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Abstract

We apply several information and statistical complexity measures to neutron
stars structure. Neutron stars is a classical example where the gravitational field
and quantum behaviour are combined and produce a macroscopic dense object.
We concentrate our study on the connection between complexity and neutron
star properties, like maximum mass and the corresponding radius, applying a
specific set of realistic equation of states. Moreover, the effect of the strength
of the gravitational field on the neutron star structure and consequently on the
complexity measure is also investigated. It is seen that neutron stars, consistent
with astronomical observations so far, are ordered systems (low complexity),
which cannot grow in complexity as their mass increases. This is a result of
the interplay of gravity, the short-range nuclear force and the very short-range
weak interaction.

Keywords: Shannon Entropy, Disequilibrium, Statistical Complexity,
Self-Organisation, Equation of State, Neutron Stars.

1. Information and Complexity Measures

The Shannon information entropy S for a continuous probability distribu-
tion ρ(r), denoting a measure of the amount of uncertainty associated with a
probability distribution, is defined as

S = −

∫

ρ(r) ln ρ(r) dr, (1)

while the disequilibrium D, being a quadratic distance from equiprobability, is
defined as

D =

∫

ρ2(r) dr, (2)

with dimension of inverse volume [1].
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In order to study the statistical complexity defined by López-Ruiz, Mancini
and Calbet (LMC), we use a slightly modified definition

C = H ·D, (3)

where H = eS is the information content of the system, while the exponential
functional preserves the positivity of C [2].

The aforementioned definitions of information entropy and disequilibrium in
the case of neutron stars are modified as follows:

S = −b0

∫

ǭ(r) ln ǭ(r) dr, and D = b0

∫

ǭ(r)2 dr, (4)

where b0 = 8.9 × 10−7 Km−3 is a proper constant satisfying the condition
that both information entropy S and disequilibrium should be dimensionless
quantities, while ǭ(r) is the dimensionless energy density of the system. It is
equivalent to the density mass ρ(r), obtained by solving the structure equations
characterising the system [3].

2. Neutron Star Structure Equations and Nuclear Equation of State

In order to calculate the gross properties of a neutron star, we assume that
the star has a spherically symmetric distribution of mass in hydrostatic equi-
librium and is extremely cold (T = 0). Effects of rotations and magnetic fields
are neglected and the equilibrium configurations are obtained by solving the
Tolman-Oppenheimer-Volkoff (TOV) equations

dP (r)

dr
= −

GM(r)ρ(r)

r2

(

1 +
P (r)

c2ρ(r)

) (

1 +
4πr3P (r)

c2M(r)

)(

1−
2GM(r)

c2r

)

−1

,

dM(r)

dr
= 4πr2ρ(r) =

4πr2ǫ(r)

c2
, (5)

where P (r) and M(r) are the pressure and the mass functions of the star re-
spectively, The radius R and the total mass of the star, M ≡ M(R), depend on
the value of Pc. Also, we have to know the energy density ǫ(r) (or the density
mass ρ(r)) in terms of the pressure P (r). This relationship is the equation of
state (EOS) for neutron star matter and here, has been calculated applying a
phenomenological nuclear model.

In general, the energy per baryon of neutron-rich matter may be written to
a very good approximation as

E(n, x)

A
=

E(n, 1

2
)

A
+ (1− 2x)2Esym(n) (6)

where n is the baryon density (n = nn + np) and x is the proton fraction
(x = np/n). The symmetry energy Esym(n) can be expressed in terms of the
difference of the energy per baryon between neutron (x = 0) and symmetrical
(x = 1/2) matter.

2
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The density dependent potential V (u) of the symmetric nuclear matter is
parameterised as follows

V (u) =
1

2
Au+

Buσ

1 +B′uσ−1
+ 3

∑

i=1,2

Ci

(

Λi

p0F

)3 (

pF

Λi

− arctan
pF

Λi

)

, (7)

where pF is the Fermi momentum, related to p0F by pF = p0Fu
1/3. The param-

eters Λ1 and Λ2 parameterise the finite-range forces between nucleons, while
the parameters A, B, B′, σ, C1 and C2 are determined using the constraints
provided by the empirical properties of symmetric nuclear matter and the sat-
uration density n0 [4].

To a very good approximation, the nuclear symmetry energy Esym can be
parameterised as

Esym(u) ≃ 13 u2/3 + 17F (u), (8)

where the first term of the right-hand side part of Eq. (8) is the contribution
of the kinetic energy and the second term comes from the interaction energy
(function F (u) parametrises the interaction part of the symmetry energy).

Now the total energy and total pressure of charge neutral and chemically
equilibrium nuclear matter are

ǫtot = ǫb +
∑

l=e−,µ−

ǫl, and Ptot = Pb +
∑

l=e−,µ−

Pl . (9)

From equations (9) we can construct the equation of state in the form ǫ =
ǫ(P ). In order to calculate the global properties of the neutron star, i.e. the
radius and mass, we solved numerically the TOV equations (5) with the given
equations of state constructed employing the present model.

