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a]nstitute of Nuclear Physics, N.C.SR. “ Demokritos’ , GR-15310 Aghia Paraskevi, Attiki,
Greece

PDepartment of Physics, Erciyes University, Kayseri, Turkey

Abstract

Closed analytical solutions of the Morse potential for nonzero angular momenta has been
an open problem for decades, solved recently by the Asymptotic Iteration Method (AIM)
for solving differential equations. Closed analytical expressions have been obtained for the
energy eigenvalues and B(E2) rates of the Bohr Hamiltonian in the v-unstable case, aswell
asin an exactly separable rotational case with v =~ 0, called the exactly separable Morse
(ES-M) solution. All medium mass and heavy nuclei with known 3 and -y; bandheads have
been fitted by using the two-parameter ~-unstable solution for transitional nuclei and the
three-parameter ES-M for rotational ones. It is shown that bandheads and energy spacings
within the bands are well reproduced for more than 50 nuclei in each case. Comparisons
to the fits provided by the Davidson and Kratzer potentias, also soluble by the AIM, are
made.

The recent introduction of the critical point symmetries E(5) [1] and X(5) [2],
which describe shape phase transitions between vibrational and -unstable/prolate
deformed rotational nuclei respectively, has stirred much interest in special solu-
tions of the Bohr Hamiltonian, describing collective nuclear properties in terms of
the collective variables 3 and ~. Such solutions can describe nuclel in the whole
region between different limiting symmetries, while critical point symmetries are
appropriate for describing nuclei only at or near the critical point, in good agree-
ment with experiment [3].

It has been known for a long time [4] that simple special solutions of the Bohr
Hamiltonian, resulting from exact separation of variablesin therelevant Schrodinger
equation, can be obtained in the y-unstable case, in which the potential depends
only on 3, aswell asin the case in which the potential can be written in the separa-
ble form u(3,~) = u(3) + u(vy)/3? inthe special casesof v ~ 0 or v ~ 7/6 [5].
An approximate separation of variables has aso been attempted for potentials of
the form u(3,v) = u(B) + u(y) inthe casesof v ~ 0[2] or v ~ /6 [6]. Sev-
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eral special solutionsinvolving different potentials (infinite well, harmonic oscilla-
tor, Coulomb, Kratzer, Davidson) have been worked out (see [7, 8] and references
therein).

The potentials mentioned above are known to be exactly soluble for all values of
angular momentum L. In the present work, we introduce special solutions for the
Morse potential, u(3) = e~2e=F) — 2¢=alB=Fe) which is known [9, 10] to be
exactly soluble only for L = 0. The overall factor D of the Morse potentia is
set equal to unity, without affecting the method of solution, since it can be scaled
out if ratios of energies are used, as in the present work. Analytical expressions
for the spectrafor any L are obtained by solving the relevant differential equation
through the Asymptotic Iteration Method (AIM) [11,12], after applying the Pekeris
approximation[13]. Solutionsfor the~-unstabl e case and the exactly separable case
with v = 0 (to be called ES-M) have been obtained [14].

A few advantages of the present approach are listed here.

1) A well known problem of X(5) and related solutions is the overprediction of the
energy spacings within the beta band by almost a factor of two [3]. It is known that
this problem can be avoided by replacing the infinite-well potential of X(5) by a
potential with sloped walls [15]. The present solution avoids this problem, since
the right branch of the Morse potential imitates the sloped wall.

2) In X(5) and related models, using potentials of the form u(3, ) = u(5) + u(y),
the ground state and beta bands depend only on the parameters of the 5 potential,
while the gamma bands depend also on an additional parameter introduced by the
~ potential [usually the stiffnes of the harmonic oscillator used as u(~)]. When
exactly separable potentials of the form u(3,v) = w(3) + u(vy)/3? are used, all
bands (ground state, beta, gamma) depend on all parameters. Thus, all bands are
treated on an equal footing, asin the case of the ES-D solution [16].

The original collective Bohr Hamiltonianis

IR I R B
2B |Y0p 08 (%sin3y Oy o 787

S Qz
432 k=123 sin? (7 — %71’/{)
where  and ~ are the usual collective coordinates which define the shape of the
nuclear surface. ;. (k=1, 2, 3) represents the angular momentum components in

the intrinsic frame, and B is the mass parameter. Reduced energies and reduced
potentials are defined ase = 2BE/h?, v = 2BV /h? respectively [1].

+V(B,7), (1)

We first examine the v ~ 0 case. In the case of the exactly separable potentials
u(B3,7) = u(B) + u(y)/B* mentioned above, the wave functions take the form
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V(B,7,0;) = EL(B)Tk(v) Dy x(0;), where 6; (j = 1, 2, 3) are the Euler angles,
D(6;) represents Wigner functions of these angles, L stands for the eigenval ues of
the angular momentum, while M and K are the eigenvalues of the projections of
the angular momentum on the laboratory-fixed z-axis and the body-fixed z’-axis
respectively. The Schrodinger equation is thus separated, as in Refs. [4, 7], into a
“radial” part (depending on 3) and ay part.

