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We present an evaluation of nucleon to Δ electromagnetic form factors within Lattice
QCD. The EMR and CMR ratios are calculated both in the quenched theory and using
two degenerate flavors of dynamical Wilson fermions. We obtain values in qualitative
agreement to experiment. In addition, we evaluate the isovector Sachs electromagnetic
form factors of the nucleon both in the quenched and unquenched theory for momentum
transfer squared in the range between 0.1 and 2 GeV2. The nucleon magnetic moment
and r.m.s. radii are obtained using chiral effective theory to extrapolate to the physical
pion mass.

1. INTRODUCTION

Despite the apparent simplicity of the Lagrangian of Quantum Chromodynamics (QCD)
it is believed to describe a wide spectrum of phenomena in the hadronic world. The low
energy nonperturbative regime remains, however, out of reach to analytical methods and
lattice QCD is the only applicable method. Lattice QCD is a discretized version of the
continuum theory defined on finite lattice and evaluation of observable is carried out
numerically within the field-theoretic path integral formulation in Euclidean time. The
dependence of the observables on the lattice spacing and finite volume vanishes in a con-
trolled manner as the lattice spacing is made smaller and the volume large enough. Besides
evaluation of masses, many other hadron properties are amenable to lattice calculations,
such as magnetic moments, radii, form factors and structure functions, along with strong
matrix elements relevant to for weak processes, providing valuable checks of the Standard
Model. A long standing problem connected to doubling of fermion species on the lattice
lead to several proposals one of which was proposed by Wilson in 1974 [1]. The so called
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Wilson fermions break chiral symmetry which is only recovered in the continuum limit.
Recently the conceptual problems of having chiral fermions on the lattice were solved
through a 5-dimensional formulation which leads to what it is known as Domain Wall
fermions (DWF) [2]. An equivalent formulation is the construction of a Dirac operator
that satisfies the Ginspang-Wilson relation known as overlap formulation [3]. In this work
we will be using both Wilson fermions and DWF.

The evaluation of Euclidean path integrals on a lattice consists of two major numerical
endeavors: first, the generation of a representative set of QCD configurations at suffi-
ciently small lattice resolution and sufficiently large volume and second, the computation
of the quark propagator for each member of the ensemble. The evaluation of the quark
propagator requires the inversion of the lattice Dirac operator which is a huge sparse
matrix of dimension 12V × 12V , where V is the 4-dimensional lattice volume in the case
of Wilson fermions or the 5-dimensional volume for DWF. This makes the calculation
of domain wall propagators an order of magnitude larger. Five years ago, due to lim-
ited computer resources, it was common practice to omit pair creation. This is known
as the quenched approximation. However, during the last five years, improvements in
algorithms combined with bigger computers have enable the simulation of configurations
allowing pair creation of light quarks. These dynamical configurations either done with
Wilson fermions or using a different fermion discretization scheme known as staggered
fermions. We will use such dynamical quark configurations to study the electromagnetic
properties of the nucleon and the Δ. Despite the recent progress in computer technology
evaluation dynamical simulations are only possible for quark masses larger than physical.
The dependence of many physical observables on the pion mass has been worked out using
chiral effective theories enabling extrapolation of lattice results to the physical point.

In this talk we summarize our results on the calculation of the nucleon to Δ electro-
magnetic transition form factors [4] and the nucleon isovector form factors [5]. We use
Wilson fermions in the quenched theory as well as with two degenerate flavors of dynam-
ical Wilson fermions. In addition we use configurations generated using three dynamical
staggered quarks. Since staggered fermions are difficult to use for the observables we
want to study we used domain wall fermions for the valence quarks. Given that we obtain
results using two different formulations for the dynamical quarks with different depen-
dence on the lattice parameters agreement of the results provides a non-trivial check of
consistency of our lattice methodology.

2. NUCLEON DEFORMATION AND THE γ∗ N → Δ FORM FACTORS

The existence of deformation in the nucleon, the fundamental constituent of matter,
it is thought to be connected with quadrupole strength in the electromagnetic excitation
to the Δ(1232) resonance. Precise experiments with real and virtual photons [6–9], have
measured a non-zero quadrupole strength that can be accounted for if one uses deformed
N and Δ states within a variety of models.

