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A NEW A- NUCLEUS POTENTIAL
FOR THE A- PARTICLE ENERGIES IN HYPERNUCLEI
C. A.Efthimiou, M.E. Grypeos, C.G. Koutroulos and Th. Petridou

Department of Theoretical Physics, University of Thessaloniki, Greece

Abstract

A new single particle A —nucleus potential is considered for the study
of the A —particle energies in hypernuclei. This potential belongs to the class of
potentials for which the formalism of the s—power series expansions of the
Hypervirial Theorems technique is applicable. The numbers d, (kzO, 1,2,3,4)
related to the derivatives of the potential form factor f, determining the potential

shape, are obtained and therefore the approximate analytic expression of the energy
level E,, (including third -order terms in the small parameter s). Preliminary

numerical results are also given and a discussion is made.
1. Introduction

The Quantum Mechanical Hypervirial Theorems (HVT) technique [1] is an
efficient one and there are many applications of it in treating various problems,
avoiding the use of the wave function [2-4] and thus offering considerable advantages
over other typical approximation methods, such as the usual perturbation or
variational ones. The method is often used in conjunction with the so called Hellman-
Feynmann Theorem [5,6] and thus it is referred sometimes as the HVT-HFT method.

One of its early applications is the treatment of the anharmonic oscillator (see,
however, ref. [3] p.339 and refs therein in connection to the treatment of this problem)
which led to the well known Swenson and Danforth recurrence relations [7].

One of the basic applications of the method is its use in obtaining approximate
expressions in quite a few cases for the energy eigenvalues of the Schrodinger
eigenvalue problem when it is not feasible to obtain exact analytic expressions. This is
the majority of cases, which one encounters in practice in dealing with various
potential models. Among the works studying this sort of problems we mention the
papers by Killingbeck, Lai etc [8-11].

More recently, the problem of the approximate determination of the energy
eigenvalues of the radial Schrodinger operator was dealt with for the quite general
class of the even power series three dimensional central potentials [12] to which also
belongs a fairly wide class of potentials which are encountered in practice rather
often. The formalism for central potentials belonging to this latter class which leads to
so called s—power series expansions for the energy eigenvalues and other physically

interesting single particle quantities, is briefly reviewed in the next section. For more
details the reader is referred to the relevant original papers. [12-16].
We also note that this s —power series method was used in recent years in treating a

variety of problems in which a small parameter s (see below) can be defined. We



mention, in particular, the study of the saturation property of the Bertlmann and
Martin [17,18] inequalities [19], the information on the size of A— orbitals in

hypernuclei from the experimental A —energies [20], the approximate analytic
evaluation of the Heisenberg uncertainty product [21] etc.

In section 3, a new central potential is considered and the numbers d, which are
expressed in terms of the derivatives of the potential form factor are given. The
approximate expression of the level E,, in which terms proportional to s’ are
included, follows then immediately in terms of the numbers d,,d,and d,, the

quantum numbers of the state n and /¢, the potential depth D and the small
parameter s .

Finally in the last section, preliminary numerical results for the computed ground —
state energies of the A are given and compared with the experimental values. A short
discussion is also made.

2. The s - power series expansion formalism

We consider the non-relativistic motion of a particle of mass p moving in a central
potential well of the general form

V(r)=—D f(r/R), 0<r<oo (1)

In this expression D >0is the potential depth, R>0 its “radius” and f ( f (O)=1) the

“potential form factor” which determines its shape. The class of the above potentials
is further specified by assuming fto be an appropriate analytic function of even

powers in x=r/R with —d* f / dxz‘ 0> 0. Therefore, these potentials behave like an

harmonic oscillator potential near the origin and thus they are referred sometimes as
“oscillator like potentials”. It should be noted, however, that apart from the above-
mentioned resemblance, their shape is quite different from that of the harmonic
oscillator.

Typical potentials of this class are the Gaussian potential V; () and the (reduced)

Poeschl-Teller Vp; (r) one:
Ve (r)=—Def( %) and Vpr(r)=—Dcosh ™ ( 7/R) ()

Finally, given the mass of the particle and the potential V(r), we can define the
dimensionless parameter s :

1/2

s=(n2/2uDR?) 3)

which is assumed to be a sufficiently small quantity so that the energy eigenvalues
(and other physically interesting quantities) can be expanded in a power series in s
which can be truncated after the first few terms and obtain a rather reasonable
approximation. Fortunately, regarding A — hypernuclei, this seems to be the case for

a range of them.