In the case of the Morse potential, using the Pekeris approximation [13] and solving
the 3 eguation through AIM (the details are given in Ref. [14]), we obtain the
energy eigenvalues

HCo gk 1 o)’
e [2@% ~(n+3) _J | @
where
cozl—%—i—%, clzg—%, sz—é-l-%, a = afk, (©)
L(L+1)

Vi =267 —per, v =0+pe,  p= +2+A @

3
A in the last equation comes from the exact separation of variables and is deter-
mined from the  equation. We use the same ~ potential u(y) = (3¢)?>~? asin the
Davidson case [16], leading to

K2

A =€, 3

e, = (3C)(n, + 1), C = 2c. (5)

We now turn our attention to y-unstable solutions. In this case, the reduced potential
is assumed to be ~ independent, v(/3,v) = u((). Then the wavefunction takes the
form[4] ¢(5,7,0;) = R(5)®(v, 0;). The equation which includesthe Euler angles
and ~ has been solved by Bes[17]. In this equation, the eigenvalues of the second-
order Casimir operator of SO(5) occur, having the form A = 7(7 + 3), where 7
is the seniority quantum number, characterizing the irreducible representations of
SO(5) and taking thevalues™ =0, 1,2, 3, ...[18].

The values of the angular momentum L are given by the algorithm

T=3va+ A\, va=0,1,2,... L=XMA+1,...,2X =22\ (6)
(with 2)\ — 1 missing), where v is the missing quantum number in the reduction
SO(5) D SO(3) [18]. The ground state band levels are determined by L = 27 and

n = 0.

Using the Pekeris approximation [13] and AIM (see Ref. [14] for the details), we
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Fig. 1. Evolution of Morse potential shapesfor thes, X eisotopes, with the parameters given
in Ref. [14].

obtain the energy eigenvalues

Ve o N al?
€n,r = ﬁg - lzﬁelvz - (n+ 5) E] ) (7)

where
N=20—ve,  wm=pfAve,  v=T1(r+3)+2 )
with the rest of the quantities given again by Eqg. (3).

In order to test the applicability of the Morse potential in the description of nuclear
spectra, we havefitted all nuclei withmass A > 100 and R4/, = E(4)/E(2) < 2.6,
for which at least the 3, and v, bandheads are known, using the v-unstable solution
of the Morse potential, which involves two free parameters (3., a). Results for 54
nuclei are shown in Ref. [14].

The Morse potentials obtained for the 54X e isotopes are shown in Fig. 1. The evo-
lution of the parameters and the shapes of the potentials are clear. As one moves
from 134X ey, which is just below the N = 82 magic number, to the mid-shell
nucleus 2" X eg, the 3. parameter (which isthe position of the minimum of the po-
tential) increases, while the parameter a, which corresponds to the steepness of the
potential, decreases. As a result, one gradually obtains less steep potentials with a
minimum further away from the origin. The trends start to be reversed at 1¥Xeg,,
which isjust below mid-shell.

We have aso fitted all nuclei with mass A > 150 and Ry, = E(4)/E(2) > 2.9
for which at least the 3; and v, bandheads are known, using the exactly separa-
ble rotational solution of the Morse potential with v ~ 0 (ES-M), which involves
three free parameters (the Morse parameters 3. and a, as well as the stiffness C' of
the v potential). All bands are treated on an equal footing, depending on all three
parameters. Results for 45 rare earths and 13 actinides are shown in Ref. [14].
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Fig. 2. Evolution of Morse potential shapes for the;Y b isotopes, with the parameters given
in Ref. [14].

The Morse potentials obtained for the 7,Y b isotopes are shown in Fig. 2. The evo-
lution of the parameters and the shapes of the potentials are again clear. As one
moves from 64Y by, to the mid-shell nucleus 1Y b, the 5. parameter (which is
the position of the minimum of the 3-potential) again increases, while the parame-
ter a, which corresponds to the steepness of the 3-potential, again decreases. The C
parameter, which isrelated to the stiffness of the ~-potential, increases. Asaresullt,
one gradually obtains less steep (-potentials with a minimum further away from
the origin, while the ~-potential s get stiffer at the same time.

A notable exception occursinthe N = 90 isotones %°Nd, 152Sm, 154Gd, which are
known to be good examples of the X(5) critical point symmetry, along with 1"®Os
[3]. Therelativefailure of the Morse potential to describe critical nuclei isexpected.
The potential at the critical point is expected to beflat, as the infinite-well potential
used in X(5), or to have a little bump in the middle [3]. Microscopic relativistic
mean field calculations[19] of potential energy surfaces support these assumptions.
Since the Morse potential cannot imitate aflat potential, with or without a bump in
the middle, it is expected that it cannot describe these nuclei satisfactorily.

A comparison of the present fits (reported in Ref. [14]) to the results provided by
the Davidson potentia in the exactly separable v ~ 0 case [16] (ES-D), which
contains two free parameters (3, c) instead of three (see Table 1 of Ref. [16]),
shows that the extra parameter extends the region of applicability of the model in
most nuclei to higher angular momenta, largely improving the quality of the fits.

In summary, the Bohr Hamiltonian has been solved with the Morse potential for
any angular momentum, both in the v-unstable case and in the exactly separable
rotational case with v =~ 0 (in which a harmonic oscillator is used for the v poten-
tial), labelled as ES-M. The solution has been achieved [ 14] through the Asymptotic
Iteration Method (AIM) and has involved the Pekeris approximation.

Numerical results have been presented for both solutions, including all relevant
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medium mass and heavy nuclel for which at least the 5; and ~; bandheads are
known. The success of the present solutions in reproducing quite well both the
bandeahds of and the spacings within the ground, 5, and ~; bands indicate that a
detailed study of ~, and other higher bands within thisframework might be fruitful.
Theinfluence of the finite depth of the potential isalso worth considering in further
detail. From the findings of Ref. [20], where the E(5) case was solved for a finite
well, the influence of the finite depth of the potential is expected to show up more
clearly in the higher excited states. Work on the cal culation of wave functions and
B(E2) transition rates isin progress.
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