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Institute of Nuclear Physics, N.C.S.R. “Demokritos”, GR-15310 Aghia Paraskevi,
Attiki, Greece

Abstract

Dynamical symmetries have played a central role for many years in the study of
nuclear structure. Recently, the concepts of Partial Dynamical Symmetry (PDS) and
Quasi-Dynamical Symmetry (QDS) have been introduced. We shall discuss exam-
ples of PDS and QDS appearing in the large boson number limit of the Interacting
Boson Model.

Dynamical symmetries have been used in nuclear structure for several years.
A well known example is provided by the Interacting Boson Model, having an
overal U(6) symmetry, within which the dynamical symmetries U(5), SU(3),
and O(6) occur. These dynamical symmetries are traditionally placed at the
corners of the symmetry triangle of IBM, depicted in Fig. 3.

More recently, two new kinds of symmetries have been considered, the Partial
Dynamical Symmetries (PDS) [1–3] and the Quasi-Dynamical Symmetries
(QDS) [4–8].

There are three kinds of Partial Dynamical Symmetries [1–3]:
i) Type I, where some of the states preserve all the relevant symmetry.
ii) Type II, in which all the states preserve part of the dynamical symmetry.
iii) Type III, where some of the states preserve part of the symmetry.
We will show [9] that signs of a yet unknown PDS seem to appear near the
critical line [10,11] of the IBM.

On the other hand, Quasi-Dynamical Symmetries [4–8] are defined as the situ-
ations in which dynamical symmetries persist despite strong symmetry-break-
ing interactions. We will show [12] that such a QDS appears to be providing an
explanation for the existence of the Alhassid–Whelan arc of regularity [13,14]
among chaotic regions within the symmetry triangle of the IBM.
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Fig. 1. (Top) Line of degeneracy between the 0+
2 and 6+

1 levels (solid line) for NB

= 10, 40, 100, and 250 in the IBA triangle. (Bottom) Line of degeneracy between
the 0+

3 and 10+
1 levels (solid line) for NB = 250 (left) and between the 0+

4 and 14+
1

levels (solid line) for NB = 250 (right) in the IBA triangle. The dashed lines denote
the critical region in the IBA obtained in the large NB limit from the intrinsic state
formalism. Taken from Ref. [9].
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Fig. 2. Energies of low-lying states (normalized to E(2+
1 )=1) of the Hamiltonian of

Eq. (1) with χ=−√
7/2, ζ=0.4729, and NB=250. The parameter ζ was chosen to

reproduce the approximate degeneracy of E(0+
2 ) and E(6+

1 ). Taken from Ref. [9].
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We focus attention on the IBM, especially at large boson numbers. We use an
IBA Hamiltonian of the form

H(ζ, χ) = c

[

(1 − ζ)n̂d − ζ

4NB
Q̂χ · Q̂χ

]

, (1)

where n̂d = d† · d̃, Q̂χ = (s†d̃ + d†s) + χ(d†d̃)(2), NB is the number of valence
bosons, and c is a scaling factor. Calculations in this work have been performed
with the code IBAR [15], which has recently been developed to handle large
boson numbers.

As seen in Fig. 1, certain lines representing degeneracies of pairs of levels [(61,
0+

2 ), (101, 0+
3 ), (141, 0+

4 )] approach the critical region as the boson number is
increased. In Fig. 2 one can see that these are degeneracies between members
of the ground state band (gsb) and the 0+ states studied in Refs. [16,17].
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Fig. 3. IBA symmetry triangle in the parametrization of Eq. (2) with the three dy-
namical symmetries and the Alhassid–Whelan arc of regularity. The shape coexis-
tence region between spherical and deformed phases, shown by slanted lines near the
U(5) vertex, encloses a first order phase transition terminating in a point of second
order transition on the U(5)-O(6) leg. The loci of the degeneracies E(2+

β )=E(2+
γ )

(dashed line on the right, corresponding to the QDS discussed in the text) and
E(4+

1 )=E(0+
2 ) (dotted line on the left) are shown for NB=250 (top) and NB = 25

(bottom). In the bottom part, the ν-diagram, based on Ref. [14] is shown. Taken
from Ref. [12].

