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Abstract

The transition density nt and pressure Pt at the inner edge between the liquid
core and the solid crust of a neutron star are analyzed using the thermodynami-
cal method and the framework of relativistic nuclear energy density functionals.
Starting from a functional that has been carefully adjusted to experimental
binding energies of finite nuclei, and varying the density dependence of the cor-
responding symmetry energy within the limits determined by isovector prop-
erties of finite nuclei, we estimate the constraints on the core-crust transition
density and pressure of neutron stars: 0.086 fm−3 ≤ nt < 0.090 fm−3 and
0.3 MeV fm−3 < Pt ≤ 0.76 MeV fm−3 [1].

Keywords: Nuclear density functional, Equation of state, Neutron star crust.

Neutron stars are extraordinary astronomical laboratories for the physics of
dense neutron-rich nuclear matter [2]. They consists of several distinct layers:
the atmosphere, the surface, the crust and the core. The latter, divided into the
outer core and inner core, has a radius of approximately 10 km and contains
most of the star’s mass. The crust, of ≈ 1 km thickness and containing only
a few percent of the total mass, can also be divided into the outer crust and
inner crust. One of the most important prediction of a given equation of state
(EOS) is the location of the inner edge of a neutron star crust. The inner crust
comprises the region from the density at which neutrons drip-out of nuclei, to the
inner edge separating the solid crust from the homogeneous liquid core. At the
inner edge, in fact, a phase transition occurs from the high-density homogeneous
matter to the inhomogeneous matter at lower densities.

All theoretical studies have shown that the core-crust transition density and
pressure are very sensitive to the density dependence of the nuclear matter
symmetry energy. In particular, it has been shown that the Esym(n) constrained
in the same sub-saturation density range as the neutron star crust by the isospin
diffusion data in heavy-ion collisions at intermediate energies [3, 4], limits the
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transition density and pressure to 0.040 fm−3 ≤ nt ≤ 0.065 fm−3 and 0.01 MeV
fm−3 ≤ Pt ≤ 0.26 MeV fm−3, respectively. In the present work we apply a class
of relativistic density functionals in a systematic investigation of the transition
density nt and pressure Pt at the inner edge separating the liquid core from the
solid crust of neutron stars by employing the thermodynamical method.

The core-crust interface corresponds to the phase transition between nuclei
and uniform nuclear matter. The uniform matter is nearly pure neutron matter,
with a proton fraction of just a few percent determined by the condition of beta
equilibrium. Weak interactions conserve both baryon number and charge [5],
and from the first low of thermodynamics, at temperature T = 0:

du = −Pdv − µ̂dq, (1)

where u is the internal energy per baryon, P is the total pressure, v is the volume
per baryon ( v = 1/n where n is the baryon density) and q is the charge fraction
(q = x − Ye where x and Ye are the proton and electron fraction in baryonic
matter respectively). The stability of the uniform phase requires that u(v, q) is
a convex function [6]. This condition leads to the following two constraints for
the pressure and the chemical potential
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It is assumed that the total internal energy per baryon u(v, q) can be decomposed
into baryon (EN ) and electron (Ee) contributions

u(v, q) = EN (v, q) + Ee(v, q). (4)

In this work the well know parabolic approximation is used for the baryon energy
EN (v, q)

EN (v, q) ' V (v) + Esym(v)(1− 2x)2 . (5)

The condition of charge neutrality q = 0 requires that x = Ye. This is the case
we will consider in the present study. After some algebra, it can be shown that
the conditions (2) and (3) are equivalent to

CI(n) = n2 d2V

dn2
+ 2n

dV

dn
(6)

+ (1− 2x)2
[
n2 d2Esym

dn2
+ 2n

dEsym

dn
− 2

1
Esym

(
n

dEsym

dn

)2
]

> 0,

CII(n) = −
(

∂q

∂µ̂

)

v

=
1

8Esym
+

3Ye

µ̂
> 0. (7)

The second inequality (7) is usually valid. The transition density nt is deter-
mined from the first inequality (7). For a given EOS, the quantity CI(n) is
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Figure 1: The transition density nt (a), and the transition pressure Pt (b), as functions of
〈S2〉 for three values of the nuclear matter volume energy coefficient av .

plotted as a function of the baryonic density n, and the equation CI(nt) = 0
defines the transition density nt.

The framework of nuclear energy density functionals (NEDF) provides, at
present, the most complete microscopic approach to the rich variety of structure
phenomena in medium-heavy and heavy complex nuclei, including regions of the
nuclide chart far from the valley of β-stability. By employing global functionals
parameterized by a set of ≈ 10 coupling constants, the current generation of
EDF-based models has achieved a high level of accuracy in the description of
ground states and properties of excited states, exotic unstable nuclei, and even
nuclear systems at the nucleon drip-lines [7]. Starting from the relativistic
energy density functional DD-PC1, in this work we examine the sensitivity of
the core-crust transition density nt and pressure Pt of neutron stars, on the
density dependence of the corresponding symmetry energy of nucleonic matter.

