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We evaluate the location of the proton drip line in the regions 31 ≤ Z ≤ 49 and
73 ≤ Z ≤ 91 based on the one- and two-proton separation energies predicted by our
latest Hybrid Mass Model. The latter is constructed by complementing the mass-excess
values ΔM predicted by the Finite Range Droplet Model (FRDM) of Möller et al. with
a neural network model trained to predict the differences ΔM exp − ΔMFRDM between
these values and the experimental mass-excess values published in the 2003 Atomic Mass
Evaluation AME03.

1. Introduction

The precise location of the proton drip line is of great current interest in connection with
experimental studies of nuclei far from stability conducted at heavy-ion and radioactive
ion-beam facilities, as well as for astrophysical problems such as nucleosynthesis and
supernova explosions. More specifically, prediction of the proton drip line in the region
31 ≤ Z ≤ 49 is important in nucleosythesis because it determines a possible path of the
rapid proton capture process [1]. On the other hand, studies in the region 73 ≤ Z ≤ 91
are helpful in planning experiments on proton radioactivity [2]. Global models of the
proton separation energies are mainly derived from the available global models of atomic
mass. Atomic mass models range from those with high theoretical input that take explicit
account of known physical properties in terms of a relatively small number of fitting
parameters, to models that are shaped mostly by the data and have a correspondingly
larger number of adjustable parameters. A prominent example of the former class is
the Finite Range Droplet Model (FRDM) of Möller et al. [3]. At the other end of the
spectrum one finds artificial neural network models, which, in their purest form, would
make predictions for new measurements of ΔM(Z,N) based on the data with which
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they are trained, and only that information. Through several phases of development,
these systems have attained demonstrable predictive power, with significant prospects for
further improvement [4,5].

In this work, we present results from a recently proposed synthesis [6] of the two ap-
proaches – theoretical/phenomenological as represented by the FRDM, and statistical as
represented by multilayer feedforward neural networks. Under training by example, a
neural network is constructed that estimates the differences ΔM exp − ΔMFRDM between
the experimental and FRDM values of the nuclidic mass excess ΔM . Thus, the neural
network serves to model the residual effects not captured by the FRDM. This hybrid
strategy is pursued with the aim of determining whether the corrections to a state-of-
the-art global semi-microsocopic model stem from a large number of small effects that
may fluctuate strongly with Z and N , defying systematic quantification, or instead can
be attributed in substantial part to regularities of nuclear structure not yet embodied
in macroscopic/microscopic models. Combining the ΔM values predicted by the FRDM
with the differences estimated by the neural network, we obtain a hybrid global mass
model that displays, on average, improved predictive performance for the systematics of
atomic masses and related nuclear properties. From the one- and two-proton separation
energies evaluated using the masses of the hybrid model, we make predictions for the
proton drip line. These predictions are compared with the theoretical values obtained
with the FRDM and with the relativistic Hartree-Bogoliubov model of Ref. [7] and also
with the available experimental data published in the 2003 Atomic Mass Evaluation [8].

Figure 1. Mass-excess differences between experiment and the FRDM for the data sets AML∪AMV

are compared with the corresponding differences predicted by the neural network.

