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Abstract

The Deformation Dependent Mass Davidson Model is an extension of the well known
Bohr-Mottelson Hamiltonian for the atomic nuclei. It primarily refers to the mass depen-
dence on the deformation and secondary to the Davidson behavior for the potential of the
(B-vibration. This article will be devoted solely in the solution of the radial equation. Fitting
results for the 152Dy and 238U ground state, 3; and y; bands are also presented.

1 SUSYQM for the [ vibrations

Quesne and Tkachuk began to study SUSYQM methods for non-pointlike quan-
tum oscillators [1,2], that is harmonic oscillators with non-pointlike excitations.
In principle, in such an oscillator the Heisenberg uncertainty relations are modi-
fied and this guides the modification of the canonical commutation relations. In
[3] the equivalence of such an oscillator with a Schroedinger equation of a posi-
tion dependent mass problem was established. In [4] a Schroedinger equation of
the Bohr-Mottelson type was presented for the case of a mass dependent on the 3
degree of freedom. Therefore, based on the Quesne and Tkachuk equivalence, we
construct the phase space of the 3 degree of freedom with commutation relations,

18, ps] = iR f (). (1)

The function f(f3) is called the deformation function. Because of its presence, in
the second quantization procedure, the ladder operators will not be as usual but
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modified in generally as,

A s ) = 5 F@iB) G F@h) + W) @

Here a deformed momentum operator is introduced through the deformation func-
tion f(a; ) and the superpotential W (u, v; 3) which signals the SUSYQM method.
From the parameters (a, i1, ), only a will remain free. The Hamiltonian corre-
sponding to these ladder operators will of course give good quantum numbers for
the stationary states of 3-vibrations, characterized by a function R([3).

The principal SUSYQM demands states that the action of the Hamiltonian oper-
ator to the ground state shall give zero. The parameter ¢ is introduced, which is
assumed to be the energy of the ground state, and therefore SUSYQM method is
valid for the Hamiltonian,

AJr(a",u’a V)Ai(anu7 V) :H_EOJ (3)

which gives zero eigenvalue for the vacuum. This Hamiltonian shall correspond to
the radial equation which is [5],

d 2
HR=— (ﬁdﬁ\/}> R+ 2uR = 2¢R. 4)

This correspondence emerges the equation,
W2, v 8) = F(BYW' (1, v; B) + 0 = 2u(B). (5)

Now, the main result of [3] is that the Schroedinger equation (4) is also obtained for
the case of a position dependent mass problem, as discussed in [4,6] with a change
in the potential,

1 1
u—>ueff:u+1ff"+6(f')2. 6)

Therefore the energy of the ground state £ can be determined from for the w.yy.
This can be done if the specific potential u.ss(3) has known superpotential and
deformation function.

1.1 Shape invariance and the Davidson potential

Schroedinger equation is known to be exactly solvable for the Davidson potential
[7] . Shape invariance states that a potential gives exact solutions if and only if
retains the same functional dependence under the change of its parameters. In the
figure below, shape invariance is shown for the Davidson’s parameter (3, which is
fitted to a specific nucleus, namely the minimum reflects the ground state of the /3
vibrations.
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Fig. 1. The Davidson Potential V (3) = 3% + % and its shape invariant behavior under a
parameter shift.

We extend the shape invariance condition for the effective potential. That means
that u.s; should retain the Davidson behavior for every change in the parameters,
with
2 / 2 k_y

W=, v; B) — fF(B)W' (i, v; B) + €0 = 2ueps(B) = k1 8™ + ko + e (7
In [8], classes of shape invariant potentials have been studied with the identification
of their corresponding superpotentials and deformation functions. The superpoten-
tial and deformation function for the Davidson case are,

W(ﬁ):ngﬁ . f(B) =1+ap (8)

2 Energy spectrum

(From [4] the coefficients of the effective potential are,

ki =2+a*(12+A), ko = a(13 + 2A), ky=2+A+28, 9

with A = 7(7 + 3) for v unstable and A = M + (6¢)(n, + 1) for the axially

symmetric behavior. The parameter c¢ controls ~y stiffness and n, is the quantum
number for v vibrations.

With these equations the energy of the ground state is determined from the expres-
sions,

plp+1) =k_q, v(v —a) = ky, 2uv 4 pa — v +eg = ko, (10)
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1 a 8 +4a?(12+ A)
u:—2<r+w9+A+8%>, u:2<1+¢1+ 5 )

a
(11)
(From these equations the energy of the ground state ¢, is found to be
19 5 1
== — —y/a? + 4
€0 4a+2a+2 a® + 4k, 12

a 1
oL+ ko Z\/(aQ + 4k ) (1 + 4k_y) + aA.

Actually this is the energy of the ground state band for the 3 vibration, because of
the A dependence in each case. The energy for all the bands, for the (3 vibrations is
found to be

1 1
en = glko + a3+ 281 4208 + ArAg) +2a(2+ Ay + Ag)n + dan’], (13)

withn = 0,1,2,...and A, = T+4k_;, A, = 4/1+ 4% The ground state
band is obtained from n = 0, while the quasi-/3; band is obtained from n = 1, and
the quasi-(3, band is obtained from n = 2.

3 Fitting

In [5] the above energy spectrum was fitted for the cases of y-unstable and axially
symmetric nuclei. The fitting measure was the Gaussian error,

L (Eilerp) — BA)?
- J - DEER "

In the axially symmetric prolate case the free parameters are ([, a,c,) were a
shows in a certain nucleus the mass dependence on the deformation and c, the
stiffness. Results for the spectra are encouraging for the majority of y-unstable and
axially symmetric nuclei, apart from the X(5) candidates, where it is expected that
the appropriate potential is not the Davidson. Here the cases of ?**U and 62Dy are
presented. The agreement is very good for large angular momenta for the ground
state and the ; bands. In the case of the (; band the agreement is restricted to the
low-lying states. Also in [5] B(E2) are compared to the experiment and reveal an
overall good agreement apart from the transitions from the /3; to the ground state
band, which are in general overestimated.
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Table 1

Normalized [to the energy of the first excited state, &/ (2f)] energy levels of the ground state
band (gsb) and the 3; and ~; bands of 192Dy and 23®U, obtained from the Bohr Hamiltonian
with B-dependent mass for axially symmetric prolate deformed nuclei using the parameters
given in Ref. [5], compared to experimental data [9].

162py 162Dy 23817 23817 162py  162py 238y 238y
L exp th exp th L exp th  exp th
gsb  gsb gsb gsb 7 MmooomoMm

0.00 0.00 0.00 000 2 11.0 112 236 247

1.00 1.00 1.00 100 3 119 121 246 255

3.29 3.30 3.30 331 4 13.2 133 259 267
5

147 147 274 28.1

™ H+ D O

6.80  6.80 6.84 6.86
18 4758 4728 4878 4898 11 290 289 417 419

26 8946 9055 15 557 555
28 10057 10208 16 597 594
30 112.10 11399 17 639 634
18 682 67.7

B B B B 19 727 720

0 173 157 206 206 20 773 766
2 180 167 215 216 21 82.1 813
4 195 190 235 240 22 870 86.1
6 219 226 23 919 910
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