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Nuclear energy density functionals constrained by low-energy QCD

D. Vretenar a

aPhysics Department, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia

Relativistic nuclear energy density functionals are formulated and developed, guided
by two important features that establish connections with chiral dynamics and the sym-
metry breaking pattern of low-energy QCD: a) strong scalar and vector fields related to
in-medium changes of QCD vacuum condensates; b) the long- and intermediate-range
interactions generated by one-and two-pion exchange, derived from in-medium chiral per-
turbation theory.

1. INTRODUCTION

The successes of modern nuclear structure models in predicting many new phenomena
in regions of exotic nuclei far from stability, and the recent applications of chiral effective
field theory to nucleon-nucleon scattering and the few-body problem, have highlighted
one of the fundamental problems in theoretical nuclear physics: the relationship between
low-energy, non-perturbative QCD and the rich structure of nuclear many-body systems.

The most complete and accurate description of structure phenomena in heavy nuclei
is currently provided by self-consistent non-relativistic and relativistic mean-field models
[1,2]. The self-consistent mean-field approach to nuclear structure represents an approxi-
mate implementation of Kohn-Sham density functional theory. DFT provides a descrip-
tion of the nuclear many-body problem in terms of an energy density functional E[ρ].
Mean-field models approximate the exact energy functional which includes all higher-
order correlations. A major goal of nuclear structure theory is to build an energy density
functional which is universal, in the sense that the same functional is used for all nu-
clei, with the same set of parameters. This framework should then provide a reliable
microscopic description of infinite nuclear and neutron matter, ground-state properties
of bound nuclei, rotational spectra, low-energy vibrations and large-amplitude adiabatic
properties [3].

In order to formulate a microscopic density functional, one must be able to go beyond
the mean-field approximation and systematically calculate the exchange-correlation part,
Exc[ρ], of the energy functional, starting from the relevant active degrees of freedom
at low energy. The exact Exc includes all many-body effects. Thus the usefulness of
DFT crucially depends on our ability to construct accurate approximations to the exact
exchange-correlation energy. The natural microscopic framework is chiral effective field
theory. It is based on the separation of scales between long-range pion-nucleon dynamics,
described explicitly, and short-distance interactions not resolved in detail at low energies.

An extensive program, synthesizing effective field theory methods and density functional
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theory, has recently been introduced [4–6]. It is based on the following conjectures: (i)
the nuclear ground state is characterized by strong scalar and vector mean fields which
have their origin in the in-medium changes of the scalar quark condensate (the chiral
condensate) and of the quark density, (ii) nuclear binding and saturation arise primarily
from chiral (pionic) fluctuations (reminiscent of van der Waals forces) in combination
with Pauli blocking effects and three-nucleon (3N) interactions, superimposed on the
condensate background fields and calculated according to the rules of in-medium chiral
perturbation theory (ChPT).

The starting point is the description of nuclear matter based on the chiral effective
Lagrangian with pions and nucleons, recently improved by including explicit Δ(1232)
degrees of freedom [7]. The relevant “small” scales are the Fermi momentum kf , the
pion mass mπ and the Δ − N mass difference Δ ≡ MΔ − MN � 2.1mπ, all of which
are well separated from the characteristic scale of spontaneous chiral symmetry breaking,
4πfπ � 1.16 GeV with the pion decay constant fπ = 92.4 MeV. The calculations have
been performed to three-loop order in the energy density. They incorporate the one-
pion exchange Fock term, iterated one-pion exchange and irreducible two-pion exchange,
including one or two intermediate Δ’s. The resulting nuclear matter equation of state is
given as an expansion in powers of the Fermi momentum kf . The expansion coefficients
are functions of kf/mπ and Δ/mπ, the dimensionless ratios of the relevant small scales.
Regularization dependent contributions to the energy density are absorbed in contact
interactions, with constants representing unresolved short-distance dynamics.

