of neutrons or protons) is completed, a
magic or semi-magic number appears, i.e., the sum of vertices of all proton or neutron
previous polyhedra and that polyhedron is equal to one of the numbers 2, 8, 20, 28, 40, 50, 70,
82, and 126. In addition, by assuming that the average size of a proton and of a neutron has
the value 0.860 fm and 0.974 fm, respectively, and by further considering that the above
polyhedral shells are superimposed with common center and in contact with each other, we
arrive at the average structure and the size of all closed-shell nuclei [4].

By utilizing this structure we can proceed in calculations of nuclear observables either in a
semi-classical way taking a two-fermion potential like that of Eq. (15) or in a purely quantum
mechanical way estimating the ho for each shell from Eq. (16)
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Finally, making a long story short, we can say that the fermionic nature of protons and
neutrons alone leads to the distribution of maxima of probability of the antisymmetrized wave
function of protons and neutrons on the vertices of equilibrium polyhedra [2] and to the
appearance of magic numbers [4]. The average structure thus derived is that represented in
Fig. 5 and could serve as a nuclear laboratory for calculations and a pictorial explanation of
nuclear observables and nuclear phenomena.
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