Fig. 1 displays the values of the transition density nt (in fm−3) and transi-
tion pressure Pt (in Mev fm−3), calculated in the thermodynamical model, as
functions of 〈S2〉 for three values of the nuclear matter volume energy coefficient
av. For a given value of the parameter av, the values of nt rise with increasing
〈S2〉, whereas the opposite is found for the values of Pt. For the considered
interval of 〈S2〉, however, the changes are small. An increase of 3.5% in 〈S2〉
leads to an increase of 1.5% in the value of nt. The transition pressure exhibits a
somewhat more pronounced dependence (the corresponding decrease is around
16− 20%). Both nt and Pt display a negligible dependence on av, even though
av = −16.02 MeV and av = −16.14 MeV lie outside the interval of values for
which the absolute deviations between calculated and experimental masses are
smaller than 1 MeV.

In Fig. 2 we plot the transition pressure Pt as a function of the transi-
tion density nt for the three sets of nuclear matter EOS and symmetry energy
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Figure 2: (a) The transition pressure Pt as a function of the transition density nt. For a fixed
value of the symmetry energy at saturation a4 = 33 MeV, and three values of the nuclear
matter volume energy coefficient av , the parameter 〈S2〉 is varied in the interval between 27.6
MeV and 28.6 MeV. (b) The same but for fixed 〈S2〉 = 27.8 MeV, and the symmetry energy
at saturation in the interval 30 MeV ≤ a4 ≤ 35 MeV.

described above, in comparison with results of recent calculations performed us-
ing an isospin and momentum-dependent modified Gogny effective interaction
(MDI) [8]. The different values of the parameter x in the MDI model correspond
to various choices of the density dependence of the nuclear symmetry energy.
In addition to the MDI EOS, in Fig. 2 we also show the result obtained by
Akmal et al. [9] with the A18 + δv + UIX∗ interaction (ARP), and the value
obtained in the recent Dirac-Brueckner-Hartree-Fock (DBHF) calculation [10]
with the Bonn B One-Boson-Exchange (OBE) potential (DBHF+Bonn B) [11].
We notice that by keeping 〈S2〉 constant and varying a4 in the interval between
30 MeV and 35 MeV, the density dependence of the symmetry energy can be
modified in a controlled way, i.e. the corresponding energy density functionals
still reproduce ground-state properties of finite nuclei in fair agreement with
data.

In Fig. 3 we display the corresponding values of the transition density nt (in
fm−3) and transition pressure Pt (in Mev fm−3) as functions of a4 for three val-
ues of the nuclear matter volume energy coefficient av. The transition pressure
Pt as a function of the transition density nt for the three sets of nuclear matter
EOS and symmetry energy is also plotted.

Finally, in Fig. 4 we compare the present prediction for the range of values
of the transition density nt with the results of Horowitz and Piekarewicz who, in
Ref. [12], also used the framework of relativistic mean-field effective interactions
to study the relationship between the neutron-skin thickness of a heavy nucleus
and the properties of neutron star crusts. For the solid crust of a neutron star,
the effective RMF interactions were used in a simple RPA calculation of the
transition density below which uniform neutron-rich matter becomes unstable
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Figure 3: The transition density nt (a), and the transition pressure Pt (b), as functions of
the symmetry energy at saturation density a4, for three values of the nuclear matter volume
energy coefficient av.

against small amplitude density fluctuations. The resulting transition densities
are plotted in Fig. 4 as a function of the predicted difference between neutron
and proton rms radii in 208Pb. This inverse correlation was parameterized [12]

nt ≈ 0.16− 0.39(Rn −Rp), (8)

with the skin thickness expressed in fm. In the present analysis, using a different
type of relativistic effective interactions and varying the density dependence of
the symmetry energy by explicitly modifying 〈S2〉 or a4, we find a much weaker
dependence nt on the neutron-skin thickness of 208Pb.

The framework of relativistic nuclear energy functionals has been employed
to analyze and constrain the transition density nt and pressure Pt at the inner
edge between the liquid core and the solid crust of a neutron star, using the
thermodynamical method. Starting from a class of energy density functionals
carefully adjusted to experimental masses of finite nuclei, we have examined the
sensitivity of the core-crust transition density nt and pressure Pt on the density
dependence of corresponding symmetry energy of nucleonic matter. Instead
of an unrestricted variation of the parameters of the Taylor expansion of the
symmetry energy around the saturation density of nuclear matter, that is the
slope parameter and the isovector correction to the compression modulus, we
modify the density dependence by varying the value of the nuclear symmetry
energy at a point somewhat below the saturation density 〈S2〉 (the symmetry
energy at n = 0.12 fm−3), and at the saturation density a4 (the symmetry
energy at n = 0.152 fm−3, the saturation density for this class of relativistic
density functionals). In the former case, for a given value of the volume energy
coefficient av, 〈S2〉 has been varied in a rather narrow interval of values 27.6
MeV ≤ 〈S2〉 ≤ 28.6 MeV determined by a fit to the experimental binding
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Figure 4: The transition density nt as function of the neutron-skin thickness Rn − Rp of
208Pb. The values of nt calculated using the thermodynamical model in the present work
(solid), are compared with those of Ref. [12] (see text for description).

energies. Both nt and Pt display a negligible dependence on av. The variation
of the parameter a4 has been in the range of values: 30 MeV ≤ a4 ≤ 35 MeV,
allowed by the empirical thickness of the neutron-skin and excitation energies
of isovector dipole resonances, for a fixed value of 〈S2〉. Again, there is virtually
no dependence on av, but now both nt and Pt span much wider intervals.
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