This framework is translated into a covariant point-coupling model for finite nuclei,
with density-dependent interaction vertices. The chiral nuclear matter energy density
functional is mapped onto the exchange-correlation energy density functional, including
gradient corrections. This model has been employed in the description of ground-state
properties of a broad range of spherical and deformed nuclei. The results have been
analyzed in comparison with data on binding energies, charge radii, neutron radii and de-
formation parameters for several isotopic chains, and found at the similar level of quantita-
tive agreement with data as those obtained with the best phenomenological self-consistent
mean-field models.

2. THE NUCLEAR ENERGY DENSITY FUNCTIONAL

In the DFT framework [8,9] the free energy functional is commonly decomposed into
three separate terms:

FHK [ρ] = Ekin[ρ] + EH [ρ] + Exc[ρ] , (1)

where Ekin is the kinetic energy of the non-interacting N-particle system, EH is a Hartree
energy, and Exc denotes the exchange-correlation energy which, by definition, contains
everything else. The practical usefulness of the Kohn-Sham scheme depends entirely on
whether accurate approximations for Exc can be found. The local ground-state density
is constructed using so-called auxiliary orbitals, ρ(r) =

∑N
k=1 |ψk

KS(r)|2, which are unique
functionals of the density ρ(r), i.e. the KS scheme defines a self-consistency problem.

The conjectures on which the present approach to the nuclear energy density func-
tional is based, with contact to low-energy QCD, can be adapted as follows: (i) The
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large scalar and vector mean fields (with opposite signs) that have their origin in the in-
medium changes of the chiral condensate and of the quark density, determine the Hartree
energy functional EH [ρ]. (ii) The chiral (pionic) fluctuations including one- and two-pion
exchange with single and double virtual Δ(1232)-isobar excitations plus Pauli blocking
effects, determine the exchange-correlation energy functional Exc[ρ].

The density distribution and the energy of the nuclear ground state are obtained
from self-consistent solutions of the relativistic generalizations of the linear single-nucleon
Kohn-Sham equations. In order to derive those equations it is useful to construct a point-
coupling model with density dependent interaction terms, designed such as to reproduce
the detailed density dependence of the nucleon self-energies resulting from EH [ρ]+Exc[ρ].
A successful framework that meets these requirements for a two component system of pro-
tons and neutrons starts from a relativistic Lagrangian which includes isoscalar-scalar (S),
isoscalar-vector (V), isovector-scalar (TS) and isovector-vector (TV) effective four-fermion
interaction vertices with density-dependent coupling strengths:

L = Lfree + L(1)
int + L(2)

int + Lcoul. (2)

The four terms read:

Lfree = ψ̄(iγμ∂
μ − MN)ψ , (3)

L(1)
int = −1

2
GS(ρ̂)(ψ̄ψ)(ψ̄ψ) − 1

2
GV (ρ̂)(ψ̄γμψ)(ψ̄γμψ)

−1

2
GTS(ρ̂)(ψ̄�τψ) · (ψ̄�τψ) − 1

2
GTV (ρ̂)(ψ̄�τγμψ) · (ψ̄�τγμψ) , (4)

L(2)
int = −1

2
DS∂ν(ψ̄ψ)∂ν(ψ̄ψ) , (5)

Lem = eAμψ̄
1 + τ3

2
γμψ − 1

4
FμνF

μν , (6)

where ψ is the Dirac field of the nucleon with its two isospin components (p and n).
Vectors in isospin space are denoted by arrows. In addition to the free nucleon La-
grangian Lfree and the interaction terms contained in L(1)

int , when applied to finite nuclei,
the model must include the coupling Lem of the protons to the electromagnetic field Aμ

with Fμν = ∂μAν − ∂νAμ, and a derivative (surface) term L(2)
int . One could, of course, con-

struct additional derivative terms in L(2)
int , further generalized to include density dependent

strength parameters. However, there appears to be no need in practical applications to
go beyond the simplest ansatz (5) with a constant DS. The classical variational principle
applied to the Lagrangian (2) leads to the self-consistent single-nucleon Dirac equations,
the relativistic analogue of the (non-relativistic) Kohn-Sham equations. The nuclear dy-
namics produced by chiral (pionic) fluctuations in the medium is now encoded in the
density dependence of the interaction vertices.

