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Abstract

Closed analytical solutions of the Morse potential for nonzero angular momenta has been
an open problem for decades, solved recently by the Asymptotic Iteration Method (AIM)
for solving differential equations. Closed analytical expressions have been obtained for the
energy eigenvalues and B(E2) rates of the Bohr Hamiltonian in the γ-unstable case, as well
as in an exactly separable rotational case with γ ≈ 0, called the exactly separable Morse
(ES-M) solution. All medium mass and heavy nuclei with known β1 and γ1 bandheads have
been fitted by using the two-parameter γ-unstable solution for transitional nuclei and the
three-parameter ES-M for rotational ones. It is shown that bandheads and energy spacings
within the bands are well reproduced for more than 50 nuclei in each case. Comparisons
to the fits provided by the Davidson and Kratzer potentials, also soluble by the AIM, are
made.

The recent introduction of the critical point symmetries E(5) [1] and X(5) [2],
which describe shape phase transitions between vibrational and γ-unstable/prolate
deformed rotational nuclei respectively, has stirred much interest in special solu-
tions of the Bohr Hamiltonian, describing collective nuclear properties in terms of
the collective variables β and γ. Such solutions can describe nuclei in the whole
region between different limiting symmetries, while critical point symmetries are
appropriate for describing nuclei only at or near the critical point, in good agree-
ment with experiment [3].

It has been known for a long time [4] that simple special solutions of the Bohr
Hamiltonian, resulting from exact separation of variables in the relevant Schrödinger
equation, can be obtained in the γ-unstable case, in which the potential depends
only on β, as well as in the case in which the potential can be written in the separa-
ble form u(β, γ) = u(β) + u(γ)/β2, in the special cases of γ ≈ 0 or γ ≈ π/6 [5].
An approximate separation of variables has also been attempted for potentials of
the form u(β, γ) = u(β) + u(γ) in the cases of γ ≈ 0 [2] or γ ≈ π/6 [6]. Sev-
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eral special solutions involving different potentials (infinite well, harmonic oscilla-
tor, Coulomb, Kratzer, Davidson) have been worked out (see [7, 8] and references
therein).

The potentials mentioned above are known to be exactly soluble for all values of
angular momentum L. In the present work, we introduce special solutions for the
Morse potential, u(β) = e−2a(β−βe) − 2e−a(β−βe), which is known [9, 10] to be
exactly soluble only for L = 0. The overall factor D of the Morse potential is
set equal to unity, without affecting the method of solution, since it can be scaled
out if ratios of energies are used, as in the present work. Analytical expressions
for the spectra for any L are obtained by solving the relevant differential equation
through the Asymptotic Iteration Method (AIM) [11,12], after applying the Pekeris
approximation [13]. Solutions for the γ-unstable case and the exactly separable case
with γ ≈ 0 (to be called ES-M) have been obtained [14].

A few advantages of the present approach are listed here.

1) A well known problem of X(5) and related solutions is the overprediction of the
energy spacings within the beta band by almost a factor of two [3]. It is known that
this problem can be avoided by replacing the infinite-well potential of X(5) by a
potential with sloped walls [15]. The present solution avoids this problem, since
the right branch of the Morse potential imitates the sloped wall.

2) In X(5) and related models, using potentials of the form u(β, γ) = u(β) + u(γ),
the ground state and beta bands depend only on the parameters of the β potential,
while the gamma bands depend also on an additional parameter introduced by the
γ potential [usually the stiffnes of the harmonic oscillator used as u(γ)]. When
exactly separable potentials of the form u(β, γ) = u(β) + u(γ)/β2 are used, all
bands (ground state, beta, gamma) depend on all parameters. Thus, all bands are
treated on an equal footing, as in the case of the ES-D solution [16].