The matrix element for the N to Δ electromagnetic transition for on-shell nucleon and
Δ states and real or virtual photons has the form [10]

〈 Δ(p′, s′) |jμ| N(p, s)〉 = i

√
2

3

(
mΔ mN

EΔ(p′) EN (p)

)1/2

ūτ (p
′, s′)Oτμu(p, s) (1)
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where p, s and p′, s′ denote initial and final momenta and spins and uτ(p
′, s′) is a spin-

vector in the Rarita-Schwinger formalism. The operator Oτμ can be decomposed in terms
of the Sachs form factors as

Oτμ = GM1(q
2) Kτμ

M1 + GE2(q
2) Kτμ

E2 + GC2(q
2) Kτμ

C2 , (2)

where the magnetic dipole, GM1, the electric quadrupole, GE2, and the Coulomb quadrupole,
GC2, form factors depend on the momentum transfer squared, q2 = (p′ − p)2. The exact
expressions for the kinematical functions Kτμ can be found in ref. [11]. The ratios REM

(or EMR) and RSM (or CMR) in the rest frame of the Δ are defined via

REM = −
GE2(q

2)

GM1(q2)
, RSM = −

|q|

2mΔ

GC2(q
2)

GM1(q2)
. (3)

The extraction of the Sachs form factors requires the computation of the three-point
function

〈GΔjμN
σ (t2, t1;p

′,p; Γ)〉 = (4)∑
x2, x1

exp(−ip ′ · x2) exp(+i(p ′ − p) · x1) Γβα〈 Ω | T
[
χα

σ(x2, t2)j
μ(x1, t1)χ̄

β(0, 0)
]
| Ω 〉 ,

along with the nucleon and Δ two-point functions

〈GNN(t,p; Γ)〉 =
∑
x

e−ip·x Γβα 〈Ω| T χα(x, t)χ̄β(0, 0) |Ω 〉

〈GΔΔ
στ (t,p ′; Γ)〉 =

∑
x

e−ip ′
·x Γβα 〈Ω| T χα

σ(x, t)χ̄β
τ (0, 0) |Ω 〉 . (5)

The nucleon source is taken at time zero, the photon is absorbed by a quark at a later
time t1 and the Δ sink is at a later time t2. The interpolating fields χp(x) and χΔ+

σ (x)
create an initial trial state with the proton and the Δ quantum numbers. We use smear-
ing techniques in order to maximize the overlap to the initial trial states to the true
hadronic states. The matrices Γ are projections for the Dirac indices [4]. Provided the
Euclidean time separations t1 and t2 − t1 are large enough, the time dependence and field
renormalization constants cancel in the ratio

Rσ(t2, t1;p
′,p ; Γ; μ) =

〈GΔjμN
σ (t2, t1;p

′,p; Γ)〉

〈GΔΔ
ii (t2,p ′; Γ4)〉

[
〈GΔΔ

ii (t2,p
′; Γ4)〉

〈GNN(t2,p; Γ4)〉

〈GNN(t2 − t1,p; Γ4)〉 〈G
ΔΔ
ii (t1,p

′; Γ4)〉

〈GΔΔ
ii (t2 − t1,p ′; Γ4)〉 〈GNN(t1,p; Γ4)〉

]1/2

t2−t1�1,t1�1
⇒ Πσ(p ′,p ; Γ; μ) . (6)

We always consider a frame where the Δ is at rest and therefore q = p′ − p = −p.
Q2 = −q2 is the Euclidean momentum transfer squared. Determining Πσ(q ; Γ; μ) for
given values of σ and Γ by fitting to the plateau of Rσ(t2, t1;p

′,p ; Γ; μ) enables us to
obtain the Sachs form factors. At the hadronic level, with the inclusion of complete sets
of baryonic states and the use of Dirac and Rarita-Schwinger spinors the ratio of Eq. (6)
leads to linear relations for the form factors. A convenient method for the evaluation of
three-point functions is the sequential inversion through the sink. This requires fixing the
state at t2 have the quantum numbers of Δ with a fixed vector index σ. The projection
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matrices Γ at the sink are also fixed. With one sequential inversion one can then evaluate
the three-point function for any operator inserted at any intermediate time t1. A novelty
of our work is the construction of linear combinations of Πσ(q ; Γ; μ), which project to
either magnetic or quadrupole form factors and are optimized in the sense that the a
maximal number of statistically independent measurements contribute to a given Q2.
This improves considerably the statistical accuracy that we obtained for the form factors.
The optimized combination used for extracting GM1 is:

