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Abstract

Over the years, studies of collective properties of medium and heavy mass nuclei
in the framework of the Interacting Boson Approximation (IBA) model have focused
on finite boson numbers, corresponding to valence nucleon pairs in specific nuclei.
Attention to large boson numbers has been motivated by the study of shape/phase
transitions from one limiting symmetry of IBA to another, which become sharper in
the large boson number limit, revealing in parallel regularities previously unnoticed,
although they survive to a large extent for finite boson numbers as well. Several
of these regularities will be discussed. It will be shown that in all of the three
limiting symmetries of the IBA [U(5), SU(3), and O(6)], energies of 0+ states grow
linearly with their ordinal number. Furthermore, it will be proved that the narrow
transition region separating the symmetry triangle of the IBA into a spherical and
a deformed region is described quite well by the degeneracies E(0+

2 ) = E(6+
1 ),

E(0+
3 ) = E(10+

1 ), E(0+
4 ) = E(14+

1 ), the energy ratio E(6+
1 )/E(0+

2 ) turning out to
be a simple, empirical, easy-to-measure effective order parameter, distinguishing
between first- and second-order transitions. The energies of 0+ states near the point
of the first order shape/phase transition between U(5) and SU(3) will be shown
to grow as n(n+3), where n is their ordinal number, in agreement with the rule
dictated by the relevant critical point symmetries studied in the framework of special
solutions of the Bohr Hamiltonian. The underlying dynamical and quasi-dynamical
symmetries are also discussed.

Collective phenomena in atomic nuclei are described in terms of two comple-
mentary models, the algebraic Interacting Boson Approximation (IBA) model
[1], and the geometrical collective model [2,3]. In the former, s and d bosons
(bosons of angular momentum 0 and 2 respectively) are used, while in the
latter the collective variables β (the ellipsoidal deformation) and γ (a mea-
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Fig. 1. IBA symmetry triangle with the three dynamical symmetries. The critical
point models E(5) and X(5) are placed close to the phase transition region (slanted
lines). The solid curve indicates the Alhassid-Whelan arc of regularity. Adopted
from Ref. [5].

sure of axial asymmetry) occur. The characteristic nuclear shapes occuring
in the IBA are depicted at the vertices of the symmetry triangle [4] of the
model (Fig. 1), labeled by their underlying dynamical symmetries, which are
i) U(5), corresponding to near-spherical (vibrational) nuclei, ii) SU(3), repre-
senting axially symmetric prolate deformed (rotational) nuclei, and iii) O(6),
describing nuclei soft with respect to axial asymmetry (γ-unstable).

Shape/phase transitions from one nuclear shape to another were first discussed
in the context of the IBA in Ref. [6], applying catastrophe theory to the energy
functional [7] obtained in the classical limit of the IBA Hamiltonian through
the use of the coherent state formalism [8,9]. A first order phase transition (in
the Ehrenfest classification) has been found between the limiting symmetries
U(5) and SU(3), while a second order phase transition has been located be-
tween U(5) and O(6). The spherical and deformed phases are separated by a
narrow shape coexistence region [7] (also shown in Fig. 1), shrinking into the
point of second order phase transition as the U(5)-O(6) line is approached.

More recently, shape/phase transitions have been considered also in the frame-
work of the geometrical collective model, resulting in the introduction of the
critical point symmetries E(5) [10] and X(5) [11]. E(5), which corresponds to
the second order transition between U(5) and O(6), is a special solution of the
Bohr Hamiltonian [2] using a potential u(β) independent of γ and having the
shape of an infinite square well potential in β. X(5), which corresponds to the
first order transition between U(5) and SU(3), is a special solution of the Bohr
Hamiltonian using a potential of the form u(β)+v(γ), where u(β) is the same
as before, while v(γ) is a steep harmonic oscillator centered around γ = 0.
E(5) and X(5) are also shown in Fig. 1, close to the points of the second and
first order phase transitions of the IBA, respectively.
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Table 1
Order ν for states with any J , and for the special case of Jπ = 0+ states, in the
geometrical models E(5), X(5), Z(5), Z(4), and X(3). J is the spin of the level,
τ = J/2, and nw is the wobbling quantum number [3] which is zero for 0+ states.

Model ν νJ=0+ Model ν νJ=0+

E(5) τ + 3
2

3
2

X(5)

√

J(J+1)
3 + 9

4
3
2 Z(5)

√
J(J+4)+3nw(2J−nw)+9

2
3
2

X(3)

√

J(J+1)
3 + 1

4
1
2 Z(4)

√
J(J+4)+3nw(2J−nw)+4

2 1

Table 2
(Left) Energies of 0+ states in the E(5), Z(5), and X(5) models. Energies on the left
are in units of E(2+

1 ) = 1.0, while in the column Norm, in units E(0+
2 ) = 1.0. The

normalized results are identical for each of the models. The column IBA-Norm gives
the normalized 0+ energies for a large NB IBA calculation near the critical point.
(Middle) Same for the Z(4) model. (Right) Same for the X(3) model. Adopted from
Ref. [5].

