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Abstract

The Deformation Dependent Mass Davidson Model is an extension of the well known
Bohr-Mottelson Hamiltonian for the atomic nuclei. It primarily refers to the mass depen-
dence on the deformation and secondary to the Davidson behavior for the potential of the
Ø-vibration. This article will be devoted solely in the solution of the radial equation. Fitting
results for the 162Dy and 238U ground state, Ø1 and ∞1 bands are also presented.

1 SUSYQM for the Ø vibrations

Quesne and Tkachuk began to study SUSYQM methods for non-pointlike quan-
tum oscillators [1,2], that is harmonic oscillators with non-pointlike excitations.
In principle, in such an oscillator the Heisenberg uncertainty relations are modi-
fied and this guides the modification of the canonical commutation relations. In
[3] the equivalence of such an oscillator with a Schroedinger equation of a posi-
tion dependent mass problem was established. In [4] a Schroedinger equation of
the Bohr-Mottelson type was presented for the case of a mass dependent on the Ø
degree of freedom. Therefore, based on the Quesne and Tkachuk equivalence, we
construct the phase space of the Ø degree of freedom with commutation relations,

[Ø, pØ] = i~f(Ø). (1)

The function f(Ø) is called the deformation function. Because of its presence, in
the second quantization procedure, the ladder operators will not be as usual but
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modified in generally as,

A± ! A±(a, µ, ∫) = ®
q

f(a; Ø)
d

dØ

q
f(a; Ø) + W (µ, ∫; Ø). (2)

Here a deformed momentum operator is introduced through the deformation func-
tion f(a; Ø) and the superpotentialW (µ, ∫; Ø)which signals the SUSYQMmethod.
From the parameters (a, µ, ∫), only a will remain free. The Hamiltonian corre-
sponding to these ladder operators will of course give good quantum numbers for
the stationary states of Ø-vibrations, characterized by a function R(Ø).

The principal SUSYQM demands states that the action of the Hamiltonian oper-
ator to the ground state shall give zero. The parameter "0 is introduced, which is
assumed to be the energy of the ground state, and therefore SUSYQM method is
valid for the Hamiltonian,

A+(a, µ, ∫)A°(a, µ, ∫) = H ° "0, (3)

which gives zero eigenvalue for the vacuum. This Hamiltonian shall correspond to
the radial equation which is [5],

HR = °
√q

f
d

dØ

q
f

!2

R + 2uR = 2≤R. (4)

This correspondence emerges the equation,

W 2(µ, ∫; Ø)° f(Ø)W 0(µ, ∫; Ø) + "0 = 2u(Ø). (5)

Now, the main result of [3] is that the Schroedinger equation (4) is also obtained for
the case of a position dependent mass problem, as discussed in [4,6] with a change
in the potential,

u! ueff = u +
1

4
ff 00 +

1

6
(f 0)2. (6)

Therefore the energy of the ground state "0 can be determined from for the ueff .
This can be done if the specific potential ueff (Ø) has known superpotential and
deformation function.

1.1 Shape invariance and the Davidson potential

Schroedinger equation is known to be exactly solvable for the Davidson potential
[7] . Shape invariance states that a potential gives exact solutions if and only if
retains the same functional dependence under the change of its parameters. In the
figure below, shape invariance is shown for the Davidson’s parameter Ø0 which is
fitted to a specific nucleus, namely the minimum reflects the ground state of the Ø
vibrations.
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Fig. 1. The Davidson Potential V (Ø) = Ø2 + Ø4
0

Ø2 and its shape invariant behavior under a
parameter shift.

We extend the shape invariance condition for the effective potential. That means
that ueff should retain the Davidson behavior for every change in the parameters,
with

W 2(µ, ∫; Ø)° f(Ø)W 0(µ, ∫; Ø) + "0 = 2ueff (Ø) = k1Ø
2 + k0 +

k°1

Ø2
. (7)

In [8], classes of shape invariant potentials have been studied with the identification
of their corresponding superpotentials and deformation functions. The superpoten-
tial and deformation function for the Davidson case are,

W (Ø) =
µ

Ø
+ ∫Ø , f(Ø) = 1 + aØ2. (8)

2 Energy spectrum

¿From [4] the coefficients of the effective potential are,

k1 = 2 + a2(12 + §), k0 = a(13 + 2§), k°1 = 2 + § + 2Ø4
0 , (9)

with § = ø(ø +3) for ∞ unstable and § = L(L+1)°K2

3 +(6c)(n∞ +1) for the axially
symmetric behavior. The parameter c controls ∞ stiffness and n∞ is the quantum
number for ∞ vibrations.