The couplings Gi(ρ̂) (i = S, V, TS, TV ) are decomposed as follows:

Gi(ρ̂) = G
(0)
i + G

(π)
i (ρ̂) (for i = S, V )

and Gi(ρ̂) = G
(π)
i (ρ̂) (for i = TS, TV ) , (7)

into density-independent parts G
(0)
i which arise from strong isoscalar scalar and vector

background fields, and density-dependent parts G
(π)
i (ρ̂) generated by (regularized) one-

41

16th Hellenic Symposium on Nuclear Physics



and two-pion exchange dynamics. It is assumed that only pionic processes contribute to
the isovector channels.

The relativistic density functional describing the ground-state energy of the system can
be re-written as a sum of four distinct terms:

E0[ρ̂] = Efree[ρ̂] + EH[ρ̂] + Ecoul[ρ̂] + Eπ[ρ̂] , (8)

with

Efree[ρ̂] =
∫

d3r 〈φ0|ψ̄[−iγ · ∇ + MN ]ψ|φ0〉 , (9)

EH[ρ̂] =
1

2

∫
d3r {〈φ0|G(0)

S (ψ̄ψ)2|φ0〉 + 〈φ0|G(0)
V (ψ̄γμψ)2|φ0〉} , (10)

Eπ[ρ̂] =
1

2

∫
d3r

{
〈φ0|G(π)

S (ρ̂)(ψ̄ψ)2|φ0〉 + 〈φ0|G(π)
V (ρ̂)(ψ̄γμψ)2|φ0〉

+〈φ0|G(π)
TS(ρ̂)(ψ̄�τψ)2|φ0〉 + 〈φ0|G(π)

TV (ρ̂)(ψ̄γμ�τψ)2|φ0〉
− 〈φ0|D(π)

S [∇(ψ̄ψ)]2|φ0〉
}

, (11)

Ecoul[ρ̂] =
1

2

∫
d3r 〈φ0|Aμeψ̄

1 + τ3

2
γμψ|φ0〉 , (12)

where |φ0〉 denotes the nuclear ground state. Here Efree is the energy of the free (relativis-
tic) nucleons including their rest mass. EH is a Hartree-type contribution representing
strong scalar and vector mean fields, later to be connected with the leading terms of
the corresponding nucleon self-energies deduced from in-medium QCD sum rules. Fur-
thermore, Eπ is the part of the energy generated by chiral πNΔ-dynamics, including a
derivative (surface) term, with all pieces explicitly derived in [7].

3. LINKING THE ENERGY FUNCTIONAL TO THE LOW-ENERGY SEC-
TOR OF QCD.

The QCD ground state (or “vacuum”) is characterized by strong condensates of quark-
antiquark pairs and gluons, an entirely non-perturbative phenomenon. The quark conden-
sate 〈q̄q〉, i.e. the ground state expectation value of the scalar quark density, plays a par-
ticularly important role as an order parameter of spontaneously broken chiral symmetry.
At a renormalization scale of about 1 GeV (with up and down quark masses mu+md � 12
MeV) the value of the chiral vacuum condensate is 〈q̄q〉0 � −(240 MeV)3 � −1.8 fm−3.

In-medium QCD sum rules relate the leading changes of the scalar quark condensate
and of the quark density at finite baryon density, with the scalar and vector self-energies
of a nucleon in the nuclear medium. To first order in the scalar and baryon densities,
these self-energies can be expressed as follows [10,11]:

Σ
(0)
S = −σNMN

m2
πf 2

π

ρS and Σ
(0)
V =

4(mu + md)MN

m2
πf2

π

ρ , (13)

where σN = 〈N |mq q̄q|N〉 is the nucleon sigma term (� 50 MeV), mπ is the pion mass

(138 MeV), and fπ = 92.4 MeV is the pion decay constant. The resulting Σ
(0)
S and Σ

(0)
V

are individually of the order of 300 – 400 MeV in magnitude. Their ratio

Σ
(0)
S

Σ
(0)
V

= − σN

4(mu + md)

ρS

ρ
(14)

42

16th Hellenic Symposium on Nuclear Physics



is close to −1, suggesting a large cancellation of scalar and vector potentials in the single-
nucleon Dirac equation, a feature characteristic of relativistic mean-field phenomenology.