0+
i

E(5) Z(5) X(5) Norm IBA-Norm Z(4) Norm X(3) Norm

0+
1 0 0 0 0 0 0 0 0 0

0+
2 3.03 3.91 5.65 1.0 1.0 2.95 1.0 2.87 1.0

0+
3 7.58 9.78 14.12 2.50 2.48 7.60 2.57 7.65 2.67

0+
4 13.64 17.61 25.41 4.50 4.62 13.93 4.71 14.34 5.00

0+
5 21.22 27.39 39.53 7.00 7.13 21.95 7.43 22.95 8.00

0+
6 30.31 39.12 56.47 10.00 9.85 31.65 10.72 33.47 11.67

The competition between regular behavior dictated by underlying symmetries
and chaotic behavior corresponding to lack of symmetries, has been studied
throughout the symmetry triangle of Fig. 1. A highly regular region has been
found along the U(5)-O(6) line, expected because of the underlying O(5) sym-
metry known to be preserved along this line [12]. Quite surprisingly, another
regular region [13], connecting U(5) to SU(3) and called the Alhassid–Whelan
arc of regularity, has been found inside the triangle, as shown in Fig. 1. The
symmetry underlying the arc is yet unknown.

0+ states are particularly appropriate for the detection of underlying symme-
tries, because of the lack of centrifugal effects. As seen in Table 1, the critical
point symmetries E(5) and X(5) mentioned above, as well as the Z(5) model
[14] [a solution of the Bohr Hamiltonian similar to X(5), using an infinite
square well in β, but with v(γ) centered around π/6] possess as eigenfunctions
the Bessel functions Jν . While for J 6= 0 the order ν of the Bessel functions
is different in each solution, for J = 0 the same order is obtained in all three
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Table 3
0+ bandheads in various (λ, µ) irreps of the SU(3) limit of IBA. N stands for the
boson number, NB . Adopted from Ref. [5].

irrep 0+ irrep 0+

(2N,0) 0

(2N-4,2) 1

(2N-8,4) (4N-6)/(2N-1) (2N-6,0) (4N-3)/(2N-1)

(2N-12,6) (6N-15)/(2N-1) (2N-10,2) (6N-10)/(2N-1)

(2N-16,8) (8N-28)/(2N-1) (2N-14,4) (8N-21)/(2N-1)

Table 4
0+ bandheads in various (σ) irreps of the O(6) limit of IBA. N stands for the boson
number, NB . Adopted from Ref. [5].

irrep 0+ irrep 0+ irrep 0+ irrep 0+ irrep 0+

(N) 0 (N-2) 1 (N-4) 2 (N-6) 3-3/N (N-8) 4-8/N

cases. As a result, 0+ states in these models look different if normalized to the
energy of the 2+

1 state, but they become exactly identical if normalized to 0+
2 ,

as seen in Table 2. Going further, one sees that in the latter normalization the
energies of 0+

n
states, where n is their ordinal number, follow the simple rule

n(n + 3). This is due to the fact that the spectrum of the roots of the Bessel
functions Jν follows the n(n + ν + 3/2) rule to a very good approximation for
low ν, being exact for ν = 1/2 [5]. As a consequence, 0+

n
states in the Z(4)

model [15] [similar to Z(5), but with γ fixed to π/6] follow the rule n(n+2.5).
Also, 0+

n
states in the X(3) model [16] [similar to X(5), but with γ fixed to 0]

follow the rule n(n + 2), as seen from Tables 1 and 2.

Taking into account the second order Casimir operator of the E(5) algebra
[15,17], the Euclidean algebra in 5 dimensions, one can see that the 0+

n
states

in X(5) and Z(5) represent a case of a partial dynamical symmetry [18] of Type
I [19], a situation in which part of the states (the 0+ states in the present case)
preserve the whole symmetry.

What is a nontrivial result [5], is that an IBA calculation near the point of the
first order phase transition leads to a spectrum of 0+

n
states also following the

n(n+3) rule, dictated by infinite well potentials used in the Bohr Hamiltonian
utilizing 5 degrees of freedom (the collective variables β, γ, as well as the three
Euler angles), as seen in Table 2. IBA calculations are performed using the
usual IBA Hamiltonian [20], involving two parameters (ζ , χ). Large boson
numbers can be reached using the recently developed IBAR code [21,22].

It should be noticed that the n(n + 3) behavior of the 0+
n

states of the IBA
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Fig. 2. Energies of low-lying states (normalized to E(2+
1 )=1) of the usual IBA Hamil-

tonian [20] with χ=−
√

7/2, ζ=0.4729, and NB=250. ζ was chosen to reproduce the
approximate degeneracy of E(0+

2 ) and E(6+
1 ). Adopted from Ref. [23].

near the critical point of the first order phase transition is very different from
the behavior of 0+

n
states obtained in the three dynamical symmetries of the

model. Indeed, in the U(5) limit the energies of 0+ states increase linearly with
the number of d bosons, i.e. with the phonon number. Analytical results for
0+ bandheads in the SU(3) and O(6) limits of the IBA are shown in Tables 3
and 4. In both cases in the limit of large boson numbers a linear increase is
obtained. We conclude that in all three dynamical symmetries of the IBA, 0+

n

bandheads in the large boson number limit increase linearly, E = An.