The original collective Bohr Hamiltonian is

H = − �
2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+

1

β2 sin 3γ

∂

∂γ
sin 3γ

∂
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4β2

∑
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Q2
k

sin2
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3
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)

⎤

⎦ + V (β, γ), (1)

where β and γ are the usual collective coordinates which define the shape of the
nuclear surface. Qk (k=1, 2, 3) represents the angular momentum components in
the intrinsic frame, and B is the mass parameter. Reduced energies and reduced
potentials are defined as ε = 2BE/�2, v = 2BV/�2 respectively [1].

We first examine the γ ≈ 0 case. In the case of the exactly separable potentials
u(β, γ) = u(β) + u(γ)/β2 mentioned above, the wave functions take the form
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ψ(β, γ, θj) = ξL(β)ΓK(γ)DL
M,K(θj), where θj (j = 1, 2, 3) are the Euler angles,

D(θj) represents Wigner functions of these angles, L stands for the eigenvalues of
the angular momentum, while M and K are the eigenvalues of the projections of
the angular momentum on the laboratory-fixed z-axis and the body-fixed z ′-axis
respectively. The Schrödinger equation is thus separated, as in Refs. [4, 7], into a
“radial” part (depending on β) and a γ part.

In the case of the Morse potential, using the Pekeris approximation [13] and solving
the β equation through AIM (the details are given in Ref. [14]), we obtain the
energy eigenvalues

εn,L =
μc0
β2

e

−
[
γ2

1

2βeγ2

−
(

n +
1

2

)
α

βe

]2

, (2)

where

c0 = 1 − 3

α
+

3

α2
, c1 =

4

α
− 6

α2
, c2 = − 1

α
+

3

α2
, α = aβe, (3)

γ2
1 = 2β2

e − μc1, γ2
2 = β2

e + μc2, μ =
L(L+ 1)

3
+ 2 + λ. (4)

λ in the last equation comes from the exact separation of variables and is deter-
mined from the γ equation. We use the same γ potential u(γ) = (3c)2γ2 as in the
Davidson case [16], leading to

λ = εγ − K2

3
, εγ = (3C)(nγ + 1), C = 2c. (5)

We now turn our attention to γ-unstable solutions. In this case, the reduced potential
is assumed to be γ independent, v(β, γ) = u(β). Then the wavefunction takes the
form [4] ψ(β, γ, θj) = R(β)Φ(γ, θj). The equation which includes the Euler angles
and γ has been solved by Bès [17]. In this equation, the eigenvalues of the second-
order Casimir operator of SO(5) occur, having the form Λ = τ(τ + 3), where τ
is the seniority quantum number, characterizing the irreducible representations of
SO(5) and taking the values τ = 0, 1, 2, 3, . . . [18].

The values of the angular momentum L are given by the algorithm

τ = 3νΔ + λ, νΔ = 0, 1, 2, . . . L = λ, λ+ 1, . . . , 2λ− 2, 2λ (6)

(with 2λ − 1 missing), where νΔ is the missing quantum number in the reduction
SO(5) ⊃ SO(3) [18]. The ground state band levels are determined by L = 2τ and
n = 0.

Using the Pekeris approximation [13] and AIM (see Ref. [14] for the details), we

3

17

Proceedings of the 18th Hellenic Nuclear Physics Society Symposium 2009



0 2 4 6 8 10 12 14 16 18 20
β

-1.0

-0.5

0.0

0.5

1.0

V
(β

)

118 Xe
120 Xe
122 Xe
124 Xe
126 Xe
128 Xe
130 Xe
132 Xe
134 Xe

Fig. 1. Evolution of Morse potential shapes for the54Xe isotopes, with the parameters given
in Ref. [14].

obtain the energy eigenvalues

εn,τ =
νc0
β2

e

−
[
γ2

1

2βeγ2
−

(
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2

)
α

βe

]2

, (7)

where

γ2
1 = 2β2

e − νc1, γ2
2 = β2

e + νc2, ν = τ(τ + 3) + 2, (8)

with the rest of the quantities given again by Eq. (3).

