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Abstract

A new improved relativistic mean-field effective interaction with explicit density
dependence of the meson-nucleon couplings is proposed. The new effective interac-
tion is called DD-ME2 and it is tested in Relativistic Hartree-Bogoliubov (RHB)
and RPA calculations of nuclear ground-states and properties of excited states.
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1 Introduction

The self-consistent mean-field approach enables a description of the nuclear
many-body problem in terms of a universal energy density functional (1).
The exact energy functional, which includes all higher-order correlations, is
approximated with powers and gradients of ground-state nucleon densities. Al-
though it models the effective interaction between nucleons, a general density
functional is not necessarily related to any given NN potential. By employ-
ing global effective interactions, adjusted to empirical properties of symmetric
and asymmetric nuclear matter, and to bulk properties of few spherical nu-
clei, self-consistent mean-field models have achieved a high level of accuracy
in the description of ground states and properties of excited states in nuclei
throughout the periodic table.

An important class of self-consistent mean-field models belongs to the frame-
work of relativistic mean-field theory (RMF) (2; 3). RMF-based models have
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been successfully applied in analyses of a variety of nuclear structure phenom-
ena, not only in nuclei along the valley of β-stability, but also in exotic nuclei
with extreme isospin values and close to the particle drip lines. The RMF
framework has recently been extended to include effective Lagrangians with
density-dependent meson-nucleon vertex functions. The functional form of the
meson-nucleon vertices can be deduced from in-medium Dirac-Brueckner in-
teractions, obtained from realistic free-space NN interactions, or a phenomeno-
logical approach can be adopted, with the density dependence for the σ, ω
and ρ meson-nucleon couplings adjusted to properties of nuclear matter and
a set of spherical nuclei. It has been shown that, in comparison with standard
non-linear meson self-interactions, relativistic models with an explicit density
dependence of the meson-nucleon couplings provide an improved description
of asymmetric nuclear matter, neutron matter and nuclei far from stability.

In this work a new effective forces with density-dependent meson-nucleon cou-
plings is introduced to be used in RHB, and RRPA calculations of ground
states and excitations of spherical and deformed nuclei. The the new effective
interaction DD-ME2 is duscussed in Sec. II. In Sec. III the new interaction
is employed in a series of calculations of ground-state properties and giant
resonances. The main conclusions are summarized in Sec. IV.

2 The effective density-dependent interaction DD-ME2

A detailed discussion of the density-dependent nuclear hadron field theory is
contained in Refs. (6; 5; 4). The relativistic Hartree-Bogoliubov (RHB) model
and the random phase approximation (RPA) based on effective interactions
with density dependent meson-nucleon couplings are described in Refs. (7) and
(8), respectively. For the sake of completeness we include the essential features
of the relativistic Lagrangian density with medium-dependent vertices

L = ψ̄ (iγ · ∂ − m) ψ +
1

2
(∂σ)2 − 1

2
mσσ2

− 1

4
ΩμνΩ

μν +
1

2
m2

ωω2 − 1

4
�Rμν

�Rμν +
1

2
m2

ρ�ρ
2 − 1

4
FμνF

μν

− gσψ̄σψ − gωψ̄γ · ωψ − gρψ̄γ · �ρ�τψ − eψ̄γ · A(1 − τ3)

2
ψ . (1)

Vectors in isospin space are denoted by arrows, and bold-faced symbols will in-
dicate vectors in ordinary three-dimensional space. The Dirac spinor ψ denotes
the nucleon with mass m. mσ, mω, and mρ are the masses of the σ-meson,
the ω-meson, and the ρ-meson. gσ, gω, and gρ are the corresponding coupling
constants for the mesons to the nucleon. e2/4π = 1/137.036. The coupling
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Table 1
The parameter set DD-ME2

M = 939.000 (MeV) mω = 783.000 (MeV)

mρ = 763.000 (MeV) mσ = 550.124 (MeV)

gσ(ρsat) = 10.5396 gω(ρsat) = 13.0189

gρ(ρsat) = 3.6836

aσ = 1.3854 aω = 1.3879

bσ = 0.9781 bω = 0.8525

cσ = 1.5342 cω = 1.3566

dσ = 0.4661 dω = 0.4957

aρ = 0.5008

constants and unknown meson masses are parameters, adjusted to reproduce
nuclear matter properties and ground-state properties of finite nuclei. Ωμν ,
�Rμν , and F μν are the field tensors of the vector fields ω, ρ, and of the pho-
ton while gσ, gω, and gρ are assumed to be vertex functions of Lorentz-scalar
bilinear forms of the nucleon operators.

In the phenomenological approach of Refs. (5; 4; 7) the coupling of the σ-meson
and ω-meson to the nucleon field reads

gi(ρ) = gi(ρsat)fi(x) for i = σ, ω , (2)

where

fi(x) = ai
1 + bi(x + di)

2

1 + ci(x + di)2
(3)

is a function of x = ρ/ρsat, and ρsat denotes the baryon density at saturation
in symmetric nuclear matter. For the ρ-meson coupling the functional form
of the density dependence is suggested by Dirac-Brueckner calculations of
asymmetric nuclear matter (9)

gρ(ρ) = gρ(ρsat) exp [−aρ(x − 1)] . (4)

The isovector channel is parameterized by gρ(ρsat) and aρ. The eight indepen-
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Table 2
Nuclear matter properties at saturation calculated with the density-dependent ef-
fective interaction DD-ME2.

