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1 Introduction.

The numerical solutions of ordinary and partial diÆerential equations (ODEs
and PDEs) among others are of special importance for quantum mechanics
problems. The wavefunctions of elementary particles in nuclei and the binding
energies are calculated by the Schrödinger and Dirac equations. The last two
decades or so, a large number of numerical algorithms have been employed to
solve the eigen value problem. Such numerical methods the Artificial Neural
Networks (ANN), genetic algorithms, direct diagonalization, and the finite
elements method (FEM) among others. ANN and FEM were presented as the
most reliable algorithms (e.g. MERLIN) to solve non-homogeneous ODEs and
PDEs [1,3,2].

We apply the genetic algorithm in order to solve the Dirac equation of muonic
atoms. For the case of 208

Pb the muon binding energy Eb ª °10.54MeV and
the muon wavefunction using the ANN method [1] are in good agreement
with our calculations obtained by a genetic algorithm. The calculation of the
wavefunctions can be used to estimate the total muonic capture rates. For
these purpose, we make use of the Fermi’s golden rule and the semi-empirical
PrimakoÆ’s method [4] and highlight the limitation of the method.

2 Dirac equation

In this paragraph, we solve the Dirac equation for muonic atoms. In our in-
vestigation we consinder both the large and small component [5,6]. The Dirac
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Equation in a central force system is described by the following equation

Eψ = [−iγ5σr(
∂

∂r
+

1

r
− β

dr
K) + V (r) + miβ]ψ (1)

where γi are the well known Dirac matrices and

σr =




σ · r 0

0 σ · r


 ; K =




σ · l + 1 0

0 σ · l + 1


 (2)

where µi is the reduced mass, s are the Pauli matrices, l is the orbital angu-
lar momentum. For the case l = 0 (s-state), the two components of Dirac’s
equation could be given by

d

dr
f(r) +

1

r
f(r) =

1

~
(µc2 − E + V (r))g(r) (3)

d

dr
g(r)− 1

r
g(r) =

1

~
(µc2 + E − V (r))f(r) (4)

where f(r) and g(r) are the small and large components of the reduced radial
wavefunction of the muon bound respectively. The total energy is calculated
by

E =
µc2

∫∞
0 [g2(r) + f 2(r)]dr +

∫∞
0 V (r)[g2(r)− f 2(r)]dr∫∞

0 [g2(r)− f 2(r)]dr
(5)

and the extended nuclear Coulomb field, for example the one originating from
the point-nucleon charge distribution ρ(r) is given by

V (r) = −e2

∞∫

−∞

ρ(r′)
|r− r′|d

3r′ (6)

The nuclear charge density ρ(r) can be estimated using the following models
[7]:
1) Two parameter Fermi model

ρ(r) =
ρ(r0)

1 + e
r−c

z

(7)
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Fig. 1. The large, small component of Dirac spinor solution for muon bound in
208Pb.

where c, z are the radius and thickness parameter respectively.
2) Fourier-Bessel model

ρ(r) =





∑
n αnj0(nπr/R) for r ≤ R

0 for r ≥ R
(8)

where j0(qr) denotes the Bessel function of order zero.
3) Sum of Gaussians

ρ(r) =
∑
n

An(e−[(r−Rn)/γ]2 + e−[(r+Rn)/γ]2) (9)

where the coefficients are defined in Ref. [7].

We use the following parametrized solutions for the small and large component
of Dirac equation

f(r) = re−βrN(r,uf ,vf ,wf ) (10)

g(r) = re−βrN(r,ug,vg,wg) (11)

3
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with β > 0 and the parameters ug, vg, wg being ANN parameters. N(r,ug,vg,wg)
is feed-forward artificial neural network

The following error function has to be minimized for estimating the binding
energy

∑n
i=1[

df(ri)
dr

+ f(ri)
ri
− µc2−E+V (ri)

~c g(ri)]
2 + [dg(ri)

dr
− g(ri)

ri
− µc2+E−V (ri)

~c f(ri)]
2

∫∞
0 [g2(r) + f 2(r)]dr

(12)