Comparing the expressions for the isoscalar vector and scalar potentials of the single-
nucleon Dirac equations, with the Eq. (13) for the condensate background self-energies,
respectively, the following estimates hold for the couplings of the nucleon to the back-
ground fields (the Hartree terms in the energy functional):

G
(0)
S = −σNMN

m2
πf2

π

and G
(0)
V =

4(mu + md)MN

m2
πf2

π

, (15)

which implies G
(0)
S � −G

(0)
V � −10.6 fm2 for typical values σN � 48 MeV and mu + md �

12 MeV. In the actual applications to finite nuclei, G
(0)
S,V will have to be fine-tuned.

The many-body effects represented by the exchange-correlation density functional are
approximated by chiral πNΔ-dynamics, including Pauli blocking effects. In the simplest
DFT approach, the exchange-correlation energy for a finite system is determined in the
local density approximation (LDA) from the exchange-correlation functional of the cor-
responding infinite homogeneous system, replacing the constant density ρ by the local
density ρ(r) of the actual inhomogeneous system. In our case the exchange-correlation
terms of the nuclear density functional are determined within LDA by equating the cor-
responding self-energies in the single-nucleon Dirac equation, with those arising from
the in-medium chiral perturbation theory calculation of πNΔ-dynamics in homogeneous
isospin symmetric and asymmetric nuclear matter.

The density-dependent couplings G
(π)
i are expressed as polynomials in fractional powers

of the baryon density:

G
(π)
i (ρ) = ci1 + ci2ρ

1
3 + ci3ρ

2
3 + ci4ρ . . . (i = S, V, TS, TV ) . (16)

The coefficient D
(π)
S of the derivative term in the equivalent point-coupling model can be

determined from ChPT calculations for inhomogeneous nuclear matter. The inclusion of
derivative terms in the model Lagrangian and the determination of its strength parameters
from ChPT actually goes beyond the local density approximation. The term Eq. (5)
represents a second-order gradient correction to the LDA, i.e. the next-to-leading term in
the gradient expansion of the exchange-correlation energy calculated by in-medium chiral
perturbation theory.

While bulk properties of infinite nuclear matter are useful for orientation, the large
amount of nuclear observables provides a far more accurate data base that permits a fine
tuning of the parameters. The total number of adjustable parameters of the point-coupling
model is seven, and they are fixed simultaneously to properties of nuclear matter, and to
binding energies, charge radii and differences between neutron and proton radii of spherical
nuclei, starting from the estimates for the couplings of the condensate background fields
(Hartree term), and the constants in the expressions for the self-energies arising from
chiral πNΔ-dynamics (exchange-correlation term). The resulting optimal parameter set
(FKVW) [6] is remarkably close to the anticipated QCD sum rule and ChPT values, with
the exception of the two constants associated with three-body correlations, for which the
fit to nuclear data systematically requires an attractive shift as compared to the ChPT
calculation [7].
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4. NUCLEAR GROUND-STATE PROPERTIES

The effective FKVW interaction has been tested in self-consistent calculations of ground-
state observables for spherical and deformed medium-heavy and heavy nuclei. The cal-
culations, including open-shell nuclei, are performed in the framework of the relativistic
Hartree-Bogoliubov (RHB) model, a relativistic extension of the conventional Hartree-
Fock-Bogoliubov method, that provides a basis for a consistent microscopic description
of ground-state properties of medium-heavy and heavy nuclei, low-energy excited states,
small-amplitude vibrations, and reliable extrapolations toward the drip lines [2]. In the
particle-hole channel the new microscopic FKVW interaction [6] is employed, in compari-
son with one of the most successful effective meson-exchange phenomenological relativistic
mean-field interactions: DD-ME1 [12]. Pairing effects in nuclei are restricted to a narrow
window of a few MeV around the Fermi level. Their scale is well separated from the
scale of binding energies which are in the range of several hundred to thousand MeV, and
thus pairing can be treated as a non-relativistic phenomenon. In most applications of
the RHB model the pairing part of the well known and successful Gogny force [13] has
been employed in the particle-particle channel, and the same interaction is used in the
illustrative examples included in this section.
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Figure 1. The deviations (in percent) of the calculated binding energies from the ex-
perimental values (upper panel), and the calculated charge isotope shifts in comparison
with data, for the chain of even-A Pb isotopes. The charge isotope shifts are defined:
Δr2

ch = r2
ch(A) − r2

ch(
208Pb) and Δr2

LD = r2
LD(A) − r2

LD(208Pb), where the liquid-drop
estimate is r2

LD(A) = 3
5
r2
0A

2/3.