In order to test the applicability of the Morse potential in the description of nuclear
spectra, we have fitted all nuclei with massA ≥ 100 andR4/2 = E(4)/E(2) < 2.6,
for which at least the β1 and γ1 bandheads are known, using the γ-unstable solution
of the Morse potential, which involves two free parameters (βe, a). Results for 54
nuclei are shown in Ref. [14].

The Morse potentials obtained for the 54Xe isotopes are shown in Fig. 1. The evo-
lution of the parameters and the shapes of the potentials are clear. As one moves
from 134Xe80, which is just below the N = 82 magic number, to the mid-shell
nucleus 120Xe66, the βe parameter (which is the position of the minimum of the po-
tential) increases, while the parameter a, which corresponds to the steepness of the
potential, decreases. As a result, one gradually obtains less steep potentials with a
minimum further away from the origin. The trends start to be reversed at 118Xe64,
which is just below mid-shell.

We have also fitted all nuclei with mass A ≥ 150 and R4/2 = E(4)/E(2) > 2.9
for which at least the β1 and γ1 bandheads are known, using the exactly separa-
ble rotational solution of the Morse potential with γ ≈ 0 (ES-M), which involves
three free parameters (the Morse parameters βe and a, as well as the stiffness C of
the γ potential). All bands are treated on an equal footing, depending on all three
parameters. Results for 45 rare earths and 13 actinides are shown in Ref. [14].
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Fig. 2. Evolution of Morse potential shapes for the70Yb isotopes, with the parameters given
in Ref. [14].

The Morse potentials obtained for the 70Yb isotopes are shown in Fig. 2. The evo-
lution of the parameters and the shapes of the potentials are again clear. As one
moves from 164Yb94 to the mid-shell nucleus 174Yb104, the βe parameter (which is
the position of the minimum of the β-potential) again increases, while the parame-
ter a, which corresponds to the steepness of the β-potential, again decreases. The C
parameter, which is related to the stiffness of the γ-potential, increases. As a result,
one gradually obtains less steep β-potentials with a minimum further away from
the origin, while the γ-potentials get stiffer at the same time.

A notable exception occurs in the N = 90 isotones 150Nd, 152Sm, 154Gd, which are
known to be good examples of the X(5) critical point symmetry, along with 178Os
[3]. The relative failure of the Morse potential to describe critical nuclei is expected.
The potential at the critical point is expected to be flat, as the infinite-well potential
used in X(5), or to have a little bump in the middle [3]. Microscopic relativistic
mean field calculations [19] of potential energy surfaces support these assumptions.
Since the Morse potential cannot imitate a flat potential, with or without a bump in
the middle, it is expected that it cannot describe these nuclei satisfactorily.

A comparison of the present fits (reported in Ref. [14]) to the results provided by
the Davidson potential in the exactly separable γ ≈ 0 case [16] (ES-D), which
contains two free parameters (β0, c) instead of three (see Table 1 of Ref. [16]),
shows that the extra parameter extends the region of applicability of the model in
most nuclei to higher angular momenta, largely improving the quality of the fits.

In summary, the Bohr Hamiltonian has been solved with the Morse potential for
any angular momentum, both in the γ-unstable case and in the exactly separable
rotational case with γ ≈ 0 (in which a harmonic oscillator is used for the γ poten-
tial), labelled as ES-M. The solution has been achieved [14] through the Asymptotic
Iteration Method (AIM) and has involved the Pekeris approximation.

Numerical results have been presented for both solutions, including all relevant
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medium mass and heavy nuclei for which at least the β1 and γ1 bandheads are
known. The success of the present solutions in reproducing quite well both the
bandeahds of and the spacings within the ground, β1 and γ1 bands indicate that a
detailed study of γ2 and other higher bands within this framework might be fruitful.
The influence of the finite depth of the potential is also worth considering in further
detail. From the findings of Ref. [20], where the E(5) case was solved for a finite
well, the influence of the finite depth of the potential is expected to show up more
clearly in the higher excited states. Work on the calculation of wave functions and
B(E2) transition rates is in progress.
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