2. Hybrid Mass Model

We briefly describe the methodology applied in building our latest version of the Hybrid
Mass Model. (For further details, we refer to the development of the model denoted HM2
in Ref. [6]). In order to create a global mass model with enhanced extrapolation capa-
bilities, we train candidate multilayer network systems using the entire database of 2149
(Z,N ≥ 8) nuclei having experimental mass-excess assignments in the most recent atomic
mass evaluation (AME03) of Audi et al. [8]. Thus, we depart from earlier practice in not
reserving a portion of the experimental database for testing predictive performance. The
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four input units of the neural network serve to encode the atomic number Z, the neutron
number N , and their respective parities (even or odd). A single output unit encodes the
target quantity, i.e., the mass-excess difference ΔM exp − ΔMFRDM. The 2149 nuclei are
divided randomly into two data sets of 1693 (AML) and 456 (AMV) nuclei, comprising
respectively the learning and validation sets for neural-network modeling. Performance
on the learning set serves as the criterion for progressive adjustment of the network pa-
rameters, while performance on the validation set is used to decide when to terminate
training, fixing the parameters of the final network. Several novel training techniques
have been applied to optimize network performance [6]. The ability of the neural network
to model the difference ΔM exp −ΔMFRDM is illustrated in Fig. 1. Viewed over the entire
database AML∪AMV in the Z −N plane, the deviations of the FRDM evaluation from
experiment are substantially reproduced by the neural network model.

To generate estimated mass-excess values for nuclides of specified Z and N within
the Hybrid Mass Model HM2, we add the mass-excess value given by the Finite-Range
Droplet Model to the network estimate of the FRDM error for the given Z and N . As
documented more fully in Ref. [6], the HM2 model demonstrates improved overall accuracy
on the existing experimental database and improved simulated predictive performance
on estimated (i.e., non-experimental) masses in the AME03 tabulation. In Table 1, we
compare the errors of the HM2 model for the mass excess and for the derived one- and
two-proton separation energies, as measured by the root-mean-square error σrms over the
database relative to experiment, with the corresponding errors of the FRDM and two
other recently constructed neural-network models. Although our latest neural network
model, trained for direct prediction of the mass excess, exhibits overall rms performance
comparable to that of the hybrid HM2 model, it shows inferior generalization capabilities.
For that reason – as argued more fully in Ref. [6] – we consider HM2 to be the preferred
global mass model among those considered.

Table 1
Root-mean-square error σrms(MeV) in estimation of mass excess and one- and two proton separation

energies. For each of these quantities, the number of experimental data points is given in parentheses.

Model
ΔM

(2149)
S(p)

(1968)
S(2p)
(1836)

FRDM [3] 0.66 0.40 0.49

Neural network mass model [5] 0.64 0.53 0.61

Neural network mass model (latest version) 0.41 0.36 0.40

Hybrid Mass Model - HM2 [6] 0.37 0.37 0.40

2.1. Proton Drip Line
The proton drip line is usually defined by the last nuclide per isotone chain for which

both one- and two-proton separation energies are positive, although as Z increases, de-
viation from this definition is to be expected because of the Coulomb barrier. In Fig. 2
we compare predicted proton drip lines in the regions 31 ≤ Z ≤ 49 and 73 ≤ Z ≤ 91 for
the HM2 model, the FRDM, and the relativistic Hartree-Bogoliubov model of Ref. [7].
Differences between the proton drip lines predicted by the HM2 model and the FRDM are
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minor, yet suggestive of subtle systematics. In contrast to the HM2 model, the FRDM
predicts 61Ga and 178Au nuclides to be unstable, whereas AME03 projects stability. Simi-
larly, in the region 31 ≤ Z ≤ 49, the FRDM also makes erroneous predictions for 64As and
76Y, according to the latest experimental data [9]. The relativistic Hartree-Bogoliubov
model exhibits significant deviations from the FRDM and HM2 models for the even-Z
nuclei in the region 31 ≤ Z ≤ 49.

Figure 2. Proton drip line in the regions 31 ≤ Z ≤ 49 and 73 ≤ Z ≤ 91, as predicted from the HM2

model, is compared with predictions of the FRDM [3] and the relativistic Hartree-Bogoliubov model [7].

The last nucleus in each isotope chain having positive one- and two-proton separation energies according

to AME03 is also indicated.

3. Conclusions

The work presented here demonstrates that macroscopic/microscopic and statistical
models can complement one another in accurate prediction of atomic masses and related
quantities far from stability. A hybrid model that combines the two approaches outper-
forms either and yields results that can provide valuable input to nuclear astrophysics.
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