44

16th Hellenic Symposium on Nuclear Physics



The isotopic dependence of the deviations (in percent) between the calculated binding
energies and the experimental values for even-A Pb nuclei, is plotted in the upper panel
of Fig. 1. It is interesting to note that, although DD-ME1 and FKVW represent different
physical models, they display a similar mass dependence of the calculated binding energies
for the Pb isotopic chain. On a quantitative level the FKVW interaction produces better
results, with the absolute deviations of the calculated masses below 0.1 % for A ≥ 190. In
lighter Pb isotopes one expects that the observed shape coexistence phenomena will have
a pronounced effect on the measured masses. Because of the intrinsic isospin dependence
of the effective single-nucleon spin-orbit potential, relativistic mean-field models naturally
reproduce the anomalous charge isotope shifts. The well known example of the anomalous
kink in the charge isotope shifts of Pb isotopes is illustrated in the lower panel of Fig. 1.
The results of RHB calculations with the DD-ME1 and FKVW effective interactions are
shown in comparison with experimental values. Both interactions reproduce in detail the
A-dependence of the isotope shifts and the kink at 208Pb.
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Figure 2. The deviations (in percent) between the theoretical and experimental values of
the energy spacings between spin-orbit partner-states in doubly closed-shell nuclei.

One of the principal advantages of using the relativistic framework lies in the fact
that the effective single-nucleon spin-orbit potential arises naturally from the Dirac equa-
tion. The single-nucleon potential does not introduce any adjustable parameter for the
spin-orbit interaction. In the FKVW model, in particular, the large effective spin-orbit
potential in finite nuclei is generated by the strong scalar and vector condensate back-
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ground fields of about equal magnitude and opposite sign, induced by changes of the
QCD vacuum in the presence of baryonic matter [5]. Fig. 2 displays the deviations (in
percent) between the calculated and experimental values of the energy spacings between
spin-orbit partner-states in a series of doubly closed-shell nuclei. The theoretical spin-
orbit splittings have been calculated with the FKVW and DD-ME1 interactions. For the
phenomenological DD-ME1 interaction the large scalar and vector nucleon self-energies
which generate the spin-orbit potential, arise from the exchange of “sigma” and “omega”
bosons with adjustable strength parameters. One notices that, even though the values
calculated with DD-ME1 are already in very good agreement with experimental data, a
further improvement is obtained with the FKVW interaction. This remarkable agreement
indicates that the initial estimates for the condensate background couplings have been
more realistic than anticipated, considering the uncertainties of lowest-order in-medium
QCD sum rules.
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Figure 3. Comparison between the RHB model (FKVW interaction plus Gogny pairing)
predictions for the ground-state quadrupole deformation parameters of the Nd, Sm, Gd,
Dy, Er, Yb, Hf, W, and Os isotopes, and experimental values.

Deformed nuclei with N > Z present further important tests for nuclear structure
models. Ground-state properties, in particular, are sensitive to the isovector channel of

46

16th Hellenic Symposium on Nuclear Physics



the effective interaction, to the spin-orbit term of the effective single-nucleon potentials
and to the effective mass. The nuclear density functional constrained by low-energy
QCD has been tested in the region 60 ≤ Z ≤ 80. Predictions of the RHB calculations
for the total binding energies, charge radii and ground-states quadrupole deformations
of even-Z isotopic chains have been compared with available data. With the FKVW
effective interaction in the particle-hole channel, and pairing correlations described by
the finite range Gogny D1S interaction, very good agreement with experimental values
has been found not only for the binding energies and charge radii over the entire region
of deformed nuclei, but excellent results have also been obtained for the ground-state
quadrupole deformations.