The model of our study, both in the sense of the information and statisti-
cal complexity measures, and the neutron star structure equations and nuclear
equation of state, along with extensive bibliography, is presented in [3].

3. Results

In Fig. 1(a), we plot the nuclear symmetry energy Esym, in Fig. 1(b) the cor-
responding equations of state and in Fig. 1(c) the mass-radius diagrams for each
of the three cases. Actually every pair (R,M) in a mass-radius diagram is the
outcome of the structure equations for an arbitrary chosen initial value of the
pressure Pc in the center of the star. Thus, varying the value of Pc in a reason-
able range, we can have a picture of the behaviour of those substantial structure
characteristics. We have to note here that the region where dM/dR < 0 corre-
sponds to a stable neutron star, while dM/dR > 0 to an unstable one. Another
important feature of a neutron star is the value of Mmax corresponding to the
maximum mass for which the star can exist for the specific equation of state.
As displayed in Fig. 1(c), Mmax is strongly dependent on the equation of state,
while a stiffer equation leads to larger Mmax. Note that we vary the parameter

3
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Figure 1: (a) Symmetry Energy vs Baryon Density n, (b) Energy vs Pressure, and (c) Mass
vs Radius.

c, which characterises the density dependence of the nuclear symmetry energy,
from c = 0.7 (soft equation of state) and c = 1.0, to c = 1.5 (stiff equation of
state).

In Fig. 2(a), we present the information entropy S, as a function of the
mass M . We find that S is a decreasing function of M in the region denoting
a stable neutron star, while in the unstable region S increases with M , as
expected intuitively (in Fig. 2(b) we present H(M)). In Fig. 2(c) we display
the disequilibrium D(M). Increasing M corresponds to greater concentration
of the density distribution, its energy density becomes more localised, resulting
to a monotonically increasing D. Complexity C, is plotted in Fig. 2(d). C is a
monotonically decreasing function of the star mass M . In the unstable region,
where M > Mmax, C increases with M , as indicated in the detailed (inset)
figure, but this refers to a case with no physical meaning. The most interesting
result in this figure is that a neutron star can not grow in complexity as its mass
increases towards the limit of Mmax.

This result becomes more striking in the following set of figures, Fig. 3,
where we plot in three-dimensions information and complexity measures, as
functions of both M and R, taking advantage of the fact that each choice of
initial values in the equation of state provides a different pair (R,M), reflecting
the competition between the gravitational and degenerate gas pressures. The
fact that the most probable radii of a neutron star are close to 10 Km, together
with the aforementioned comment on the most likely masses, lead us to the
conclusion that a neutron star is in general, a system of minimum complexity.
Furthermore, it can not grow in complexity as mass or radius increase inside the
regions imposed and commented above. The neutron star is an ordered system.

Finally in Fig. 4, we present the direct dependence of complexity C on the
parameters c and G. It is seen from Fig. 4(a) that complexity for a given Mmax,
is a decreasing function of the equation of state parameter c, while it increases
exponentially with the parameter of the gravitational field Fig. 4(b).

4
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Figure 2: (a) Entropy S(M), (b) Information Content H(M) = eS , (c) Disequilibrium D(M),
and (d) Complexity C(M).
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Figure 3: Three-dimensional display of (a) Entropy S(R,M), (b) Disequilibrium D(R,M),
and (c) Complexity C(R,M), projected for each case on two planes: (a) R − M and S − R,
(b) R −M and D − R, (c) R −M and C − R.
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Figure 4: (a) Complexity vs the equation of state parameter c, and (b) Complexity vs the
gravitational parameter G, for a given M = Mmax = 1.5 M⊙.
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4. Summary

We present a study of neutron stars from the point of view of information and
complexity theories [3], continuing a recent application to white dwarfs structure
[5]. It is shown that the measures of information entropy S and disequilibrium
D can serve as indices of structure of a neutron star. More specifically, S

is a decreasing function of the mass of the star, while it is an increasing one
of its radius. The result is consistent with the fact that as a neutron star’s
mass increases, its radius decreases resulting to more localised energy and mass
densities. The disequilibrium D shows an inverse behaviour. It is an increasing
function of the mass and a decreasing one of its radius. More localised energy
and mass densities correspond to a distribution far from equiprobability and as
a result the disequilibrium of the system is higher.

The complexity C of a neutron star is a decreasing function of its mass. It
almost vanishes for a vast set of pairs of values (R,M), while it increases rapidly
for masses less than 1.5M

⊙
and radii greater than 12 km, a not so favourable

case for a neutron star (present astronomical observations). The favourable
case, for masses larger than 1.5M

⊙
and radii less than 12 km, corresponds to

almost vanishing complexity, supporting the conclusion that a neutron star is
an ordered system, which cannot grow in complexity as its mass increases.

Furthermore, we investigate the impact of the equation of state parameter
c and the gravitational parameter G on S and C. The behaviour of informa-
tion and complexity measures is equivalent in both cases. Complexity decreases
exponentially with the mass, while it increases linearly with the radius. In di-
rect calculations, complexity decreases exponentially with the equation of state
parameter c, while it increases exponentially with the gravitational parameter
G.
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