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Abstract

Detailed calculations for bound muon capture in complex nuclei are performed by
employing the quasi particle random phase approximation (QRPA). The required
bound muon wavefunctions for the large and the small components of the Dirac
muon wavefunctions are obtained by using the genetic algorithm approach. We ob-
tained contributions for 2p muon orbit; that is to say wavefunctions for atomic ex-
cited state of the muonic atoms in nucleus ?85i. As a byproduct the above method
give the corresponding energies to these wavefunctions which are compared with
those of other methods. Our goal is to use the method developed recently by La-
ganke, Zinner and Vogel and our advantageous numerical approach to obtain state
by state calculations of the muon capture rates within the QRPA.

1 Introduction.

A bound muon in a muonic atom could be captured either from 1s or from
2p state. In order to calculate this capture rate the wavefunctions for both
states are required. In the present work we calculated these wavefunctions
for 2p state using Genetic Algorithms(GAs). In the past, numerical methods
which have been used for solving the Schrodinger and Dirac equations are
the Artificial Neural Networks (ANN)[1-3]. Even though there are no big
differences between the two methods, Genetic Algorithms is the most realistic
one because it chooses the first point randomly. The main advantage of this
new technique is that it produces precise analytic solutions for these wave
equations expressed as linear combinations of sigmoid functions.
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2 The genetic algorithms.

GAs are modelled loosely on the principles of the evolution via natural se-
lection, employing a population of individuals that undergo selection in the
presence of variation-inducing operators such as mutation and recombination
(crossover) [5].

(1) Generate an initial random population N(0) of chromosomes

(2) Evaluate and save the fitness function f(n) that is used to evaluate chro-
mosomes, and their reproductive success in the current population

(3) Define selection probabilities p(n) for each individual n. p(n) is propor-
tional to f(n)

(4) Generate new population of chromosomes via genetic operators and re-
place the worst chromosomes

(5) Repeat step 2 until a solution that is satisfying is obtained.

In this article a modified version [6] of the standard genetic algorithm is used.
The modified version utilizes three modifications namely: a) a new stopping
rule, b) a new mutation scheme and c¢) a periodical application of a local search
procedure.

3 Solving the Dirac equation for the excited state (2p) with the
Genetic Algoritmhs method

The solution of the Dirac equation in the case of the potential V' (r) related to
the extended nuclear Coulomb field, for example the one originating from the
point-nucleon charge distribution p(r) which is given by

[e.o]

V(r) = —e? / |rpg;)_,‘d3r’ (1)

—00

requires numerical integration by using the appropriate algorithm.The nuclear
charge density p(r) can be estimated using the two parameter Fermi model
[7]:

p(r) = 0 @)
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The Dirac Equation in a central force system is described by the following
equation

B = [0 (o + = S F) 4 V() +mifly ®)

We use the following parametrized solutions for the small and large component
of the Dirac equation

f(r)= re’mN(r, ug, ve, wg) 5 g(r) = 'r’e’mN(r, Ug, Vg, W) (4)

In order to evaluate wavefunctions of excited muon states we attempted to
implement the solution of the Dirac equation for the 2p state. The energy for
this state(2p) is:

P+ V)GA) — 20 = 2 £ () g(r)dr

[0 - )

The error function that has to be minimized in order to evaluate the binding
energy:
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—m —E+wmvmm}:o (6)

4 Results

The goal of this work is to use the exact muon wave functions in the eval-
uation of the muon capture rate and especially focus on the contributions
coming from the 2p, 3p etc low-lying orbits of a bound muon. To this aim,
we have constructed an advantageous and very efficient numerical approach
providing us with these wave functions by solving the Dirac equation. By ex-
ploiting the aforementioned computational tools and the (rather complicated)
formalism of the muon capture rate (see Eq. below [8], [14]) we are going to
study systematically and throughout the chart of nuclides the muon capture
process.
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Where the tensors operators in the nuclear Hilbert space is:

M = /d3fg(r)}/()on(kx)YJMJ0
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Fig. 1. The two components of Dirac spinor for the 2p state of a muon bound in
288

Tispi) = [ 71 (0)jok)Yo
Top o) = [ @F)jsalka) Vs, T

-

Tp dow) = [ dEf ()i (ke) I, T

Tiy,p.Jo) = [ dF(0)is (k)30 T

where T are the spherical harmonics and T are the vector harmonics.

In this work we calculated the muon wavefunction (see Fig. 1) and the corre-
sponding binding energy of the = in a 257 muonic atom by solving Dirac’s
equation. We concluded that the estimated binding energy and the bound
muon wavefunctions (small and large component for the 2p state) for the 25
nucleus are in very good agreement with that expected from other theoret-
ical models. In the future we will calculate such partial muon capture rates
for other shells(p,d,f). These calculations have already been estimated with a
different method of ours [13].
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