With these equations the energy of the ground state is determined from the expres-
sions,

µ(µ + 1) = k°1, ∫(∫ ° a) = k1, 2µ∫ + µa° ∫ + "0 = k0, (10)
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µ = °1

2

µ
1 +

q
9 + § + 8Ø4

0

∂
, ∫ =

a

2

0

@1 +

s

1 +
8 + 4a2(12 + §)

a2

1

A .

(11)
¿From these equations the energy of the ground state ≤0 is found to be

≤0 =
19

4
a +

5

2
a +

1

2

q
a2 + 4k1

+
a

2

q
1 + 4k°1 +

1

4

q
(a2 + 4k1)(1 + 4k°1) + a§.

(12)

Actually this is the energy of the ground state band for the Ø vibration, because of
the § dependence in each case. The energy for all the bands, for the Ø vibrations is
found to be

≤n =
1

2
[k0 +

1

2
a(3 + 2¢1 + 2¢2 + ¢1¢2) + 2a(2 + ¢1 + ¢2)n + 4an2], (13)

with n = 0, 1, 2, . . . and ¢1 ¥
p

1 + 4k°1, ¢2 ¥
q

1 + 4k1
a2 . The ground state

band is obtained from n = 0, while the quasi-Ø1 band is obtained from n = 1, and
the quasi-Ø2 band is obtained from n = 2.

3 Fitting

In [5] the above energy spectrum was fitted for the cases of ∞-unstable and axially
symmetric nuclei. The fitting measure was the Gaussian error,

æ =

vuut
Pn

i=1(Ei(exp)° Ei(th))2

(n° 1)E(2+
1 )2

. (14)

In the axially symmetric prolate case the free parameters are (Ø0, a, c∞) were a
shows in a certain nucleus the mass dependence on the deformation and c∞ the ∞
stiffness. Results for the spectra are encouraging for the majority of ∞-unstable and
axially symmetric nuclei, apart from the X(5) candidates, where it is expected that
the appropriate potential is not the Davidson. Here the cases of 238U and 162Dy are
presented. The agreement is very good for large angular momenta for the ground
state and the ∞1 bands. In the case of the Ø1 band the agreement is restricted to the
low-lying states. Also in [5] B(E2) are compared to the experiment and reveal an
overall good agreement apart from the transitions from the Ø1 to the ground state
band, which are in general overestimated.
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Table 1
Normalized [to the energy of the first excited state,E(2+

1 )] energy levels of the ground state
band (gsb) and the Ø1 and ∞1 bands of 162Dy and 238U, obtained from the Bohr Hamiltonian
with Ø-dependent mass for axially symmetric prolate deformed nuclei using the parameters
given in Ref. [5], compared to experimental data [9].

162Dy 162Dy 238U 238U 162Dy 162Dy 238U 238U

L exp th exp th L exp th exp th

gsb gsb gsb gsb ∞1 ∞1 ∞1 ∞1

0 0.00 0.00 0.00 0.00 2 11.0 11.2 23.6 24.7

2 1.00 1.00 1.00 1.00 3 11.9 12.1 24.6 25.5

4 3.29 3.30 3.30 3.31 4 13.2 13.3 25.9 26.7

6 6.80 6.80 6.84 6.86 5 14.7 14.7 27.4 28.1

18 47.58 47.28 48.78 48.98 11 29.0 28.9 41.7 41.9

26 89.46 90.55 15 55.7 55.5

28 100.57 102.08 16 59.7 59.4

30 112.10 113.99 17 63.9 63.4

18 68.2 67.7

Ø1 Ø1 Ø1 Ø1 19 72.7 72.0

0 17.3 15.7 20.6 20.6 20 77.3 76.6

2 18.0 16.7 21.5 21.6 21 82.1 81.3

4 19.5 19.0 23.5 24.0 22 87.0 86.1

6 21.9 22.6 23 91.9 91.0
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