S1(q; μ) =
3∑

σ=1

Πσ(q ; Γ4; μ) = iA
{
(p2 − p3)δ1,μ + (p3 − p1)δ2,μ + (p1 − p2)δ3,μ

}
GM1(Q

2) .

The kinematical constant A and the combinations used for extracting GE2 and GC2 can be
found in Ref. [12]. The full set of lattice measurements of these optimal matrix elements
for all possible values of μ and q that give the same Q2 are analyzed simultaneously
through the solution of the overconstrained system of measured ratios extracting the
three form factors.

In Fig. 1 we present the results for GM1 from all our ensembles. As can be seen there
is agreement between the results obtained in the hybrid scheme where we use staggered
sea quarks and domain wall valence quarks and those obtained with Wilson fermions.
Performing a linear extrapolation in m2

π yields results at the physical point that are
higher than experiment. We expect such a linear behavior to break down as the pion
mass decreases for low Q2 values. However we do not have a description from chiral
theory on the dependence of these quantities on the pion mass. The REM and RSM ratios

Figure 1. G∗

m(Q2) ≡ 1/
√

1 + Q2/(mN + mΔ)2 GM1(Q
2) as function of Q2. Experimental

results from Ref. [13] are shown by the filled triangles.

are shown in Fig. 2. Results are shown for the Wilson ensembles only since the signal in
the hybrid scheme is too noisy to allow a comparison. In the Wilson theory negative values
are favored in agreement to experiment. Given that these form factors are suppressed by
two orders of magnitude as compared to the dominant magnetic dipole form factor, being
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able to confirm a negative non-zero value even in the quenched theory presents a major
step forward. We have included results from several recent experiments as well as results
from dynamical models. It is worth noting that a one-loop chiral effective theory with
explicit N and Δ degrees of freedom [15] predicts the quark mass dependence of these
ratios for small Q2 and confirms that our lowest Q2 data are in fact consistent with the
experimental results at the physical point.

Figure 2. REM (left) and RSM (right) as a function of Q2. The lower graphs show linear
extrapolations to the chiral limit for quenched (crosses) and unquenched (filled circles)
Wilson fermions. We include recent experimental results from Refs. [6–9]. The dotted
and dashed lines are the results from a dynamical model with bare and dressed vertices
respectively [14].

3. NUCLEON ELECTROMAGNETIC FORM FACTORS

Recent polarization transfer experiments [16] have detected a q2-dependence for the
ratio of electric to magnetic form factor, μpG

p
E/Gp

M , qualitatively different from that
found using the standard Rosenbluth separation. Understanding the almost linear fall off
of this ratio with −q2 from QCD is one of hte main motivation of studying the nucleon
form factors on the lattice.

The nucleon electromagnetic matrix element for real or virtual photons can be written
in the form

〈 N(p′, s′) |jμ| N(p, s)〉=
(

M2
N

EN(p′) EN(p)

)1/2

ū(p′, s′)

[
γμF1(q

2) +
iσμνq

ν

2MN

F2(q
2)

]
u(p, s) (7)

where we use the same notation as in the Section II. F1, F2 are the Dirac form factors with
F1(0) = 1 for the proton due to current conservation and F2(0) measures the anomalous
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magnetic moment. They are connected to the electric, GE, and magnetic, GM , Sachs
form factors by the relations

GE(q2) = F1(q
2) +

q2

(2MN )2
F2(q

2) , GM(q2) = F1(q
2) + F2(q

2) . (8)

Constructing a ratio analogous to that given in Eq. (6) for the N to Δ transition we can
extract the two form factors in the large Euclidean time limit. The optimal combinations
of sequential nucleon sinks are easily constructed and provide independent determina-
tions of GM and GE , each requiring one sequential inversion [5]. Unlike the γ N → Δ
transition, the γ N → N transition contains isoscalar photon contributions. This means
that disconnected loop diagrams also contribute. These are generally difficult to evaluate
accurately since the all-to-all quark propagator is required. In order to avoid disconnected
diagrams, we calculate the isovector form factors. Assuming SU(2) isospin symmetry, it
follows that