One can see empirically that these states approximately satisfy [17] the ex-
pression J(J + 2) = 12n(n + 3), where J indicates the angular momentum of
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the gsb members, while n enumerates the 0+ states. These degeneracies maybe
indicate the existence of some underlying symmetry, which is yet unknown.
Locating this symmetry could help in clarifying the nature of the X(5) critical
point symmetry, which remains unknown to date.

Now we turn attention to the QDS concept. A puzzle which has been around
for nearly 20 years is the existence of the Alhassid–Whelan arc of regularity
[13,14], a region of increased regularity within the symmetry triangle of the
IBM, amidst chaotic regions, as shown in Fig. 3. In these studies a different
parametrization (using the parameters η, χ) of the IBM Hamiltonian of Eq.
(2) has been used, reading [13,14]

H(η, χ) = c
[

ηn̂d +
η − 1

NB

Q̂χ · Q̂χ
]

, (2)

where the symbols have the same meaning as in Eq. (1).
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Fig. 4. The energy difference E(2+
γ )−E(2+

β ) (normalized to E(2+
1 )) and the quality

measures σβγ [Eq. (3), up to Lmax=10] and σ0 [Eq. (4), up to imax=9], are shown
for η=0.632, varying χ, and boson numbers NB=25, 100, 250. Taken from Ref. [12].

We shall show that an underlying SU(3) QDS is responsible for the existence
of the arc. In order to do so, we shall use some measures of SU(3), like the
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amount of the degeneracy breaking between the β1 and γ1 bands [12]

σβγ =

√

√

√

√

∑Lmax
2 [E(L+

β ) − E(L+
γ )]2

Lmax

2
− 1

, (3)

where L+
β =L+

γ and all energies are normalized to E(2+
1 ). In order to examine

to which degree the 0+ states occurring in an IBM calculation obey the SU(3)
rules, we shall also use the relevant rms deviation of the 0+ states from the
positions predicted by the second order Casimir operator of SU(3) [12],

σ0 =

√

√

√

√

∑imax
3 [E(0+

i )th − E(0+
i )SU(3)]2

imax − 3
. (4)

with all energies normalized to E(0+
2 ) and considering the lowest nine 0+ states

(i.e., imax=9).

As depicted in Fig. 4, one can see numerically that both measures of SU(3)
behaviour exhibit at large boson numbers strong minima at the point where
the degeneracy 2+

γ = 2+
β occurs. This indicates that the spectra acquire an

SU(3) structure if this degeneracy is imposed. In Ref. [9] one can see that the
SU(3) degeneracies appear also at higher bands, well beyond the gsb.
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Fig. 5. The |χ| parameter values providing the degeneracy E(2+
β )=E(2+

γ ) and the
quality measures σβγ [Eq. (3), up to Lmax=10] and σ0 [Eq. (4), up to imax=9], are
shown for different values of η and NB=25, 100, 250. Taken from Ref. [9].

The track of this degeneracy within the symmetry triangle of the IBM shown
in Fig. 3, nearly coincides with the Alhassid–Whelan arc of regularity, suggest-
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ing an underlying SU(3) symmetry as the reason behind the existence of the
branch of the arc between the SU(3) vertex and the critical line. In Fig. 5 one
can see that the SU(3) measures remain close to their SU(3) values far beyond
the SU(3) point, thus providing an example of a SU(3) QDS. A similar line,
based on the degeneracy E(4+

1 ) = E(0+
2 ), can be obtained between the U(5)

vertex and the critical line, but the relevant minima there are rather shallow,
in sharp contrast with the deep minima of Fig. 4.

In conclusion, we have shown some examples of PDS and QDS appearing in
the framework of the IBM. Further searches for approximate symmetries in
nuclear structure models appear to be promising.
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