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Barrier curvatures and positions for weakly
and strongly bound nuclei

K. Zerva?, A. Pakou?,

8 Department of Physics, University of loannina, 45110 loannina, Greece

Abstract

Barrier curvatures as a function of the potential diffusivity, for weakly and strongly
bound nuclei, are studied via elastic scattering data at near barrier energies for ®7Li
and “N-160 on silicon . A parametrization of curvature as a function of diffusivity
is given and critical distances for the barrier position are determined. The results
indicate similar behaviour for both weakly and strongly bound projectiles. Addi-
tionally, by studing total reaction cross sections for 6Li and "Li on silicon targets,
curvatures and barrier locations are determined at near barrier energies. The results
indicate a stronger absorption for 6Li than for Li.

Fusion is a popular subject for several decades revisited nowdays with the
study of weakly bound stable or radioactive systems. Systematic studies of
experimental fusion excitation functions have resulted in parametrizations of
the barrier radius and height. For interpreting fusion data, and/or predicting
fusion cross sections, both simplified and realistic coupled channel codes have
been used. Energy-independent Woods Saxon (WS) form for the real nuclear
potential are used:

Vo
V(r) = 14 exp(%i) (1)

Above barrier excitation functions have been reproduced by simply optimiz-
ing the diffusivity o whilst constraining the barrier height to experimental
values [1]. The arosen question is if these diffusivities can describe well elastic
scattering data and total reaction cross sections.

In this paper we study the evolution of barrier widths and diffusivities for 4
systems, two of them with weakly bound projectiles and two with well bound
projectiles while using the same target. Elastic scattering data at near bar-
rier energies are analysed for SLi+28Si, "Li+28Si, *N+28Si and '6O+28Si [2-4]



\
6 n -
L]
—~ 4 r ] B
3 -
s, f
© | | | |
8 0 0.2 0.4 0.6 0.8 1
-
o 6r g ]
e
4 i
i . .
g 2 ®
2 [ _
| | | |
0 0.2 0.4 0.6 0.8 1
a(fm)

Fig. 1. The evolution of the barrier curvature (fiw as a function of the potential
diffusivity for Li+28Si (top) and "Li+28Si (bottom), at several barrier energies.

by using a Wood-Saxon potential. Fits are performed for various values of
diffusivities keeping a,= «,, for the best value of r,=r,, for all diffusivities,
obtained before, and handling Vy and Wy as free parameters. The results, in
fact the curvatures (hw) of the best fitted potentials to the elastic scattering
data, as a function of the diffusivity «, are shown in Figures 1 and 2. We
point out a similar behaviour for both weakly and strongly bound projectiles
while in all cases the energy dependence is weak. We should mention that the
analyzed data refer to the energy regime of E/Ec; ~ 1-1.5. To obtain a sys-
tematic description-parametrization of curvatures as a function of diffusivity,
we proceed as follows.

Since the elastic scattering is sensitive to the tail of the potential we can write
equation (1) at large distances as

T—RB

Vn(r) = Vn(Rp)exp(— ) (2)

where Rp is the position of the barrier. At Rp the derivative of the total



projectile

6L 22.61((Rp v/a)~! -\/aRp™?
Li 21.24 )~
14N 25.06((Rp /o)™t
160 25.73((Rp )~

Rp Vo ! \/OARB_Q

hw(MeV) Rp(fm) ro(fm)
) 8.62 1.78
- ) 8.56 1.73
-/aRp™?)  9.60 1.76
-v/aRp™?)  10.20 1.84

1

Rp (fm)
7.90
8.01
8.55
8.66

Table 1

The parametrization of iw as a function of the diffusivity for well and weakly bound
projectiles. The barrier position Rp was handled as a free parameter and it was
found to obey the relation Rp= 1.78 (A,'/3+A7'/3) fm . For comparison reasons
the barrier location according to Christensen [5], Rg€= 1.07 (A,Y/3+A7/3) + 2.72

fm is also given.

homega(MeV)

0.

2 04 06 08
a(fm)

Fig. 2. The evolution of the barrier curvature (fiw as a function of the potential
diffusivity for 1*N+28Si (top) and '0+28Si (bottom), at several barrier energies.

potential V=V y+V must vanish and thus

V'(Rp)
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projectile Vp(MeV) Rp(fm) Aw(MeV) «affm)

61, 6.49 8.80 4.00 0.46
i 6.55 9.02 3.19 0.68
Table 2

Best fitted parameters (Vg, Rp, Aiw) to the total reaction cross section data. Diffu-
sivites have been extracted via equation (8) - see Table I.

and
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Taking into account a parabolic approximation of the potential at the top pf
the Coulomb barrier

V(r) = Vi~ gus(r - Ry)? 6

and by using equation (4) we obtain for the curvature of the potential

2702 2a
2:_ VI VI — p&T 1_ 6
ot =~V + Vg = 2 1= 22 )
and
77 2a
Fup = By | 22T _ 22
WQR%( ) ™

Applying a Taylor expansion in the second part of the equation and keeping
the first two terms we obtain

hwz%—B\/E (8)

where A and B are functions of Rp

h | Z,Zre? h | Z,Zre2
A= —/ 22 and B = —/ F—— 9
Rg\ u RL\  p ©)

From equation (8) and (9) we see that the curvature fiw is a function of /«
with only unknown the barrier position Rp. Therefore the data displayed in
Figures 1 and 2 can be fitted with a function of the form of equation (8),
handling Rp as a free parameter. The results of the fit are included in Table I.




Barrier positions are found amongst themselves in good compatibility as long
as we express this radius as

Rp = ro(AL? + A{%) ~ 1.78(AY? + A%) fm (10)

but not found in consistency with the Christensen parametrization

Rp =1.07(AY? + A{®) + 2.73fm (11)

Subsequently we will focus on the analysis of total reaction cross sections ob-
tained previously [6,7] at near barrier energies (0.8 to 1.5 E¢; ) for 7Li+2Si.
The data were analysed by using the Wong formula [8]

_ hwR%
2B

OR In [1 ~+ exp (Q—W[Ec_m — VB]>] (12)

Tww

where Aw is the curvature of the potential V, is the barrier height, and Rp
the radius of the potential at barrier. A best fit to these data as a function
of energy, with free parameters Vg, Rp and hw are performed and the results
are presented in Table II. From the obtained curvatures, shown in Table 2, it
is obvious that for 6Li the tunneling time is shorter than for “Li, or that ®Li is
more absorptive than “Li. This is also the conclusion from elastic scattering in
27Al at much higher energies (E ~ 10E¢.p.) observed by Cook et al. [9]. In this
respect it is expected that fusion cross sections for ®Li on silicon will be larger
than for "Li, a fact which remains to be proved. The corresponding diffusivities
to these curvatures, extracted via the parametrization obtained before from
elastic scattering data is also displayed in Table II. These diffusivities give
very good fits to the elastic scattering data. This result seems to confirm the
one quoted in [10] that for near spherical nuclei small diffusivities ~0.6 can
describe both elastic scattering and fusion data.

Summarizing, we have analyzed available elastic scattering data for weakly
and strongly bound projectiles in ?8Si and total reaction cross sections for
6.71i4+-28Si at near barrier energies. The curvatures of the potential as a func-
tion of the surface diffusness were parametrized via the barrier radius. The
barrier location, via this parametrization was found similar for both weakly
and strongly bound projectiles, while is found compatible with the value
Rp~1.78(A,Y3+A41/3). The analysis of the total cross sections gives potential
parameters compatible with the elastic scattering results, while the obtained
curvatures indicate a stronger absorption for ®Li than for “Li compatible with
previous findings.
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