If we now define the numbers d, ,(k=0, 1,2, 3,...) in terms of the derivatives of
the potential form factor f by means of the relation:

1 d*
dk:mdxﬁf(x with d1<0 (4)

x=0

we may write the energy eigenvalues in the form:
E, = DZek sk (5)
k=0
Then we determine the coefficients e, in terms of d, and of the quantities
3
anZ:2n+€+5 (6)

and /((+1).
It is found (see refs [12-16 and 21] ) that :

eg=—1 (7

e=2a,| d|"” (8)

ezzgdj[ (1242, -40(0+1)+3] ©)
1

e :_ané (_dl)l/2 )

’ 324} (10)

{4d1d3 -[25—12-€(€+1)+ 204’ ]+ d; [— 67+36-€(€+1)—68a2nz]}

etc.
It is seen that the first few terms of the expansion are fairly simple and can be
easily used in practice, as long as the assumptions made are fulfilled.

3. The A - nucleus potential considered

The A - nucleus potential was chosen to be one belonging to the class discussed in

the previous section because of the worth-mentioning analytical advantages, which
are implied. Furthermore, a third fitting parameter was incorporated which has to be
examined whether it offers advantages. The A —nucleus potential considered, is

therefore the following:



A
Vi ()= 2 r A>0,0<r <00 (11)

D=
1o (0

At the origin( r=0) the potential has the value — D, while at very large distances it

becomes zero, as one should expect. For R one could take as a first approximation the

rigid-core model expression R=r, Alc/3 where A is the mass number of the core —

nucleus of the hypernucleus, of mass number A4, (A =4, +1 ) Thus, there are three

fitting parameters (D, ry and 7») in the energy expression to be used, in the fitting

procedure (see next section).
It is seen from the above expression of the potential that its form factor

f ( f (O)zl) is given by the expression

2%

f(”)ZW (12)

Using this potential form factor the numbers d, entering the energy levels can be

obtained analytically. The calculation is laborious for the higher values of k£ but it is
quite feasible with “Mathematica”. The expressions found are given in Table 1.

TABLE 1
The first numbers, d, of the potential (11)

di
d I
d, T
2
d, I
L
(1)
, [,
- L3
w3
s BLIPY (RPN
384

It is seen that these numbers depend exclusively on the value of A.
4. Preliminary numerical results and comments

In order that we determine the values of the potential parameters we use the known
experimental values of the ground state binding energies of the A — particle in

various hypernuclei. For the mass p of the particle (appearing in s in the s— power
series), the reduced mass of the A —core system was used. Effort was made to use for

these experimental values recent results, to a considerable extent, (see refs. 22 and 23
and references therein).



For the theoretical ground state binding energy values (BT neor =—Eoo )either the

numerical solution of the radial Schrédinger eigenvalue problem (4™ column) or the
HVT method, the s— power series expansion, (5™ column) were used. These values

are displayed, along with the experimental values and their errors, in Table 2

TABLE 2
A, Symbol Bpxp TABpyp Brugor (scur) Brygor (nvr)
(MeV) (MeV) (MeV)
15 NC, 12.42 +0.05 12.83 14.00
27 Si 16.60+ 0.2 16.44 16.18
31 ) 17.50 £0.5 17.20 16.63
39 “Ca 18.70 £ 1.1 18.39 17.33
50 N4 19.97 £0.13 19.54 18.03
55 “Fe 21.15 £ 1.5 20.29 18.28
88 Yy 23.11 £0.1 22.00 19.42
138 P La 23.80 +£1.0 23.63 20.35
207 % ph 26.50 £0.5 24.90 21.07

The best fit values with the solution of the Schrodinger eigenvalue problem found
with the CERN program MINUIT were:

D=22.99 MeV , r,=0.990 fm and A=0.681 (13)

while those with the HVT method (and the same program), up to third order terms in s
(included ) were:

D=26.075 MeV , r,=1.345 fin and %.=0.764 (14)

It is seen from the table 2 that the fit is rather satisfactory, mainly for Byzop (scur)

It seems, however, that according to our investigations so far (Summer 2008) other
simpler potentials lead to a more satisfactory fit. This should be due to the potential
form factor and a potential of the form:

1

P cosh?*(7/R) ()

Va-ac (’”)z_

appears worth investigating with regard to its suitability. We should also note that the
existing experimental ground — state binding energy data are very poor for 4. >90

and these data would be quite important in reaching a rather firm conclusion con-
cerning this matter.
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