The minimization has been achived using a genetic algorithm. Genetic algo-
rithms are biologically inspired global optimization methods that are based
on the so called genetic operations of natural selection, reproduction and mu-
tation. These techniques have been used with success in many scientific fields
such as combinatorial problems [8], neural network training [9,10], electromag-
netics [11], design of water distribution networks [12] etc. The main advantages
of genetic algorithms are: a) they can be implement easily, b) they can be par-
allelized and c) they do not require the computation of derivatives of any
order. The main steps of the used genetic algorithm are shortly described as
follows:

• Step 1 (initialization):
· Generate N uniformly distributed random points (chromosomes) and store

them to the set S.
· Set iter=0

• Step 2 (evaluation): Evaluate the function value of each chromosome.
• Step 3 (termination check): If termination criteria are hold terminate.

The termination criteria of the used algorithm are based on asymptotic

considerations. At every generation denoted by iter, the variance σ(iter) of
the best located value is recorded. If there is not any improvement for a
number of generations, it is highly possible that the global minimum is
already found and hence the algorithm should terminate.

• Step 4 (genetic operations):
· Selection: Select m ≤ N parents from S. The selection is performed

using the tournament selection technique.
· Crossover: Create m new points (offsprings) from the previously selected

parents.
· Mutation: Mutate the offsprings produced in the crossover step with

probability pm.
• Step 5 (replacement): Replace the m worst chromosomes in the population

with the previously generated offsprings.
• Step 6 (local technique): Create using the local technique procedure a

trial point x̃. If f (x̃) ≤ f (xh) where xh is the current worst point in S,
then replace xh by x̃.

• Step 7:

4
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· A local search procedure is applied to the best located chromosome xl

every Kls generations, where Kls is a user defined constant that denotes
how frequent the local search procedure has to be applied.

· Set iter=iter+1
· goto step 2

In this article the modified genetic algorithm was used with a population of
200 chromosomes. The maximum number of generations allowed was set to 20
and the mutation rate was set to 5%. The binding energy εb could be given
by εb = E − µc2.

3 Results for muon capture

The capture of a muon bound in the field of a nucleus (A,Z) can be represented
by the following nuclear process

µ− + (A,Z) → (A,Z − 1) + νµ (13)

The total muon capture rates could be estimated by the following relation [4]

λµc = G2 ν

2π~2c

(
mµµc2α

~c

)3 Z4
eff

Z
[Z − Fσ(A,Z)] (14)

where α is the fine structure constant, Fσ(A,Z) is the correlation function and
the effective atomic number Zeff is given by

〈
Φ1s

µ

〉2
=

∫ |Φµ|2ρ(r)d3r∫
ρ(r)d3r

=
α2m3

µ

π

Z4
eff

Z
(15)

where Φ1s
µ is the muon wavefunction for the 1s state (see Fig. 1.) It is worth

mentioning that the effective atomic number is less than the atomic number
Z because a large part of the muon wavefunction is inside the nucleus.

The correlation function Fσ(A,Z) can be estimated by microscopic meth-
ods and Primakoff’s semi-empirical method. The Primakoff’s semi-empirical
method is an approximation which works for light nuclei as is presented in
table 1. For heavy nuclei, Fσ(A,Z) gets four times larger value than the mi-
croscopic method.

5
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Table 1
The correlation function for light and heavy nuclei for two different models.

Nuclei Microscopic method Primakoff method

(A,Z) Fσ(A,Z) Fσ(A,Z)

(4, 2) -1.72 -1.68

(208, 82) -17.80 -78.18

4 Summary and Conclusions

In summary, in the present work we have used a genetic algorithm in order
to calculate the muon wavefunction and the corresponding binding energy of
the µ− in a 208Pb muonic atom. More specifically, we have solved the Dirac’s
equation and concluded that the estimated binding energy and the bound
muon wavefunctions (small and large component for the 1s state) are in very
good agreement with those obtained by solving this equation by utilizing ar-
tificial neural network (ANN) techqniques [1]. Lastly, we have discussed and
point out the frame of the muonic capture process by using the semi-empirical
Primakoff’s method.
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