The level of agreement with data is illustrated in Fig. 3 where, for the chains of Nd,
Sm, Gd, Dy, Er, Yb, Hf, W, and Os isotopes, the calculated ground-state quadrupole
deformation parameters β2, proportional to the expectation value of the quadrupole oper-
ator 〈φ0|3z2 − r2|φ0〉, are displayed in comparison with the empirical data extracted from
B(E2) transitions. One notices that the RHB results reproduce not only the global trend
of the data but also the saturation of quadrupole deformations for heavier isotopes.

5. SUMMARY AND CONCLUSIONS

A relativistic nuclear energy density functional has been introduced with connections
to two closely linked features of QCD in the low-energy limit: a) in-medium changes of
vacuum condensates; b) spontaneous chiral symmetry breaking.

The leading changes of the chiral (quark) condensate and quark density in the presence
of baryonic matter are sources of strong (attractive) scalar and (repulsive) vector fields
experienced by nucleons in the nucleus. These fields produce Hartree potentials of about
0.35 GeV in magnitude at nuclear matter saturation density, in accordance with QCD sum
rules. While these scalar and vector potentials cancel approximately in their contribution
to the energy, they are at the origin of the large spin-orbit splitting in nuclei.

The spontaneously broken chiral symmetry in QCD introduces pions as Goldstone
bosons with well-defined (derivative) couplings to baryons plus symmetry breaking cor-
rections. In the present approach the exchange-correlation part of the energy density
functional is deduced from the long- and intermediate-range interactions generated by
one- and two-pion exchange processes. They have been computed using in-medium chiral
perturbation theory with explicit inclusion of Δ(1232) degrees of freedom which turn out
to be important. Regularization dependent contributions to the energy density, calcu-
lated at three-loop level, are absorbed in contact interactions with constants representing
unresolved short-distance dynamics.

This framework is translated into a point-coupling model with density-dependent in-
teraction vertices. This is done for the practical purpose of deriving and solving self-
consistent Dirac equations (relativistic analogues of Kohn-Sham equations) in order to
determine the nucleon densities which enter the energy functional. The construction of
the density functional involves an expansion of nucleon self-energies in powers of the Fermi
momentum up to and including terms of order k6

f , or equivalently, O(ρ2) in the proton
and neutron densities. The exchange-correlation energy functional in nuclear matter, de-
termined by in-medium chiral perturbation theory, is used in Kohn-Sham calculations of
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finite nuclei by employing a second-order gradient correction to the local density approx-
imation. Up to this order the present model has seven parameters, four of which are
related to contact (counter) terms that appear in the chiral perturbation theory treat-
ment of nuclear matter. One parameter fixes a surface (derivative) term and two more
represent the strengths of scalar and vector Hartree fields.

In the ”best fit” set which reproduces a large amount of data on nuclear ground state
properties, five of those seven parameters turn out to be surprisingly close to estimates and
predictions from in-medium QCD sum rules and ChPT calculations for nuclear matter.
The model works extremely well when confronted with a large number of high-precision
nuclear data over a broad range of spherical and deformed nuclei. Even though the quality
of the results is on the level of the best phenomenological (non-relativistic and relativistic)
self-consistent mean-field models, obviously the goal is to further improve the accuracy of
the calculated nuclear ground-state energies and density distributions all over the periodic
table.

Chiral effective field theory provides a consistent microscopic framework in which both
the isoscalar and isovector channels of a universal nuclear energy density functional can
be formulated. The present approach to nuclear DFT establishes a fundamental link
between low-energy QCD and ground-state properties of finite nuclei. From a practi-
cal point of view, a fully microscopic basis of effective nuclear interactions is especially
important for studies of nuclear structure in regions far from the valley of β-stability,
where extrapolations of phenomenological (non-relativistic and relativistic) models lack
predictive power.

I would like to thank my collaborators Paolo Finelli, Norbert Kaiser, and Wolfram
Weise, whose recent works have contributed to the subject reviewed in this article.
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