The regular behavior of 0+ states near the point of first order phase transition
in the IBA invites a search for regularities of states with nonzero angular
momenta. Indeed, as seen in Fig. 2 in an IBA calculation near the critical
point, the 0+ bandheads are approximately degenerate with alternate levels
of the ground state band with J/2 odd.

Further investigation [23] of these degeneracies shows that the locus of the
degeneracy E(0+

2 ) = E(6+
1 ) [which is a hallmark of X(5)] in the IBA symmetry

triangle is a straight line approaching the coexistence region in the limit of
large boson numbers, as seen in Fig. 3. Similar results are obtained for the
degeneracies E(0+

3 ) = E(10+
1 ) and E(0+

4 ) = E(14+
1 ). One concludes that these

degeneracies characterize the coexistence region until the U(5)-O(6) line is
approached.

The ratio E(6+
1 )/E(0+

2 ) [23], related to the first of the degeneracies mentioned
above, turns out to be a simple empirical order parameter able to distinguish
between a first order and a second order phase transition. Indeed, as seen in
Fig. 4, this ratio exhibits the same behavior as the order parameter ν ′

2 used in
Ref. [24]. A first order phase transition is seen for χ = −

√
7/2, while a second

order phase transition is seen for χ = 0. The ratio exhibits a sharp maximum
just before the critical point in the first case (the effect becoming stronger at
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Fig. 3. (Left) Line of degeneracy between the 0+
2 and 6+

1 levels for NB = 10, 40, 100,
and 250 in the IBA triangle. (Right) Line of degeneracy between the 0+

3 and 10+
1

levels for NB = 250 (top) and between the 0+
4 and 14+

1 levels for NB = 250 (bottom)
in the IBA triangle. The dashed lines denote the critical region in the IBA obtained
in the large NB limit from the intrinsic state formalism. Adopted from Ref. [23].

0.2 0.4 0.6 0.8
0.00

0.02

0.04

0.06

0.08

2
nd

 order

1st order

 χ = -1.32
 χ = -0.75
 χ =  0.00

 

 

ν, 2

ζ

0.2 0.4 0.6 0.8 1.0

 χ = -√7/2
 χ = -0.75
 χ =  0.00

N
B
 = 100

 

 

ζ
0.2 0.4 0.6 0.8

0.0

0.5

1.0

1.5

ζ

N
B
 = 15  χ = -√7/2

 χ = -0.75
 χ =  0.00

 

 

E
(6

+ 1)
 / 

E
(0

+ 2)

Fig. 4. The ratio E(6+
1 )/E(0+

2 ) as a function of ζ for three values of χ for (a) NB =
15 and (b) NB = 100. The inset to (a) shows the corresponding behavior for ν ′

2 [24].
Adopted from Ref. [23].

larger boson numbers), while in the second case its behavior is smooth.

Experimental data around the N = 90 isotones, the best empirical examples
of X(5) [25–29], do exhibit in Fig. 5(a) a clear maximum just before N = 90,
in agreement with the behavior expected for a first order phase transition. In
contrast, experimental data around 134Ba, the best example of E(5) [30,29],
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Fig. 5. (a) Experimental E(6+
1 )/E(0+

2 ) ratio as a function of neutron number for
the Nd, Sm, Gd, and Dy isotopes. (b) Same for the Xe and Ba isotopes. For smaller
neutron numbers, the 0+

3 state was taken in the ratio if its B(E2) decay was con-
sistent with the σ = N − 2 state. This corresponds to N = 74 in Xe and N = 76,78
in Ba. Valence (hole) neutron number increases to the left. Adopted from Ref. [23].

shows in Fig. 5(b) the smooth behavior expected for a second order transition.

In conclusion, the large boson number limit of IBA reveals many regularities
for 0+ states, the ones near the critical point of the first order phase transition
being very close to the behavior obtained in critical point symmetries in the
framework of the Bohr Hamiltonian. Degeneracies of 0+ states with states of
nonzero angular momentum turn out to characterize the coexistence region
separating the spherical phase from the deformed one, while ratios of energies
of such pairs of states, like E(6+

1 )/E(0+
2 ), turn out to serve as order parameters

able to distinguish between first order and second order phase transitions.
These degeneracies call for further investigations into finding the symmetries
underlying them. The recent conjecture [31] of a partial SU(3) dynamical
symmetry underlying the Alhassid–Whelan arc of regularity is also receiving
attention.

Work supported in part U.S. DOE Grant No. DE-FG02-91ER-40609 and under
Contract DE-AC02-06CH11357.
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