〈 p |(
2
3
ūγμu −

1
3
d̄γμd)|p〉 − 〈 n|(

2
3
ūγμu −

1
3
d̄γμd)|n〉 = 〈 p |(ūγμu − d̄γμd)|p〉. (9)

We therefore calculate directly the three-point function related to the right hand side of
the above relation which provides the isovector nucleon form factors

GE(q2) = Gp
E(q2) − Gn

E(q2) , GM(q2) = Gp
M(q2) − Gn

M(q2). (10)

Figure 3. GE as a function of Q2 for Wil-
son fermions. Filled triangles show experi-
mental results extracted using the analysis
of Ref. [5].

Figure 4. The isovector magnetic form
factor, GM , as a function of Q2. The no-
tation is the same as in Fig. 3.

Ensembles of quenched and two-flavor dynamical Wilson configurations are used to
extract GM and GE for pion masses ranging from 690 down to 380 MeV. To convert the
Q2 into physical units we use the lattice spacing determined from the nucleon mass at the
physical point. This gives a−1 = 2.14 GeV for the quenched theory and a−1 = 2.56 GeV
for the unquenched theory. The results are GE shown in Figs. 3, 4. In order to compare
with experiment extrapolation to the chiral limit is needed. For these pion masses a linear
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Figure 5. The form factors F1 (upper) and
F2 (lower) as a function of Q2. Crosses (filled
circles) show quenched (unquenched) results
at the chiral limit. Results extracted from
experiment are shown by the filled triangles.

Figure 6. Chiral extrapolation of the mag-
netic moment and the r.m.s radii r1 and r2.
The solid line is the best fit to the effective
chiral theory results. The dashed lines show
the maximal allowed error band using the er-
rors on the fitted parameters.

dependence on m2
π is consistent with the data. We therefore extrapolate linearly in m2

π

to obtained results in the chiral limit. The Dirac form factors F1 and F2 are shown at the
chiral limit in Fig. 5. F2 is closer to experiment than F1. In order to extract the magnetic
moments we need to extrapolation to Q2 = 0. Assuming a dipole Ansatz for both form
factors with different dipole squared masses Mm and Me,

GM(Q2) =
GM(0)(

1 + Q2

Mm

)2 , GE(Q2) =
1(

1 + Q2

Me

)2 (11)

we obtain a good description of the data: The r.m.s. radius of the nucleon is determined
from the slope of the form factor at Q2 = 0. Therefore it can be computed directly from
the dipole mass via

< r2
i >= −

6

Fi(Q2)

dFi(Q
2)

dQ2
|Q2=0 =

12

Mi
, i = 1, 2 . (12)

Pion cloud contributions are expected to become important as the pion mass decreases
and therefore we expect deviations from the linear dependence on m2

π. Recently, the quark
mass dependence of the isovector magnetic moment and radii was determined within a
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chiral effective theory with explicit nucleon and Δ degrees of freedom [17,18] at one-
loop order. The expressions involve phenomenological parameters such as gA, cA, cV , Fπ

and regularization counterterms. Following [18] we fit the expressions to the lattice data
obtaining the maximal allowed error bands shown in Fig. 6.

4. SUMMARY

Fundamental questions connected to nucleon structure can be addressed from first prin-
ciples using Lattice QCD. Optimized calculations of three-point functions with different
formulations and systematics yield consistent results. We have confirmed for the first
time in Lattice QCD, the existence of quadrupole strength in the N to Δ transition, in
qualitative agreement with experiment. We have also presented a precise evaluation of the
isovector nucleon form factors that show interesting behavior: the magnetic form factor
is close to experiment whereas the electric is not. Whether such behavior is due to lattice
artifacts or differences in the pion mass dependence of these form factors remains an open
question. Such questions will be addressed as simulations at lighter quark masses and
finer lattices become available.
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the Greek Ministry of Education and from the University of Cyprus.
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