ρsat = 0.152 fm−3 E/A= -16.14 MeV K0 = 250.89 MeV

m∗ = 0.572 a4 = 32.3

dent parameters: seven coupling parameters and the mass of the σ-meson, are
adjusted to reproduce the properties of symmetric and asymmetric nuclear
matter, and the experimental binding energies, charge radii and neutron radii
of twelve spherical nuclei (10; 12; 11) : 16O, 40Ca, 48Na48, 72Ni, 90Zr, 116Sn,
124Sn, 132Sn, 204Pb, 208Pb, 214Pb, 210Po. For the open shell nuclei pairing cor-
relations were treated in the BCS approximation with empirical pairing gaps
(five-point formula).

The parameters of the new interaction, denoted DD-ME2 (13), are listed in
Table 1, while in Table 2 are given the corresponding nuclear matter properties
at saturation density: binding energy per nucleon, saturation density, nuclear
matter compression modulus, Dirac effective mass, and symmetry energy at
saturation.

3 Applications

We have performed calculations for ground states properties of more than two
hundrend spherical and deformed nuclei using the new effective interaction
DD-ME2. The calculations have been done in the RHB model and in the
pairing channel the the Gogny interaction (14) has been used

V pp(1, 2) =
∑

i=1,2

e−((r1−r2)/μi)
2

(Wi + BiP
σ − HiP

τ − MiP
σP τ ), (5)

with the set D1S (15) for the parameters μi, Wi, Bi, Hi, and Mi (i = 1, 2).

The calculated binding energies of these nuclei are compared with experimen-
tal values in Fig. 1. Except for a few Ni isotopes with N ≈ Z that are noto-
riously difficult to describe in a pure mean-field approach, and several transi-
tional medium-heavy nuclei, the calculated binding energies are generally in
very good agreement with experimental data. Although this illustrative cal-
culation cannot be compared with microscopic mass tables that include more
than 9000 nuclei (16; 17; 18; 19), we emphasize that the rms error including
all the masses shown in Fig. 1 is less than 900 keV.
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Fig. 1. Absolute deviations of the binding energies calculated with the DD-ME2
interaction from the experimental values (10).

Then, fully self-consistent RRPA (8) have been used to calculate excitation
energies of giant resonances in doubly-closed nuclei. The RRPA is formulated
in the canonical basis of the RHB model and, both in the ph and pp chan-
nels, the same interactions are used in the RHB equations that determine the
canonical quasiparticle basis, and in the matrix equations of the RRPA. For
208Pb the RRPA results for the monopole and isovector dipole response are
displayed in Fig. 2. For the multipole operator Q̂λμ the response function R(E)
is defined

R(E) =
∑

i

B(λi → 0f)
Γ/2π

(E − Ei)2 + Γ2/4
, (6)

where Γ is the width of the Lorentzian distribution, and

B(λi → 0f) =
1

2J + 1
|〈0f ||Q̂λ||λi〉|2. (7)

In the examples considered here the continuous strength distributions are
obtained by folding the discrete spectrum of RRPA states with a Lorentzian
with constant width Γ = 1 MeV.The calculated peak energies of the ISGMR:
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Fig. 2. The isoscalar monopole (a), and the isovector dipole (b) strength distribu-
tions in 208Pb calculated with the effective interaction DD-ME2. The experimen-
tal excitation energies are: 14.1 ± 0.3 MeV (20) for the monopole resonance, and
13.3 ± 0.1 MeV (21)

13.9 MeV, and IVGDR: 13.5 MeV should be compared with the experimental
excitation energies: E = 14.1±0.3 MeV (20) for the monopole resonance, and
E = 13.3±0.1 MeV (21) for the dipole resonance, respectively. The agreement
of the calculated values with the empirical ones is excellent.

4 Summary and conclusions

A new relativistic mean-field effective interaction with explicit density de-
pendence of the meson-nucleon couplings is proposed. The parameters are
adjusted to nuclear matter properties and to bulk properties of twelve spher-
ical nuclei. In order to illustrate the principal features of the new interaction,
we have analyzed ground-state properties and excitation energies of giant res-
onances. Ground states of spherical and deformed nuclei have been calculated
in the RHB model with the DD-ME2 effective interaction in the particle-
hole channel, and with the Gogny interaction D1S in the pairing channel.
The fully self-consistent RRPA has been used to calculate excitation ener-
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gies of giant resonances in doubly magic nuclei. We particularly emphasize
the very good results for the masses of approximately 200 nuclei and for the
isoscalar monopole and isovector dipole giant resonances. DD-ME2 represents
a valuable addition to the set of relativistic mean-field interactions. Future
applications will include the calculation of a microscopic mass table, mapping
the drip lines, and a more extensive study of giant resonances.
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